found 809.5203.

3-15-2. Using 1,2-di-O-palmitoyl-sn-glycerol-3-phosphate sodium salt.

1,2-di-*O*-palmitoyl-*sn*-glycerol-3-phosphate sodium salt (**13**, 1 mg, 1.2 μ mol), D-glucose (0.65 mg, 3.6 μ mol) and TEA (6 μ L, 43 mmol) were suspended in propionitrile/H₂O (1/5, 18 μ L), treated with DMC (1.8 mg, 11 μ mol) at 0 °C and stirred at 4 °C for 1 h. The mixture was applied to silica gel column chromatography (Iatrobeads 6RS-8060 No.1104) and eluted with CHCl₃/MeOH/TEA (100/0/1 to 89/11/0.2, 80/20/0.2, *v/v*). All fractions containing **14** were collected and concentrated *in vacuo*. The residue was purified by gel permeation column chromatography (Sephadex LH20) with CHCl₃/MeOH/TEA (50/50/1, *v/v*) to give **14** (0.28 mg, 20%).

3-16. Synthesis of ¹³C-labeled phosphatidyl glucoside (U-¹³C₆): 15

A mixture of PA(18:0/20:0) **3** (5.0 mg, 6 µmol), ¹³C₆-D-glucose (3.3 mg, 18 µmol) and TEA (30 µL, 215 mmol) in 90 µL of propionitrile/H₂O (1/5) was treated with DMC (9.1 mg, 55 µmol) at 0 °C. The reaction mixture was stirred at 4 °C for 1 h. The mixture was applied to silica gel column chromatography (latrobeads 6RS-8060 No.1104) and eluted with CHCl₃/MeOH/TEA (100/0/1 to 89/11/0.2, 80/20/0.2, *v/v*). The eluent was evaporated *in vacuo*. The residue was purified by gel permeation column chromatography (Sephadex LH20) with CHCl₃/MeOH/TEA (50/50/1, *v/v*) to give **15** (1.5 mg, 25%); ¹H NMR (600 MHz, CDCl₃/CD₃OD = 2 / 1): δ 5.28-5.24 (m, 1H, *sn*-2), 4.82 (dt, 1H, ¹J_{CH} = 162.6 Hz, ³J_{HP} = 7.8 Hz, *J* = 7.8 Hz, H-1), 4.42-4.40 (m, 1H, *sn*-1_a), 4.21-4.18 (m, 1H, *sn*-1_b), 4.09-4.02 (m, 3H, *sn*-3, H-6), 3.80-3.74 (m, 1H, H-6'), 3.56-3.39 (m, 2H, H-3, H-5), 3.32-3.25 (m, 2H, H-4, H-2), 3.17-3.14 (m, 6H, N-(CH₂-CH₃)₃), 2.34-2.30 (m, 4H, FA), 1.64-1.58 (m, 4H, FA), 1.35 (t, 9H, *J* = 7.2 Hz, *J* = 7.2 Hz, N-(CH₂-CH₃)₃), 1.33-1.27 (m, 60H, FA), 0.89 (m, 6H, *J* = 7.2 Hz, *J* = 7.2 Hz, FA); ¹³C NMR (150 MHz, CDCl₃/CD₃OD = 2 / 1): δ 97.77 (dd, *J* = 46.7 Hz, ²*J*_{CP} = 4.4 Hz, 2.9 Hz, C-1), 76.79 (t, *J* = 43.1 Hz, *J* = 41.7 Hz, C-5), 75.89 (t, *J* = 38.7 Hz, *J* = 38.9 Hz, C-3), 73.87 (m, *J* = 42.5 Hz, *J* = 42.3 Hz, ³*J*_{CP} = 7.2 Hz, 7.2 Hz, 5.7 Hz, 7.2 Hz, C-2), 69.92 (t, *J* = 38.7 Hz, *J* = 40.4 Hz, C-4), 61.53 (d, *J* = 43.2 Hz, C-6), 29.41 (FA); ³¹P NMR (243 MHz, CDCl₃/CD₃OD = 2 / 1) δ -2.33 ppm: ESI MS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requires *m/z* 899.61; found 899.65, HRMS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requires *m/z* 899.61; found 899.65, HRMS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requires *m/z* 899.61; found 899.65, HRMS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requires *m/z* 899.61; found 899.65, HRMS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requires *m/z* 899.61; found 899.65, HRMS calcd for [¹³C₆C₄₁H₉₀O₁₃P]⁻ requ

¹H-NMR data of (2-O-Arachidyl-1-O-stearyl-*sn*-glycer-3-yl) β -D-¹³C₆-glucopyranosyl phosphate triethylammonium salt: ¹³C₆-PtdGlc (**15**), 600 MHz, CDCl₃/CD₃OD = 2/1

¹³C-NMR data of (2-O-Arachidyl-1-O-stearyl-*sn*-glycer-3-yl) β-D-¹³C₆-glucopyranosyl phosphate triethylammonium salt: ${}^{13}C_6$ _PtdGlc (**15**), 600 MHz, CDCl₃/CD₃OD = 2/1

³¹P-NMR data of (2-O-Arachidyl-1-O-stearyl-*sn*-glycer-3-yl) β-D-¹³C₆-glucopyranosyl phosphate triethylammonium salt: ¹³C₆_PtdGlc (**15**), 243 MHz, CDCl₃/CD₃OD = 2/1

