Supporting Information

Base-promoted [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with β , γ -Unsaturated α -Ketoesters: Syntheses of 5,6-Dihydroindolizines

You-Ya Zhang^a, Lin Li^a, Ai-Jun Ma^a, Wei-Feng Wang ^{*a,b} and Jin-Bao Peng^{*a}

^aSchool of Biotechnology and Health Sciences, Wuyi University,

Jiangmen, Guangdong 529020, P. R. China

^bState Key Laboratory of Applied Organic Chemistry & College of

Chemistry and Chemical Engineering, Lanzhou University, Lanzhou

730000, P. R. China

*Email: wangwf2020@lzu.edu.cn; pengjb_05@126.com

Table of Contents

1. General Information	1
2 Preparation of the Compounds 1a-1n	2
3 Preparation of the Compounds 2a-2u	3
4 Optimization of Reaction Conditions	4
5 General Procedure and Substrate Scope	6
6 Experimental Characterization Data for the Products	7
7 X-ray Crystal Structure Determination of the Products	22
8 References	23
9 Copies of NMR Spectra for Compounds	24

1. General Information

Reagents, solvents and analytical methods:

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. ¹NMR spectra were recorded on a Bruker Avance operating at for ¹H NMR at 500 MHz, ¹³C NMR at 126 MHz and ¹⁹F NMR at 471 MHz and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ (¹H NMR δ 7.27, ¹³C NMR δ 77.0) as solvent. High-resolution mass spectra (HRMS) is produced by Thermo Fisher Scientific. Its main body is composed of two parts: Thermo Scientific's UltiMate 3000 Series liquid system and Thermo Scientific Q-Exactive combined quadrupole Orbitrap mass spectrometer. All coupling constants (*J*) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad.

2 Preparation of the Compounds 1a-1n

3 Preparation of the Compounds 2a-2u

3.1 Preparation of the Compounds 2a-2m,2o-2u

Compounds 2a-2k, 2m, 2o were prepared according to the previous literature.^{S5} Compounds 2n, 2p, 2q, 2s were prepared according to the previous literature.^{S6} Compounds 2l, 2r, 2t, 2u were prepared according to the previous literature.^{S7}

4 Optimization of Reaction Conditions

Л СНО	+ O O O O O O O O O O	Base (0.5 eq.) DCM, 60 °C, 24h	
1a	2a		3aa

Table S1. Optimization of the Base.^[a]

Entry	Base	Yield (%) ^[b]
1	DBU	20
2	Cinchonine	NR
3	Quinidine	NR
4	K ₂ CO ₃	15
5	t-BuOK	trace
6	Cs_2CO_3	20
7	DIPEA	NR
8	2,4,6-Collidine	NR
9	TEA	33
10	DBN	60
11	TMG	47
12 ^[c]	Cs_2CO_3	30
13 ^[d]	Cs_2CO_3	ND

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), Base (50 mol%), DCM (1.5 mL), N_2 atmosphere, 60 °C for 24 h. [b] Isolated yield. [c] the reaction was performed in MeCN. [d] the reaction was performed in DMF.

Table S2. Optimization of Solvent.^[a]

		DBN (0.5 eq.) plvent, 60 °C, 24h
	1a 2a	3aa
Entry	Solvent	Yield (%) ^[b]
1	THF	57
2	DCE	54
3	DMF	85
4	DMSO	70
5	MeOH	38
6	1,4-Dioxane	41
7	MeCN	53

8	Toluene	31
9	DCM	60
10	EA	36
11	H_2O	NR
12	DMA	63

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), DBN (50 mol%), solvent (1.5 mL), N_2 atmosphere, 60 °C for 24 h. [b] Isolated yield.

Table S3. Optimization of Temperature.^[a]

	$ \begin{array}{c} $	DBN (0.5 eq.) DMF, T °C, 24h 3aa
Entry	Temp. (°C)	Yield (%) ^[b]
1	30	57
2	60	85
3	80	50
4	100	37

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), DBN (50 mol%), DMF (1.5 mL), N_2 atmosphere, T °C for 24 h. [b] Isolated yield.

Table S4. Optimization of ratio of starting materials.^[a]

O DMF, 60 °C, 24h	
1a 2a 3aa	
Entry 1a:2a Yield (%) ^[b]	
1 1.5:1 85	
2 1:1 62	
3 1:1.5 70	
4 1:1.2 64	
5 1.2:1 63	
6 2:1 75	

[a] Reaction conditions: 1a (x mmol), 2a (0.2 mmol), DBN (50 mol%), DMF (1.5 mL), N_2 atmosphere, 60 °C for 24 h. [b] Isolated yield.

Table S5. Optimization of the proportion of Base.^[a]

Entry	Base	Yield (%) ^[b]
1	0.2 equiv	45
2	0.5 equiv	85
3	0.8 equiv	52
4	1 equiv	48

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), DBN (x equiv.), DMF (1.5 mL), N₂ atmosphere, 60 °C for 24 h. [b] Isolated yield.

5 General Procedure and Substrate Scope

5.1. General Procedure

1 (0.3 mmol, 1.5 equiv), 2 (0.2 mmol,1 equiv) were transferred into a 15 mL tube. Then the tube was sealed with a septum. The tube was connected to an nitrogen-vacuum line, evacuated and backfilled with N₂ (x3). DBN (50 mol%) and DMF (1.5 mL) were added to the reaction tube. The reaction mixture was stirred at 60 °C for 24 hours. Then the mixture was extracted with EA (3 x 6 mL) and washed with a saturated solution of NaCl (5 mL x 2), and the combined extracts were dried over anhydrous Na₂SO₄. The mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether/EtOAc (v/v = 30:1 to 5:1) to afford the products **3**.

5.2. Gram Scale Synthesis

1 (4.5 mmol, 1.5 equiv), 2 (3 mmol,1 equiv) were transferred into a 100 mL bottle. Then the bottle was sealed with a septum. The bottle was connected to an nitrogen-vacuum line, evacuated and backfilled with N_2 (x3). DBN (0.185 mL) and DMF (30 mL) were added to the reaction bottle. The reaction mixture was stirred at 60 °C for 36 hours. Then the mixture was extracted with EA and washed with a saturated solution of NaCl, and the combined extracts were dried over anhydrous Na_2SO_4 . The mixture was concentrated under reduced pressure and the residue was

purified by flash chromatography on silica gel eluting with petroleum ether/EtOAc (v/v = 30:1 to 5:1) to afford the products **3** (924 mg, 80%).

5.3. Substrate scope limits

6 Experimental Characterization Data for the Products

Methyl 2-(trans-5-benzoyl-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3aa)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (65.5 mg, 85%) was obtained as a yellow solid. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCI3)** δ 7.96 – 7.89 (m, 2H), 7.85 (s, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 6.9 Hz, 2H), 7.10 (dd, *J* = 7.4, 1.8 Hz, 2H), 6.80 – 6.72 (m, 1H), 6.69 (s, 1H), 6.39 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.73 (s, 1H), 4.58 (s, 1H), 3.77 (s, 3H). ¹³**C NMR (126 MHz, CDCI3)** δ 193.7, 183.2, 163.7, 141.0, 134.8, 134.4, 133.1, 129.4, 129.3, 129.1, 128.8, 128.0, 127.7, 127.4, 124.3, 117.6, 113.1, 65.9, 52.7, 41.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₉NO₄H⁺ 386.1387; Found 386.1380.

Methyl 2-(trans-5-benzoyl-6-(p-tolyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ab)

From methyl (*E*)-2-oxo-4-(*p*-tolyl)but-3-enoate (40.8 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (75.5 mg, 95%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.01 – 7.95 (m, 2H), 7.89 (s, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.07 (q, *J* = 8.2 Hz, 4H), 6.80 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.74 (s, 1H), 6.44 (dd, *J* = 3.8, 2.6 Hz, 1H), 5.78 (s, 1H), 4.62 (s, 1H), 3.82 (s, 3H), 2.30 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.7, 183.3, 163.7, 138.0, 137.6, 134.6, 134.3, 133.1, 129.9, 129.3, 129.0, 128.7, 127.6, 127.2, 124.5, 117.4, 113.0, 66.0, 52.6, 40.6, 21.2.
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₄H⁺ 400.1543; Found 400.1537.

Methyl 2-(trans-5-benzoyl-6-(4-methoxyphenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ac)

From methyl (*E*)-4-(4-methoxyphenyl)-2-oxobut-3-enoate (44 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure , the title compound (68.9 mg, 83%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.96 (d, J = 7.9 Hz, 2H), 7.88 (s, 1H), 7.66 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 7.8 Hz, 3H), 6.75 (s, 1H), 6.50 – 6.39 (m, 1H), 5.78 (s, 1H), 4.61 (s, 1H), 3.82 (s, 3H), 3.75 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.7, 183.3, 163.7, 159.2, 134.4, 134.3, 133.1, 133.1, 129.3, 129.0, 128.7, 128.4, 127.6, 124.6, 117.4, 114.6, 113.0, 66.1, 55.3, 52.6, 40.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₅H⁺ 416.1492; Found 416.1485.

Methyl 2-(trans-5-benzoyl-6-(3-methoxyphenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ad)

From methyl (*E*)-4-(3-methoxyphenyl)-2-oxobut-3-enoate (44 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (58.9 mg, 71%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.00 – 7.95 (m, 2H), 7.91 (s, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.20 (t, *J* = 7.9 Hz, 1H), 6.84 – 6.72 (m, 4H), 6.71 – 6.65 (m, 1H), 6.44 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.80 (s, 1H), 4.62 (s, 1H), 3.83 (s, 3H), 3.71 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.6, 183.2, 163.6, 160.0, 142.4, 134.7, 134.3, 133.0, 130.2, 129.3, 128.9, 128.7, 127.7, 124.2, 119.6, 117.6, 113.2, 113.0, 113.0, 65.7, 55.2, 52.6, 40.9.
HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁NO₅Na⁺ 438.1317; Found 438.1312.

Methyl 2-(*trans*-5-benzoyl-6-(3,4-dimethoxyphenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ae)

From methyl (*E*)-4-(3,4-dimethoxyphenyl)-2-oxobut-3-enoate (51 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (83.5 mg, 93%) was obtained as a yellow oil. $\mathbf{R}_f = 0.2$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.04 – 7.95 (m, 2H), 7.88 (s, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 6.90 – 6.71 (m, 4H), 6.60 (s, 1H), 6.45 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.80 (s, 1H), 4.59 (s, 1H), 3.83 (d, *J* = 5.1 Hz, 6H), 3.71 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.6, 183.3, 163.6, 149.2, 148.6, 134.3, 134.3, 133.5, 133.1, 129.3, 128.7, 128.7, 127.5, 124.6, 119.4, 117.3, 112.9, 111.5, 110.2, 65.8, 55.9, 55.7, 52.6, 40.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₃NO₆H⁺ 446.1598 Found 446.1593.

Methyl 2-(trans-5-benzoyl-6-(4-fluorophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3af)

From methyl (*E*)-4-(4-fluorophenyl)-2-oxobut-3-enoate (42 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (50.0 mg, 62%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.98 (d, *J* = 7.4 Hz, 3H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.15 (dd, *J* = 8.6, 5.3 Hz, 2H), 6.98 (t, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 3.2 Hz, 1H), 6.79 (s, 1H), 6.49 (dd, *J* = 3.6, 2.8 Hz, 1H), 5.78 (s, 1H), 4.65 (s, 1H), 3.86 (s, 3H).

¹³**C NMR (126 MHz, CDCl3)** δ 193.5, 183.2, 163.6, 163.4, 161.4, 135.7 (d, *J* = 268.4 Hz),134.5, 133.0, 129.4, 129.0, 128.9 (d, *J* = 6.3 Hz), 128.7, 127.8, 124.3, 117.8, 116.1 (d, *J* = 21.4 Hz), 113.2, 65.8, 52.7, 40.3.

¹⁹F NMR (471 MHz, CDCl3) δ -114.27 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈FNO₄H⁺ 404.1293; Found 404.1287.

Methyl 2-(trans-5-benzoyl-6-(4-chlorophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ag)

From methyl (*E*)-4-(4-chlorophenyl)-2-oxobut-3-enoate (45 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (54.5 mg, 65%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.01 – 7.90 (m, 3H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.83 (dd, *J* = 3.8, 0.8 Hz, 1H), 6.76 (s, 1H), 6.46 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.75 (s, 1H), 4.62 (s, 1H), 3.84 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.4, 183.1, 163.5, 139.5, 134.8, 134.5, 133.8, 133.0, 129.4, 129.4, 128.9, 128.7, 128.7, 127.8, 123.9, 117.9, 113.3, 65.6, 52.7, 40.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈ClNO₄H⁺ 420.0997; Found 420.0992.

Methyl 2-(trans-5-benzoyl-6-(4-bromophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ah)

From methyl (*E*)-4-(4-bromophenyl)-2-oxobut-3-enoate (54 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (56.6 mg, 61%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.97 – 7.91 (m, 3H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 3.8 Hz, 1H), 6.76 (s, 1H), 6.48 – 6.42 (m, 1H), 5.75 (s, 1H), 4.60 (s, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.4, 183.1, 163.5, 140.0, 134.8, 134.5, 133.0, 132.4, 129.4, 129.1, 128.9, 128.7, 127.8, 123.9, 121.9, 118.0, 113.3, 65.5, 52.7, 40.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈BrNO₄H⁺ 464.0492; Found 464.0485.

Methyl 2-(trans-5-benzoyl-6-(3-bromophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ai)

From methyl (*E*)-4-(3-bromophenyl)-2-oxobut-3-enoate (54 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (60.3 mg, 65%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹H NMR (500 MHz, CDCI3) δ 7.87 (d, J = 6.0 Hz, 3H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.76 (d, J = 3.7 Hz, 1H), 6.70 (s, 1H), 6.41 – 6.37 (m, 1H), 5.69 (s, 1H), 4.53 (s, 1H), 3.77 (s, 3H). ¹³C NMR (126 MHz, CDCI3) δ 193.4, 183.0, 163.5, 143.1, 135.0, 134.5, 133.0, 131.1, 130.8, 130.4, 129.4, 128.8, 128.7, 128.0, 125.9, 123.6, 123.1, 118.1, 113.3, 65.4, 52.7, 40.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈BrNO₄H⁺ 464.0484; Found 464.0492.

Methyl 2-(trans-5-benzoyl-6-(2-bromophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3aj)

From methyl (*E*)-4-(2-bromophenyl)-2-oxobut-3-enoate (54 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (67.8 mg, 73%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.94 (dd, *J* = 16.8, 9.5 Hz, 3H), 7.57 – 7.50 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.03 – 6.97 (m, 2H), 6.76 – 6.70 (m, 2H), 6.63 (s, 1H), 6.30 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.62 (s, 1H), 5.04 (s, 1H), 3.76 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 194.1, 182.9, 163.6, 139.3, 135.5, 134.2, 133.7, 133.6, 129.4, 129.3, 129.0, 1290, 128.7, 128.2, 127.7, 125.0, 123.9, 117.6, 113.0, 63.8, 52.7, 39.7.
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈BrNO₄H⁺ 464.0492; Found 464.0487.

Methyl 2-(*trans*-5-benzoyl-6-(4-(trifluoromethyl)phenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ak)

From methyl (*E*)-2-oxo-4-(4-(trifluoromethyl)phenyl)but-3-enoate (52 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (47.2 mg, 52%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.98 – 7.93 (m, 3H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.56 (dd, *J* = 15.6, 8.0 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 3.8 Hz, 1H), 6.78 (s, 1H), 6.47 (dd, *J* = 3.6, 2.8 Hz, 1H), 5.77 (s, 1H), 4.69 (s, 1H), 3.84 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.2, 183.0, 163.4, 135.0 134.5, 132.9, 130.3 130.0, 129.5, 128.8, 128.7, 128.0, 127.8, 126.3 (q, *J* = 3.4 Hz), 125.1, 123.6, 118.2, 113.4, 65.3, 52.8, 40.8.
¹⁹F NMR (471 MHz, CDCl₃) δ -62.61.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₁₈F₃NO₄H⁺ 454.1261; Found 454.1254.

Methyl 2-(*trans*-5-benzoyl-6-(4-nitrophenyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3al) From methyl (*E*)-4-(4-nitrophenyl)-2-oxobut-3-enoate (47 mg, 0.2 mmol) and 1-(2-oxo-2-

phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (68.8 mg, 80%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 4:1).

¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 8.7 Hz, 2H), 8.02 (s, 1H), 7.96 (d, J = 7.4 Hz, 2H), 7.72 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 3.9 Hz, 1H), 6.83 (s, 1H), 6.52 (dd, J = 3.7, 2.8 Hz, 1H), 5.78 (s, 1H), 4.75 (s, 1H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.9, 182.9, 163.3, 148.1, 147.6, 135.3, 134.7, 132.9, 129.6,

128.8, 128.7, 128.4, 128.2, 124.6, 123.2, 118.7, 113.7, 65.0, 52.9, 40.8.

Methyl 2-(trans-5-benzoyl-6-(naphthalen-2-yl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3am)

From methyl (*E*)-4-(naphthalen-2-yl)-2-oxobut-3-enoate (48 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (47 mg, 54%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.91 (dd, J = 7.8, 7.2 Hz, 3H), 7.75 – 7.64 (m, 3H), 7.62 – 7.52 (m, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.41 – 7.25 (m, 2H), 7.16 (dd, J = 4.7, 3.7 Hz, 1H), 6.77 (d, J = 3.8 Hz, 1H), 6.66 (s, 1H), 6.45 – 6.23 (m, 1H), 5.79 (s, 1H), 4.74 (s, 1H), 3.73 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.7, 183.3, 163.7, 138.2, 134.8, 134.4, 133.6, 133.1, 133.0, 129.4, 129.3, 129.0, 128.8, 128.1, 127.7, 127.7, 126.4, 126.4, 126.2, 125.1, 124.2, 117.7, 113.2, 65.8, 52.7, 41.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₁NO₄H⁺ 436.1543; Found 436.1540.

methyl 2-((trans-5-benzoyl-6-(furan-2-yl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3an)

From methyl (*E*)-4-(furan-2-yl)-2-oxobut-3-enoate (36 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (69 mg, 92%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 8.3, 1.2 Hz, 2H), 7.91 (s, 1H), 7.66 (m, 1H), 7.58 – 7.54 (m, 2H), 7.40 (d, J = 1.4 Hz, 1H), 6.80 – 6.76 (m, 2H), 6.40 (dd, J = 3.9, 2.6 Hz, 1H), 6.23 (dd, J = 3.2, 1.9 Hz, 1H), 6.16 (d, J = 0.8 Hz, 1H), 5.96 (m, 1H), 4.93 (s, 1H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 183.1, 163.8, 151.9, 142.5, 135.9, 134.5, 132.8, 129.4, 128.9, 128.5, 128.1, 120.8, 118.1, 113.0, 110.8, 107.3, 63.5, 52.8, 35.4.

Methyl 2-(trans-5-benzoyl-6-(thiophen-2-yl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ao)

From methyl (*E*)-2-oxo-4-(thiophen-2-yl)but-3-enoate (40 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (50.8 mg, 65%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.99 – 7.95 (m, 2H), 7.86 (s, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.12 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.84 – 6.81 (m, 2H), 6.48 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.89 (s, 1H), 5.06 (s, 1H), 3.84 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.1, 182.7, 163.5, 142.7, 134.5, 134.3, 133.0, 129.4, 128.7, 128.6, 128.0, 126.9, 125.6, 124.2, 124.1, 118.1, 113.4, 66.2, 52.7, 36.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₇NO₄SH⁺ 392.0951; Found 392.0945.

Methyl 2-(trans-5-benzoyl-6-(pyridin-3-yl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ap)

From methyl (*E*)-2-oxo-4-(pyridin-4-yl)but-3-enoate (38.2 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (60.2 mg, 78%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl₃)** δ 8.57 (dd, J = 27.3, 2.6 Hz, 2H), 7.97 (dd, J = 14.4, 7.2 Hz, 3H), 7.69 (d, J = 7.4 Hz, 1H), 7.58 (t, J = 7.8 Hz, 2H), 7.42 – 7.36 (m, 1H), 7.22 (dd, J = 7.9, 4.8 Hz, 1H), 6.93 – 6.84 (m, 1H), 6.80 (s, 1H), 6.55 – 6.45 (m, 1H), 5.77 (s, 1H), 4.69 (s, 1H), 3.86 (s, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 193.1, 182.9, 163.4, 149.1, 148.8, 136.9, 135.1, 134.7, 132.9, 129.6, 128.7, 128.1, 124.3, 123.3, 118.4, 113.6, 65.4, 52.8, 38.9.

Ehyl 2-(trans-5-benzoyl-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate(3aq)

From ethyl (*E*)-2-oxo-4-phenylbut-3-enoate (44 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (55.8 mg, 70%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.98 (d, *J* = 7.4 Hz, 2H), 7.91 (s, 1H), 7.66 (s, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 6.8 Hz, 3H), 7.17 (dd, *J* = 7.5, 1.7 Hz, 2H), 6.84 – 6.77 (m, 1H), 6.74 (s, 1H), 6.45 (dd, *J* = 3.7, 2.7 Hz, 1H), 5.80 (s, 1H), 4.65 (s, 1H), 4.30 (qd, *J* = 7.1, 3.3 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.7, 183.6, 163.4, 141.0, 134.5, 134.3, 133.1, 129.3, 129.3, 129.0, 128.8, 127.9, 127.6, 127.3, 124.3, 117.4, 113.0, 65.9, 62.1, 41.0, 14.1.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{25}H_{21}NO_4H^+$ 400.1543; Found 400.1538.

Ethyl 2-(trans-5-benzoyl-6-(p-tolyl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate(3ar)

From ethyl (E)-2-oxo-4-(p-tolyl)but-3-enoate (43.6 mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (68.6 mg, 83%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.9 Hz, 2H), 7.88 (s, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 7.09 – 7.05 (m, 4H), 6.79 (d, J = 3.7 Hz, 1H), 6.73 (s, 1H), 6.44 – 6.41 (m, 1H), 5.78 (s, 1H), 4.62 (s, 1H), 4.28 (m, 2H), 2.29 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 183.7, 163.4, 138.1, 137.6, 134.3, 134.3, 133.1, 129.9, 129.3, 129.0, 128.7, 128.1, 127.5, 127.2, 124.5, 117.3, 112.9, 66.0, 62.1, 40.6, 21.1, 14.1.

Isopropyl 2-(trans-5-benzoyl-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3as)

From isopropyl 4-(2,3-dimethyl-1H-indol-6-yl)-2-oxo-4-phenylbutanoate(43.6mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (56.2 mg, 68%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.02 – 7.95 (m, 2H), 7.89 (s, 1H), 7.66 (d, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 6.9 Hz, 3H), 7.17 (dd, *J* = 7.5, 1.8 Hz, 2H), 6.81 (dd, *J* = 3.8, 1.0 Hz, 1H), 6.74 (s, 1H), 6.45 (dd, *J* = 3.8, 2.6 Hz, 1H), 5.79 (s, 1H), 5.21 – 5.11 (m, 1H), 4.65 (s, 1H), 1.34 – 1.30 (m, 6H).

¹³C NMR (126 MHz, CDCl3) δ 193.7, 183.9, 163.0, 141.1, 134.4, 134.3, 133.1, 129.3, 129.3, 128.8, 127.9, 127.5, 127.3, 124.4, 117.3, 112.9, 70.3, 65.9, 41.1, 21.8, 21.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{26}H_{23}NO_4H^+$ 414.1700; Found 414.1693.

Isopropyl 2-(trans-5-benzoyl-6-(thiophen-2-yl)-5,6-dihydroindolizin-7-yl)-2-oxoacetate(3at)

From isopropyl (*E*)-2-oxo-4-(thiophen-2-yl)but-3-enoate (44.8mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (72.9 mg, 87%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.82 (s, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.12 (dd, J = 5.1, 1.1 Hz, 1H), 6.92 – 6.87 (m, 2H), 6.84 – 6.79 (m, 2H), 6.47 (dd, J = 3.8, 2.7 Hz, 1H), 5.89 (s, 1H), 5.17 (s, 1H), 5.06 (s, 1H), 1.32 (dd, J = 6.2, 4.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 193.1, 183.4, 162.8, 142.8, 134.5, 133.9, 133.0, 129.4, 128.8, 128.6, 127.8, 126.9, 125.6, 124.7, 124.1, 117.8, 113.2, 70.4, 66.2, 36.6, 21.8, 21.7.

Isopropyl 2-(*trans*-5-benzoyl-6-(4-(trifluoromethyl)phenyl)-5,6-dihydroindolizin-7-yl)-2-oxo-acetate(3au)

From isopropyl (*E*)-2-oxo-4-(4-(trifluoromethyl)phenyl)but-3-enoate (57.2mg, 0.2 mmol) and 1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (63.9 mg, 0.3 mmol), following the general procedure, the title compound (72.2 mg, 75%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.97 – 7.93 (m, 3H), 7.68 (d, *J* = 7.4 Hz, 1H), 7.56 (m, 4H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.84 (dd, *J* = 3.9, 1.2 Hz, 1H), 6.78 – 6.75 (m, 1H), 6.47 (dd, *J* = 3.9, 2.6 Hz, 1H), 5.76 (s, 1H), 5.17 (m, 1H), 4.69 (s, 1H), 1.32 (dd, *J* = 7.3, 6.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 193.3, 183.7, 162.8, 145.0, 134.6 (d, *J* = 7.1 Hz), 133.0, 129.5, 128.9, 128.7, 128.2, 127.8, 127., 126.3 (d, *J* = 3.7 Hz), 123.8, 118.0, 113.4, 70.6, 65.4, 40.9, 21.8 (d, *J* = 3.3 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -62.61 (s).

Methyl 2-(trans-5-(4-methylbenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ba)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-oxo-2-(*p*-tolyl)ethyl)-1H-pyrrole-2-carbaldehyde (68.1 mg, 0.3 mmol), following the general procedure, the title compound (74.2 mg, 93%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate

= 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.91 – 7.85 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 5.7 Hz, 3H), 7.16 (dd, *J* = 7.5, 1.9 Hz, 2H), 6.81 (dd, *J* = 3.8, 1.0 Hz, 1H), 6.74 (s, 1H), 6.44 (dd, *J* = 3.8, 2.6 Hz, 1H), 5.77 (s, 1H), 4.64 (s, 1H), 3.82 (s, 3H), 2.46 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.3, 183.2, 163.7, 145.5, 141.1, 134.7, 130.5, 130.1, 129.3, 129.1, 128.9, 127.9, 127.7, 127.3, 124.4, 117.5, 113.0, 65.8, 52.7, 41.2, 21.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₄H⁺ 400.1543; Found 400.1537.

Methyl 2-(trans-5-(2-methylbenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ca)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-oxo-2-(*o*-tolyl)ethyl)-1H-pyrrole-2-carbaldehyde (68.1 mg, 0.3 mmol), following the general procedure, the title compound (63.8mg, 80%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCI3)** δ 7.89 (s, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.45 (m, 1H), 7.33 (m, 2H), 7.21 (dd, *J* = 5.1, 1.7 Hz, 3H), 7.04 (dd, *J* = 6.5, 2.9 Hz, 2H), 6.84 – 6.74 (m, 2H), 6.43 (dd, *J* = 3.7, 2.7 Hz, 1H), 5.58 (s, 1H), 4.59 (s, 1H), 3.85 (s, 3H), 2.31 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 198.3, 183.4, 163.8, 140.5, 139.4, 135.0, 134.5, 132.7, 132.2, 129.2, 128.6, 128.2, 127.8, 127.2, 127.2, 126.0, 124.2, 117.7, 113.0, 68.5, 52.7, 40.2, 20.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₄H⁺ 400.1543; Found 400.1539.

Methyl 2-(*trans*-5-([1,1'-biphenyl]-4-carbonyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2oxoacetate (3da)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (87 mg, 0.3 mmol), following the general procedure, the title compound (64.5 mg, 70%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.93 (s, 1H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.22 – 7.18 (m, 2H), 6.85 – 6.81 (m, 1H), 6.76 (s, 1H), 6.46 (dd, *J* = 3.8, 2.7 Hz, 1H), 5.83 (s, 1H), 4.70 (s, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 193.3, 183.3, 163.7, 147.1, 141.1, 139.6, 134.7, 131.6, 129.4, 129.3, 129.2, 129.1, 128.7, 128.0, 127.7, 127.5, 127.4, 124.4, 117.6, 113.1, 65.9, 52.7, 41.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₃NO₄H⁺ 462.1700; Found 462.1692.

Methyl 2-(trans-5-(4-methoxybenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ea)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (72.9mg, 0.3 mmol), following the general procedure, the title compound (55.6 mg, 67%) was obtained as a yellow oil. $\mathbf{R}_f = 0.3$ (petroleum ether / ethyl acetate = 5:1).

¹H NMR (500 MHz, CDCl3) δ 7.88 (d, J = 8.9 Hz, 2H), 7.83 (s, 1H), 7.19 (d, J = 7.2 Hz, 3H),
7.09 (dd, J = 7.5, 1.8 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 6.72 (dd, J = 3.8, 1.1 Hz, 1H), 6.66 (s, 1H),
6.36 (dd, J = 3.8, 2.6 Hz, 1H), 5.67 (s, 1H), 4.56 (s, 1H), 3.82 (s, 3H), 3.74 (s, 3H).
¹³C NMR (126 MHz, CDCl3) δ 192.1, 183.3, 164.4, 163.7, 141.2, 134.7, 131.1, 129.2, 129.1,

127.9, 127.7, 127.3, 125.7, 124.4, 117.5, 114.6, 113.0, 65.5, 55.7, 52.6, 41.4

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₅H⁺ 416.1492; Found 416.1486.

Methyl 2-(*trans*-5-(3-methoxybenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3fa) From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(3-methoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (72.9 mg, 0.3 mmol), following the general procedure, the title compound (70.6 mg, 85%) was obtained as a yellow solid. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.92 (s, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.27 (d, *J* = 6.5 Hz, 4H), 7.22 – 7.14 (m, 2H), 6.89 – 6.70 (m, 2H), 6.45 (d, *J* = 2.4 Hz, 1H), 5.77 (s, 1H), 4.66 (s, 1H), 3.84 (d, *J* = 10.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl3) δ 193.6, 183.2, 163.7, 160.4, 141.0, 134.7, 134.4, 130.3, 129.3, 129.0, 128.0, 127.7, 127.3, 124.3, 121.0, 120.9, 117.6, 113.2, 113.1, 66.0, 55.6, 52.7, 41.1 HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₅H⁺ 416.1492; Found 416.1486.

Methyl 2-(*trans*-5-(2-methoxybenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ga) From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(2-methoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (72.9 mg, 0.3 mmol), following the general procedure, the title compound (55.6 mg, 67%) was obtained as a yellow solid. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1). ¹**H NMR (500 MHz, CDCl3)** δ 7.83 (s, 1H), 7.70 (dd, J = 7.9, 1.7 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.24 – 7.19 (m, 3H), 7.10 (dd, J = 7.5, 1.8 Hz, 2H), 7.03 (dd, J = 7.9, 5.5 Hz, 2H), 6.82 (s, 1H), 6.78 (d, J = 3.8 Hz, 1H), 6.43 (dd, J = 3.7, 2.7 Hz, 1H), 5.92 (s, 1H), 4.61 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 195.6, 183.4, 163.9, 158.3, 141.5, 135.1, 134.9, 131.7, 128.8, 128.6, 128.2, 127.5, 127.5, 124.8, 124.1, 121.7, 117.3, 112.6, 111.5, 69.6, 55.7, 52.6, 40.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₁NO₅H⁺ 416.1492; Found 416.1494.

Methyl 2-(*trans*-5-(4-(benzyloxy)benzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ha)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(4-(benzyloxy)phenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (95.7 mg, 0.3 mmol), following the general procedure, the title compound (68.8 mg, 70%) was obtained as a green solid. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCI3)** δ 7.98 – 7.89 (m, 3H), 7.43 (m, 4H), 7.37 (d, J = 7.0 Hz, 1H), 7.26 (t, J = 6.9 Hz, 3H), 7.17 (dd, J = 7.4, 1.6 Hz, 2H), 7.08 (d, J = 8.9 Hz, 2H), 6.80 (dd, J = 3.8, 1.1 Hz, 1H), 6.73 (s, 1H), 6.43 (dd, J = 3.8, 2.6 Hz, 1H), 5.74 (s, 1H), 5.17 (s, 2H), 4.64 (s, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 192.0, 183.3, 163.7, 163.6, 141.1, 136.0, 134.7, 131.1, 129.2, 129.1, 128.9, 128.5, 127.9, 127.6, 127.6, 127.3, 125.9, 124.4, 117.5, 115.4, 113.0, 70.4, 65.5, 52.6, 41.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₅NO₅H⁺ 492.1805; Found 492.1797.

Methyl 2-(trans-5-(4-fluorobenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ia)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(4-fluorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (69.3 mg, 0.3 mmol), following the general procedure, the title compound (65.3 mg, 81%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 8.03 – 7.98 (m, 2H), 7.91 (s, 1H), 7.30 – 7.26 (m, 3H), 7.23 (t, *J* = 8.5 Hz, 2H), 7.18 – 7.13 (m, 2H), 6.82 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.75 (s, 1H), 6.45 (dd, *J* = 3.8, 2.6 Hz, 1H), 5.75 (s, 1H), 4.62 (s, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 192.2, 183.2, 166.4 (d, *J* = 257 Hz), 163.6, 140.9, 134.6, 131.5 (d, *J* = 9.4 Hz), 129.5 (d, *J* = 2.9 Hz), 129.3, 129.0, 128.0, 127.7, 127.3, 124.3, 117.7, 116.7 (d, *J* = 21 Hz), 113.2, 65.7, 52.7, 41.1.

¹⁹F NMR (471 MHz, CDCl₃) δ -102.53 (s). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈FNO₄H⁺ 404.1293; Found 404.1287.

Methyl 2-(*trans*-5-(4-chlorobenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ja)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(4-chlorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (74.1 mg, 0.3 mmol), following the general procedure, the title compound (72.1 mg, 86%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.90 (d, *J* = 9.1 Hz, 3H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.27 (dd, *J* = 5.2, 1.7 Hz, 3H), 7.14 (dd, *J* = 7.1, 2.2 Hz, 2H), 6.81 (d, *J* = 3.2 Hz, 1H), 6.74 (s, 1H), 6.45 (dd, *J* = 3.6, 2.8 Hz, 1H), 5.74 (s, 1H), 4.60 (s, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 192.7, 183.2, 163.6, 141.0, 140.8, 134.6, 131.4, 130.1, 129.7, 129.3, 128.9, 128.1, 127.6, 127.3, 124.2, 117.7, 113.2, 65.8, 52.7, 41.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈ClNO₄H⁺ 420.0997; Found 420.0990.

Methyl 2-(trans-5-(3-chlorobenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ka)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(3-chlorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (74.1 mg, 0.3 mmol), following the general procedure, the title compound (69.5 mg, 83%) was obtained as a yellow solid. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.92 (d, J = 6.2 Hz, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.63 (dd, J = 8.0, 1.1 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.27 (t, J = 5.4 Hz, 3H), 7.15 (dd, J = 7.3, 1.8 Hz, 2H), 6.81 (d, J = 3.7 Hz, 1H), 6.74 (s, 1H), 6.44 (dd, J = 3.6, 2.8 Hz, 1H), 5.73 (s, 1H), 4.61 (s, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 192.6, 183.2, 163.6, 140.7, 135.8, 134.7, 134.6, 134.3, 130.7, 129.4, 128.9, 128.5, 128.1, 127.7, 127.3, 126.7, 124.2, 117.7, 113.2, 65.9, 52.7, 40.9.
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈ClNO₄H⁺ 420.0997; Found 420.0988.

Methyl 2-(trans-5-(4-bromobenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3la)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(4-bromophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (87.6 mg, 0.3 mmol), following the general procedure, the title compound (76.8 mg, 83%) was obtained as a yellow oil. $\mathbf{R}_f = 0.5$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl3)** δ 7.91 (s, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.27 (dd, *J* = 5.1, 1.8 Hz, 3H), 7.14 (dd, *J* = 7.1, 2.3 Hz, 2H), 6.81 (d, *J* = 3.8 Hz, 1H), 6.74 (s, 1H), 6.45 (dd, *J* = 3.6, 2.8 Hz, 1H), 5.73 (s, 1H), 4.59 (s, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl3) δ 192.9, 183.2, 163.6, 140.8, 134.6, 132.7, 131.8, 130.2, 129.8, 129.3, 128.9, 128.1, 127.6, 127.3, 124.2, 117.7, 113.2, 65.8, 52.7, 41.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈BrNO₄H⁺ 464.0492; Found 464.0486.

Methyl 2-(trans-5-(2-chlorobenzoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3ma)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(2-chlorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (74.1mg, 0.3 mmol), following the general procedure, the title compound (65.4 mg, 78%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (s, 1H), 7.45 (dd, *J* = 5.4, 2.0 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.23 – 7.19 (m, 4H), 7.05 – 7.02 (m, 2H), 6.85 (s, 1H), 6.75 (dd, *J* = 3.8, 1.0 Hz, 1H), 6.37 (dd, *J* = 3.8, 2.6 Hz, 1H), 5.65 (d, *J* = 0.8 Hz, 1H), 4.70 (s, 1H), 3.87 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 198.4, 183.1, 163.7, 139.9, 136.6, 134.9, 132.5, 130.4, 130.2, 129.1, 128.8, 128.3, 128.1, 127.8, 127.6, 127.4, 124.4, 117.8, 112.9, 69.6, 52.8, 39.9.

Methyl 2-(trans-5-(2-naphthoyl)-6-phenyl-5,6-dihydroindolizin-7-yl)-2-oxoacetate (3na)

From methyl (*E*)-2-oxo-4-phenylbut-3-enoate (38 mg, 0.2 mmol) and 1-(2-(naphthalen-2-yl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (78.9 mg, 0.3 mmol), following the general procedure, the title compound (63.5 mg, 73%) was obtained as a yellow oil. $\mathbf{R}_f = 0.4$ (petroleum ether / ethyl acetate = 5:1).

¹**H NMR (500 MHz, CDCl₃)** δ 8.52 (s, 1H), 7.98 (d, J = 5.7 Hz, 3H), 7.95 – 7.91 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.24 – 7.19 (m, 2H), 6.84 (d, J = 3.2 Hz, 1H), 6.79 (s, 1H), 6.49 – 6.45 (m, 1H), 5.96 (s, 1H), 4.73 (s, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 193.7, 183.2, 163.7, 141.1, 136.1, 134.7, 132.6, 130.6, 130.3, 129.8, 129.4, 129.4, 129.3, 129.1, 128.1, 128.0, 127.7, 127.4, 127.4, 124.5, 124.1, 117.6, 113.1, 65.9, 52.7, 41.4.

The **3aa** (39 mg, 0.2 mmol, 1.0 eq.) was dissolved in super-dry MeOH (1 mL) under the protection of N_2 atmosphere. NaBH₄ (7.6 mg, 0.2 mmol, 1 eq.) was added portions at 0 °C. After a time period of 8.0 h, the mixture was extracted with EA (3 x 2 mL), and the combined extracts were dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was purified by a flash column chromatograph on silica gel using petroleum ether / ethyl acetate (8:1 - 4:1) as the eluent to yield the products **4** (56.5 mg, 75%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.78 (s, 1H), 7.42 (d, J = 6.8 Hz, 4H), 7.27 (d, J = 5.2 Hz, 2H), 7.17 – 7.13 (m, 3H), 7.03 (s, 1H), 6.82 (dd, J = 6.5, 2.8 Hz, 2H), 6.72 (d, J = 3.7 Hz, 1H), 6.39 – 6.34 (m, 1H), 4.68 (d, J = 8.3 Hz, 1H), 4.34 (d, J = 8.2 Hz, 1H), 4.18 (s, 1H), 3.90 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 183.5, 164.1, 141.1, 139.8, 134.5, 129.6, 129.1, 129.0, 128.8, 127.3, 127.2, 126.9, 126.8, 125.5, 117.1, 111.5, 76.2, 68.5, 52.7, 38.5.

The **3aa** (39 mg, 0.1 mmol, 1.0 eq.) was dissolved in super-dry THF (2 mL) under the protection of N₂ atmosphere. DIBAL-H (0.1 mL, 0.15 mmol, 1.5 eq.,1.5 M) was added portions at -78 °C. After a time period of 3.0 h, the saturated NH₄Cl was added carefully at -78 °C, then the mixture was extracted with EA (3 x 2 mL), and the combined extracts were dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was purified by a flash column chromatograph on silica gel using petroleum ether / ethyl acetate (4:1 - 1:1) as the eluent to yield the products **5** (32.1 mg, 83%, *d.r.* = 1:1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.95 (t, J = 7.5 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.2 Hz, 2H), 7.32 – 7.26 (m, 3H), 7.16 (d, J = 6.8 Hz, 1H), 7.13 – 7.10 (m, 1H), 6.84 (s, 1H), 6.46 (s, 1H), 6.34 (s, 1H), 6.28 (d, J = 3.0 Hz, 1H), 5.57 (s, 1H), 4.58 (s, 1H), 4.22 (s, 1H), 3.45 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 194.6, 173.4, 141.5, 134.0, 133.9, 129.4, 129.3, 129.2, 129.2, 128.5, 127.8, 127.4, 122.6, 120.0, 110.2,109.0, 73.8, 66.5, 52.7, 44.5.

7 X-ray Crystal Structure Determination of the Products

To grow the crystals used to collect the X-ray data for **3am**, the following method was used: the sample was dissolved with 3 mL petroleum ether and 1 mL THF in a small vial, which was kept aside at room temperature to obtain crystals.

A suitable crystal was selected on a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2, the structure was solved with

the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2159416).

Figure S3. The X-ray Diffraction Configuration of 3am.

Identification code	3am
Empirical formula	C ₂₈ H ₂₁ NO ₄
Formula weight	435.46
Temperature/K	160.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	12.1241(6)
b/Å	12.2852(5)
c/Å	14.9183(7)
α/°	90
β/°	98.870(2)
γ/°	90
Volume/Å ³	2195.46(17)
Z	4
ρcalcg/cm ³	1.317
μ/mm ⁻¹	0.088
F(000)	912.0
Crystal size/mm ³	0.15 imes 0.08 imes 0.05
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.316 to 52.804
Index ranges	$-15 \le h \le 15, -15 \le k \le 13, -18 \le l \le 17$
Reflections collected	17130
Independent reflections	4472 [Rint = 0.0795, Rsigma = 0.0807]
Data/restraints/parameters	4472/0/299
Goodness-of-fit on F ²	1.069
Final R indexes [I>=2 σ (I)]	R1 = 0.0572, wR2 = 0.1096
Final R indexes [all data]	R1 = 0.1225, WR2 = 0.1397

Table S8. Crystallographic data for compounds 3am

8 References

- S1. Myungock Kim, Youngeun Jung, and Ikyon Kim. Domino Knoevenagel Condensation/Intramolecular Aldol Cyclization Route to Diverse Indolizines with Densely Functionalized Pyridine Units. J. Org. Chem. 2013, 78, 20, 10395-10404.
- S2. Jinbiao Li, Shuaizhong Zhanga and Hongbin Zou. One-pot chemoselective domino condensation to form a fused pyrrolo - pyrazino - indolizine framework: discovery of novel AIE molecules. Org. Chem. Front., 2020,7, 1218-1223.
- S3. Liping Fu, Jing Wang, Xiaojuan Chen, Tao Shi, Zhanying Shao, Jinbai Chen, Chongmei Tian, Zhongdong Zhou, Huajian Zhu and Jiankang Zhang. [4+2]-Annulation of prop-2-ynylsulfonium salts and N-substituted pyrrole-2-carboxaldehydes: access to indolizines containing a thioether group.*New J. Chem.*, 2022,46, 941-944.
- S4. ShuBo Hu,ZhangPei Chen and YongGui Zhou. Enantioselective Hydrogenation of Pyrrolo[1,2-a]pyrazines, Heteroaromatics Containing Two Nitrogen Atoms. *Adv. Synth.Catal.* 2017, 359, 2762-2767.
- S5. Xiangzheng Tang, Lang Tong, and Huaju Liang. Facile synthesis of substituted diaryl sulfones via a [3 + 3] benzannulation strategy. *Org. Biomol. Chem.*, **2018**, *16*, 3560-3563.
- S6. Dorine Belmessieri, Louis C. Morrill and Andrew D. Smith. Organocatalytic functionalization of carboxylic acids: isothiourea-catalyzed asymmetric intra-and intermolecular michael addition-lactonizations. J. Am. Chem. Soc.2011, 133.8, 2714-2720.
- S7. Xabier del Corte, Adrián López-Francés and Javier Vicario. Stereo-and Regioselective [3+3]

Annulation Reaction Catalyzed by Ytterbium: Synthesis of Bicyclic 1, 4-Dihydropyridines. *Adv. Synth.Catal*, **2021**, 363,20, 4761-4769.

9 Copies of NMR Spectra for Compounds

Figure S4. ¹H NMR (500 MHz, CDCl₃) spectrum of 3aa

Figure S5. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3aa

Figure S7. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ab

Figure S8. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ac

Figure S9. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ac

Figure S10. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ad

Figure S11. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ad

Figure S12. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ae

Figure S13. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ae

Figure S14. ¹H NMR (500 MHz, CDCl₃) spectrum of 3af

Figure S15. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3af

Figure S16. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ag

Figure S17. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ag

Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ah

Figure S19. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ah

Figure S20. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ai

Figure S21. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ai

Figure S22. ¹H NMR (500 MHz, CDCl₃) spectrum of 3aj

Figure S23. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3aj

Figure S24. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ak

Figure S25. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ak

Figure S26. ¹H NMR (500 MHz, CDCl₃) spectrum of 3al

Figure S27. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3al

Figure S28. ¹H NMR (500 MHz, CDCl₃) spectrum of 3am

Figure S29. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3am

Figure S30. ¹H NMR (500 MHz, CDCl₃) spectrum of 3an

Figure S31. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3an

Figure S33. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ao

Figure S34. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ap

Figure S35. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ap

Figure S37. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3aq

Figure S39. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ar

Figure S41. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3as

Figure S43. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3at

Figure S44. ¹H NMR (500 MHz, CDCl₃) spectrum of 3au

Figure S45. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3au

Figure S46. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ba

Figure S47. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ba

Figure S48 ¹H NMR (500 MHz, CDCl₃) spectrum of 3ca

Figure S49. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ca

Figure S50. ¹H NMR (500 MHz, CDCl₃) spectrum of 3da

Figure S51. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3da

Figure S52. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ea

Figure S53. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ea

Figure S54. ¹H NMR (500 MHz, CDCl₃) spectrum of 3fa

Figure S55. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3fa

Figure S57. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ga

Figure S58. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ha

Figure S59. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ha

Figure S60. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ia

Figure S61. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ia

Figure S62. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ja

Figure S63. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ja

Figure S64. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ka

Figure S65. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ka

Figure S66. ¹H NMR (500 MHz, CDCl₃) spectrum of 3la

Figure S67. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3la

Figure S69. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ma

Figure S71. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3na

Figure S72. ¹H NMR (500 MHz, CDCl₃) spectrum of 4

Figure S73. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4

Figure S74. ¹H NMR (500 MHz, CDCl₃) spectrum of 5

Figure S75. ¹³C NMR (126 MHz, CDCl₃) spectrum of 5