Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supplementary data

Ru(II)-catalysed oxidative (4+2) annulation of chromene and coumarin carboxylic acids

with alkynes/propargylic alcohols: Isolation of Ru(0) complexes

Mallepalli Shankar and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.

E-mail: kckssc@uohyd.ac.in; kckssc@yahoo.com

S. No	Contents	Page No.
1.	X-ray data collection, solution, refinement and the ORTEPs/Crystal Data of compounds 5aa , 5ce , 5cj , 6aa and 7ab	S2-S4
2.	¹ H and ¹³ C{ ¹ H} NMR spectra of the starting materials 1b and 1c	S5-S6
3.	¹ H and ¹³ C NMR spectra of all new compounds (Figures S6-S79) [order: 1b , 1c ; 5aa-5ca ; 5ab-5cb ; 5ac , 5cc ; 5ad-5ag ; 5bg ; 5ce ; 5ah-ak ; 5bh-bj ; 5ci-cj , 5'al ; 6aa-bc , 6da ; 7aa-ac , 7ae , 7ag , 7ai-aj and 7'ba , 7'ca]	S7-S46
4.	Reference	S47

Crystallographic data for compounds 5aa, 5ce, 5cj, 6aa and 7ab

Single crystal X-ray data for crystals of compounds **5aa**, **5ce**, **5cj**, **6aa** and **7ab** were collected on an X-ray diffractometer using Mo-K α ($\lambda = 0.71073$ Å) radiation after mounting on glass fibers inside a brass pin in open air. The structures were solved by direct methods and refined by full matrix least squares method using standard procedures; absorption corrections were done using SADABS program, where applicable.¹ In general, all non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed by geometry or located by a Difference Fourier map and refined isotropically. CCDC numbers are 2213160-2213164.

ORTEPs and crystal data of 5aa, 5ce, 5cj, 6aa and 7ab (Figures S1-S5)

Figure S1. ORTEP view of compound **5aa** with 30% probability of ellipsoids. **Crystal data**: $C_{24}H_{16}O_3$, M = 352.37, Orthorhombic, Space group *Pna2 (1)*, a = 7.9771(3), b = 14.2651(6), c = 15.4453(7) Å, V = 1757.58(13) Å³, Z = 4, $\mu = 0.087$ mm⁻¹, data/restraints/parameters: 2973/1/245, R indices (I>2sigma(I): R1 = 0.0288, *w*R2 (all data) = 0.0747. Solvent for crystallization: EtOAc + hexane. CCDC No: 2213160.

Figure S2. ORTEP view of compound **5ce** with 30% probability of ellipsoids. **Crystal data**: $C_{21}H_{15}BrClO_4$, M = 446.69, Monoclinic, Space group P2(1)/c, a = 16.4674(10), b = 7.5481(5), c = 16.6864(10) Å, V = 1837.3(2) Å³, $\beta = 117.646(2)^\circ$, Z = 4, $\mu = 2.408$ mm⁻¹, data/restraints/parameters: 3187/0/246, R indices (>2sigma(I): R1 = 0.0462, wR2 (all data) = 0.1320. Solvent for crystallization: DCM + hexane. CCDC No: 2213161.

Figure S3. ORTEP view of compound **5cj** with 30% probability of ellipsoids. **Crystal data**: $C_{21}H_{25}BrO_4$, M = 421.32, Monoclinic, Space group *P 1 21 1*, a = 5.1663(2), b = 14.7442(5), c = 12.9318(5) Å, V = 974.41(6) Å³, $\beta = 98.432(4)^{\circ}$, Z = 2, $\mu = 2.132$ mm⁻¹, data/restraints/parameters: 2954/1/238, R indices (>2sigma(I)): R1 = 0.0544, *w*R2 (all data) = 0.1402. Solvent for crystallization: EtOAc + hexane. CCDC No: 2213162.

Figure S4. ORTEP view of compound 6aa with 30% probability of ellipsoids. Crystal data: $C_{36}H_{32}O_{3}Ru, M = 613.72$, Monoclinic, Space group P2(1)/c, a = 18.2137(11) b = 9.1058(6) c = 17.3141(10) Å, V = 2781.2(3) Å³, $\beta = 104.407(2)^{\circ} Z = 4$, $\mu = 0.600$ mm⁻¹, data/restraints/parameters: 4886/0/364, R indices (>2sigma(I)): R1 = 0.0201, wR2 (all data) = 0.0543. Solvent for crystallization: EtOAc + hexane. CCDC No: 2213163.

Figure S5. ORTEP view of compound **7ab** with 30% probability of ellipsoids. **Crystal data**: $C_{26}H_{18}O_4$, M = 394.40, Orthorhombic, Space group *Fdd2*, a = 52.655(4), b = 7.5681(4), c = 19.8301(12) Å, V = 7902.3(9) Å³, Z = 16, $\mu = 0.089$ mm⁻¹, data/restraints/parameters: 3261 /1/274, R indices (>2sigma(I)): R1 = 0.0339, *w*R2 (all data) = 0.0873. Solvent for crystallization: EtOAc + hexane. CCDC No: 2213164.

Figure S7. $^{13}C{^{1}H}$ NMR spectrum of compound 1b

Figure S9. $^{13}C{^{1}H}$ NMR spectrum of compound 1c

Figure S11. ¹³C{¹H} NMR spectrum of compound 5aa

Figure S13. ¹³C{¹H} NMR spectrum of compound 5ab

Figure S15. ¹³C{¹H} NMR spectrum of compound 5ac

Figure S17. ¹³C{¹H} NMR spectrum of compound 5ad

Figure S19. ¹³C{¹H} NMR spectrum of compound 5ae

Figure S21. ¹³C{¹H} NMR spectrum of compound 5af

Figure S23. ¹³C{¹H} NMR spectrum of compound 5ag

Figure S25. ³C{¹H} NMR spectrum of compound 5ah

Figure S27. ¹³C{¹H} NMR spectrum of compound 5ai

Figure S31. ¹³C{¹H} NMR spectrum of compound 5ak

Figure S33. ¹³C{¹H} NMR spectrum of compound 5ba

Figure S35. ¹³C{¹H} NMR spectrum of compound 5bb

Figure S37. ¹³C{¹H} NMR spectrum of compound 5bg

Figure S39. ¹³C{¹H} NMR spectrum of compound 5bh

Figure S41. ¹³C{¹H} NMR spectrum of compound 5bi

Figure S43. ¹³C{¹H} NMR spectrum of compound 5bj

Figure S45. ¹³C{¹H} NMR spectrum of compound 5ca

Figure S49. ¹³C{¹H} NMR spectrum of compound 5cc

Figure S51. ¹³C{¹H} NMR spectrum of compound 5ce

Figure S53. ¹³C{¹H} NMR spectrum of compound 5ci

Figure S59. ¹³C{¹H} NMR spectrum of compound 6aa

S32

Figure S63. ¹³C{¹H} NMR spectrum of compound 6ac

Figure S65. ¹³C{¹H} NMR spectrum of compound 6ba

Figure S67. ¹³C{¹H} NMR spectrum of compound 6bb

S36

S37

Figure S73. ¹³C{¹H} NMR spectrum of compound 7aa

Figure S75. ¹³C{¹H} NMR spectrum of compound 7ab

Figure S77. ¹³C{¹H} NMR spectrum of compound 7ac

Figure S79. ¹³C{¹H} NMR spectrum of compound 7ae

Figure S81. ¹³C{¹H} NMR spectrum of compound 7ag

Figure S83. ¹³C{¹H} NMR spectrum of compound 7ai

Figure S87. ¹³C{¹H} NMR spectrum of compound 7'ba

Figure S89. ¹³C{¹H} NMR spectrum of compound 7'ca

REFERENCE

 (a) Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction, University of Gottingen, Germany, **1996**. (b) Sheldrick, G. M. SHELX-97-A program for crystal structure solution and refinement, University of Gottingen, **1997**. (c) Sheldrick, G. M. SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, **1999**, version 5.10].