SUPPLEMENTARY INFORMATION

Structure revision and chemical synthesis of ligandrol's main bishydroxylated long-term metabolic marker

Emmanuel N. Pitsinos,*a Yiannis S. Angelis*b and Michael Petrou^c

- ^a National Centre for Scientific Research "DEMOKRITOS", Institute of Nanoscience and Nanotechnology, "Natural Products Synthesis and Bioorganic Chemistry" Laboratory, P.O. Box 60037, GR 153 10 Aghia Paraskevi, Athens, Greece.
- ^b National Centre for Scientific Research "DEMOKRITOS", Institute of Biosciences & Applications, Doping Control Laboratory of Athens, Neratziotissis & Amaryssias Artemidos Str, GR 151 23 Athens, Greece.

^c Cyprus Anti-Doping Authority, Makarion Athletic Centre Avenue, Engomi, CY 2400 Nicosia, Cyprus.

CONTENT

Ι.	Experimental Section	S3–S7	
	Ia. Chemical Synthesis	S3	
	Ib. LC-HRMS Analysis	S7	
II.	References	S7	
III.	NMR Spectra of Compounds		
	Partially purified LGD-4033 ¹ H NMR spectrum (500 MHz, CD ₃ OD)	S8	
	Partially purified LGD-4033 ¹ H NMR spectrum (250 MHz, CDCl ₃)		
	Partially purified LGD-4033 COSY NMR spectrum (250 MHz, CDCl ₃)	S10	
	Partially purified LGD-4033 ¹³ C NMR spectrum (62.5 MHz, CDCl ₃)		
	Partially purified LGD-4033 HSQC NMR spectrum	S12	
	Slily ether 5 ¹ H NMR spectrum (250 MHz, CDCl ₃)		
	Slily ether 5 COSY NMR spectrum (250 MHz, CDCl ₃)		
	Slily ether 5 ¹³ C NMR spectrum (62.5 MHz, CDCl ₃)	S15	
	Slily ether 5 HSQC NMR spectrum	S16	
	Pyrrolidinone 6 ¹ H NMR spectrum (500 MHz, CDCl ₃)	S17	
	Pyrrolidinone 6 COSY NMR spectrum (500 MHz, CDCl₃)	S18	
	Pyrrolidinone 6 ¹³ C NMR spectrum (125 MHz, CDCl ₃)	S19	
	Pyrrolidinone 6 ¹³ C NMR spectrum (62.5 MHz, CDCl ₃)	S20	
	Pyrrolidinone 6 HSQC NMR spectrum	S21	
	Pyrrolidinone 6 HMBC NMR spectrum	S22	
	Pyrrolidinone 7 ¹ H NMR spectrum (500 MHz, CD ₃ OD)	S23	
	Pyrrolidinone 7 COSY NMR spectrum (500 MHz, CD ₃ OD)	S24	
	Pyrrolidinone 7 ¹³ C NMR spectrum (125 MHz, CD ₃ OD)	S25	
	Pyrrolidinone 7 ¹³ C NMR spectrum (62.5 MHz, CD ₃ OD)	S26	
	Pyrrolidinone 7 HSQC NMR spectrum	S27	
	Pyrrolidinone 7 HMBC NMR spectrum	S28	

	4-(Arylamino)hexanoic acid 4 ¹ H NMR spectrum (500 MHz, CD ₃ OD)	S29	
	4-(Arylamino)hexanoic acid 4 COSY NMR spectrum (500 MHz, CD ₃ OD)	S30	
	4-(Arylamino)hexanoic acid 4 ¹³ C NMR spectrum (125 MHz, CD ₃ OD)	S31	
	4-(Arylamino)hexanoic acid 4 ¹³ C NMR spectrum (62.5 MHz, CD ₃ OD)	S32	
	4-(Arylamino)hexanoic acid 4 HSQC NMR spectrum	S33	
	4-(Arylamino)hexanoic acid 4 HMBC NMR spectrum	S34	
IV.	LC–HRMS Analysis of 4-(Arylamino)hexanoic Acid 4	S35–S40	
	Full scan mass spectrum of compound 4	S35	
	Product ion mass spectrum of <i>m/z</i> 369 from compound 4	S36	
	Product ion mass spectrum of <i>m/z</i> 369 from a LGD-4033-positive human urine sample	S37	
	Comparative analysis of 4-arylamino-5-hydroxyhexanoic acid 4 and a LGD-4033-positive		
	human urine sample with LC–HRMS in negative ionization mode at the <i>m</i> /z 369:	S38–41	
	(a) Blank		
	(b) Urine-derived sample		
	(c) Synthetic metabolite 4	S40	
	(d) Co-injection of 4 and urine-derived sample	S41	

I. Experimental Section

Ia. Chemical Synthesis

General methods

All reactions were carried out under a dry argon atmosphere with anhydrous solvents (freshly distilled over the appropriate desiccant or dried over 3 Å molecular sieves)¹ under anhydrous conditions, unless otherwise noted. All reactions were magnetically stirred with Teflon stir bars, and temperatures were measured externally. Reactions requiring anhydrous conditions were carried out in oven dried (120 °C, 24 h) or flame dried (vacuum < 0.5 Torr) glassware. All reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically homogeneous materials, unless otherwise noted. All reactions were monitored by Thin Layer Chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F₂₅₄). UV light was used for visualization and an acidified ethanolic solution of p-anisaldehyde or an acidified aqueous solution of ceric ammonium molybdate and heat were used as developing agents.² E. Merck silica gel (60 Å, particle size 0.040–0.063 mm) or Acros Organics silica gel (60 Å, particle size 0.035–0.070 mm) were used for flash column chromatography.³ Optical rotations were recorded using a Perkin-Elmer 241 polarimeter at the sodium D line (589 nm) using a 10 cm path-length cell in the solvent and concentration indicated. Nuclear Magnetic Resonance (NMR) spectra were recorded using a Bruker Avance DRX 500 MHz or Bruker Avance III 250 MHz instrument and were calibrated using as internal reference the residual nondeuterated solvent for ¹H-NMR and the deuterated solvent for ¹³C-NMR, respectively (e.g., CDCl₃: δ_{H} = 7.26 ppm, δ_{C} = 77.16 ppm; CD₃OD: δ_{H} = 3.31 ppm, δ_{C} = 49.00 ppm).^{4,5} Multiplicities are designated as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint.) or multiplet (m). Broad or obscured peaks are indicated as "br" or "obs", respectively. To facilitate NMR spectra comparisons, the established LGD-4033 skeleton numbering⁷ has been used for all compounds when assigning signals. High resolution mass spectra (HRMS) were acquired on a LC qExactive plus HRMS (Thermo Scientific, Bremen, Germany) instrument.

4-{(2*R***)-2-[(1***R***)-2,2,2-trifluoro-1-hydroxyethyl]pyrrolidin-1-yl}-2-(trifluoromethyl)benzonitrile (1: LGD-4033):** Capsules of ligandrol sold over the Internet with the warning that the material is "intended for

laboratory and research purposes only" and stated to contain 8 mg of LGD-4033 (>97% purity) / capsule were obtained *via* an online order. The content of ten capsules (3.8 g) was placed in a centrifuge tube, suspended in methanol (10 mL) and sonicated for 15 min. Upon centrifugation, the supernatant was filtered through a short pad of Celite. The solids remaining in the centrifuge tube were subjected four more times to the above procedure and the unified filtrates were evaporated under reduced pressure to dryness. The amorphous white solid thus obtained was dissolved in 10% MeOH in dichloromethane (10 mL), silica gel (0.5 g) was added, and volatiles were removed

under reduced pressure. The residue was loaded on top of a chromatography column (silica gel) and eluted with dichloromethane to provide LGD-4033 (32.6 mg) as amorphous white solid that was used without further purification. $R_f = 0.12$ (silica gel, CH₂Cl₂);¹H NMR (500 MHz, CD₃OD): $\delta = 7.64$ (d, J = 8.8 Hz, 1 H, H-6), 7.14 (s, 1 H, H-3), 6.97 (dd, J = 8.8, 2.5 Hz, 1 H, H-5), 4.25 (t, J = 7.8 Hz, 1 H, H-8), 3.97 (quint., J = 7.2 Hz, 1 H, H-12), 3.59 (ddd, J = 9.8, 6.8, 2.9 Hz, 1 H, H-11), 3.33–3.28 (obs, 1 H, H-11'), 2.19–2.04 (m, 4 H, H-10 & H-10' & H-9 & H-9') ppm; ¹H NMR (250 MHz, CDCl₃): $\delta = 7.52$ (d, J = 8.7 Hz, 1 H, H-6), 7.06 (d, J = 2.5 Hz, 1 H, H-3), 6.90 (dd, J = 8.7, 2.5 Hz, 1 H, H-5), 4.26–4.20 (m, 1 H, H-8), 3.98–3.85 (m, 1 H, H-12), 3.65–3.58 & 3.33–3.23 (2 m, 2 H, H-11 & H-11'), 2.94 (d, J = 4.5 Hz, 1 H, OH), 2.22–2.00 (m, 4 H, H-10 & H-10' & H-9 & H-9') ppm; ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 151.3$ (s), 135.7 (s, C-6), 133.8 (q, J = 32 Hz), 124.7 (q, J = 283 Hz), 122.7 (q, J = 274 Hz), 117.3 (s), 115.4 (s, C-5), 111.1 (q, J = 5 Hz, C-3), 95.6 (s), 72.3 (q, J = 5

29 Hz, C-12), 58.6 (s, C-8), 49.4 (s, C-11), 29.2 & 23.0 (2 s, C-9 & C-10) ppm. The above data are in accordance with the ones previously reported.⁶⁻⁸

4-((2*R***)-2-{(1***R***)-1-[(***tert***-butyldimethylsilyl)oxy]-2,2,2-trifluoroethyl}pyrrolidin-1-yl)-2-(trifluoromethyl)benzonitrile (5):** The above partially purified LGD-4033 (32.6 mg, 96.4 μmol) was placed in a 5 mL pear-

shaped flask and imidazole (195 mg, 2.86 mmol), TBDMSCI (241 mg, 1.60 mmol), and DMF (0.15 mL) were added sequentially under an argon atmosphere. The mixture was stirred at ambient temperature for 48 h. Volatiles were removed under reduced pressure and the residue was dissolved in dichloromethane (2 mL). Silica gel (0.5 g) was added, volatiles were removed under reduced pressure, the residue was loaded on top of a chromatography column (silica gel), and eluted with *n*-hexane/dichloromethane 75:25 to provide TBS-protected LGD-4033 (**5**) as amorphous white solid (41.4 mg, 91.5 µmol, 94.9% yield). **R**_f = 0.71 (silica gel, CH₂Cl₂);

 $[\alpha]_{D}^{25}$ = +20 (*c* = 0.97, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.8 Hz, 1 H, H-6), 7.02 (br s, 1 H, H-3), 6.79 (dd, *J* = 8.8, 2.7 Hz, 1 H, H-5), 4.20–4.14 (m, 1 H, H-8), 3.81 (dq, *J* = 8.8, 6.0 Hz, 1 H, H-12), 3.55–3.48 (m, 1 H, H-11), 3.30–3.19 (m, 1 H, H-11'), 2.23–1.98 (m, 4 H, H-9 & H-10), 0.66 (s, 9 H, (CH₃)₃CSi), 0.05 & -0.23 (2 s, 6 H, CH₃SiCH₃) ppm; ¹³C NMR (62.5 MHz, CDCl₃): δ = 151.1 (s), 135.6 (s, C-6), 133.8 (q, *J* = 32 Hz), 124.9 (q, *J* = 284 Hz), 122.8 (q, *J* = 274 Hz), 117.4 (s), 115.0 (s, C-5), 111.3 (s, C-3), 95.4 (s), 73.4 (q, *J* = 28 Hz, C-12), 58.6 (s, C-8), 49.0 (s, C-11), 29.4 (s, C-10), 25.3 (s, CH₃)₃CSi), 23.0 (s, C-9), 17.8 (s, (CH₃)₃CSi), -4.7, -5.5 (2 s, CH₃SiCH₃) ppm; HRMS (ESI +): calculated for C₂₀H₂₇F₆N₂OSi⁺ [M+H]⁺: 453.1791, found 453.1780; HRMS (ESI -): *m/z* calculated for C₂₁H₂₇F₆N₂O₃Si⁻ [M+HCOO]⁻: 497.1690, found 497.1705.

4-((2*R***)-2-{(1***R***)-1-[(***tert***-butyldimethylsilyl)oxy]-2,2,2-trifluoroethyl}-5-oxo-pyrrolidin-1-yl)-2-(trifluoromethyl)benzonitrile (6):** A 5 mL round bottom flask equipped with an efficient magnetic stirring bar was

charged with RuCl₃ (5.4 mg, 26 µmol) and 10% w/v aqueous NaIO₄ solution (0.25 mL, 12×10^{-5} mol) was added. To the stirred black solution that ensued was added dropwise a solution of **6** (18.5 mg, 40.9 µmol) in ethyl acetate (0.9 mL), the flask was sealed, and the mixture was vigorously stirred at ambient temperature for 3 h. Water (1 mL) and ethyl acetate (3 mL) was added and the organic phase was separated. The aqueous layer was extracted with ethyl acetate (2 × 3 mL). To the combined organic layers was added isopropanol (0.5 mL), the mixture was stirred for 1 h, and the black precipitate formed was removed by filtration through a short pad

of Celite. The filtrate was washed with brine (2 × 3 mL), dried over Na₂SO₄, and concentrated. Flash column chromatography (silica gel, *n*-hexane/EtOAc 9:1 to 8:2) gave pyrrolidone **6** as light brown oil (13.7 mg, 29.4 µmol, 71.9% yield). **R**_f = 0.52 (silica gel, hexane/EtOAc 1:1); $[\alpha]_D^{25} = +3.3$ (c = 0.95, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 8.12$ (dd, J = 8.7, 2.3 Hz, 1 H, H-5), 8.03 (d, J = 2.3 Hz, 1 H, H-3), 7.81 (d, J = 8.6 Hz, 1 H, H-6), 4.66 (t, J = 7.2 Hz, 1 H, H-8), 4.07 (quint., J = 6.3 Hz, 1 H, H-12), 2.76 (ddd, J = 17.8, 11.4, 9.4, 1 H, H-10), 2.60 (ddd, J = 17.9, 9.7, 1.9 Hz, 1 H, H-10'), 2.45–2.29 (m, 2 H, H-9 & H-9'), 0.75 (s, 9 H, (CH₃)₃CSi), -0.08 & -0.04 (2 s, 6 H, CH₃SiCH₃) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 174.8$ (s, C-11), 143.0 (s, C-4), 135.6 (s, C-6), 133.8 (q, J = 32.8 Hz, C-2), 124.5 (q, J = 284.4 Hz, C-14), 123.8 (s, C-5), 122.3 (q, J = 274.1 Hz, C-16), 118.6 (q, J = 5.0 Hz, C-3), 115.5 (s, C-15), 105.1 (br d, J = 2.3 Hz, C-1), 70.7 (q, J = 29.3 Hz, C-12), 58.7 (s, C-8), 30.7 (s, C-10), 25.3 (s, CH₃)₃CSi), 21.3 (s, C-9), 17.9 (s, (CH₃)₃CSi), -5.0 & -5.3 (2 s, CH₃SiCH₃) ppm; **HRMS** (ESI –): m/z calculated for C₂₁H₂₅F₆N₂O₄Si⁻ [M+HCOO]⁻: 511.1482, found 511.1488.

4-{(5R)-2-oxo-5-[(1R)-2,2,2-trifluoro-1-hydroxyethyl]pyrrolidin-1-yl}-2-(trifluoromethyl)benzonitrile

(7):⁹ A solution of TBS-protected pyrrolidone **6** (12.4 mg, 26.6 μ mol) in THF (0.5 mL) was treated at ambient temperature and under an atmosphere of argon with 1.0 M solution of TBAF in THF (0.04 mL, 4×10^{-5} mol). After 0.5 h, half saturated aqueous NH₄Cl solution (0.5 mL) was added and the mixture was

extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, and concentrated. Flash column chromatography (silica gel, CH₂Cl₂/EtOAc 9:1) gave pyrrolidone **7** as colorless solid (8.8 mg, 25 µmol, 94% yield). **R**_f = 0.26 (silica gel, CH₂Cl₂/EtOAc 8:2); $[\alpha]_D^{25} = -3.2$ (c = 0.99, MeOH); ¹H NMR (500 MHz, CD₃OD): $\delta = 8.19$ (s, 1 H, H-3), 7.97–7.93 (m, 2 H, H-5 & H-6), 4.92 (ddt, J = 6.8, 5.2, 1.7 Hz, 1 H, H-8), 4.19 (qd, J = 7.5, 5.2 Hz, 1 H, H-12), 2.89–2.79 (m, 1 H, H-10), 2.54–2.45 (m, 2 H, H-10' & H-9), 2.20 (td, J = 10.4, 2.2 Hz, 1 H, H-9') ppm; ¹³C NMR (125 MHz, CD₃OD): $\delta = 177.7$ (s, C-11), 145.0 (s, C-4), 136.6 (s, C-6), 133.8 (q, J = 32.6 Hz,

C-2), 127.6 (s, C-5), 126.1 (q, J = 282.9 Hz, C-14), 123.9 (q, J = 273.0 Hz, C-16), 122.6 (q, J = 5.1 Hz, C-3), 116.5 (s, C-15), 106.2 (br d, J = 2.0 Hz, C-1), 72.3 (q, J = 29.5 Hz, C-12), 60.1 (s, C-8), 31.8 (s, C-10), 23.4 (s, C-9) ppm; **HRMS** (ESI –): m/z calculated for C₁₅H₁₁F₆N₂O₄⁻ [M+HCOO]⁻: 397.0618, found 397.0624.

(4R,5R)-4-{[4-cyano-3-(trifluoromethyl)phenyl]amino}-6,6,6-trifluoro-5-hydroxyhexanoic acid (4): To a

stirred solution of pyrrolidone **5** (7.5 mg, 21 μ mol) in THF/MeOH/H₂O 8:1:4 (0.4 mL) was added at 0 °C LiOH·H₂O (11.0 mg, 262 μ mol). The mixture was allowed to reach ambient temperature and it was then stirred at 30 °C for 4 h. The reaction was quenched at 0 °C with the dropwise addition of AcOH/H₂O 1:1 (1 mL). The mixture was diluted with EtOAc (5 mL) and washed with half saturated brine (2 × 5 mL). The aqueous washings were extracted with EtOAc (3 × 5 mL) and the combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. Benzene (3 × 5 mL) was added to the residue and volatiles were removed under reduced pressure.

The light-yellow solid thus obtained was dissolved in 2% MeOH in dichloromethane (2 mL), silica gel (0.1 g) was added, volatiles were removed under reduced pressure, and the residue was loaded on top of a chromatography column (silica gel, CH₂Cl₂/EtOAc 8:2). Elution with CH₂Cl₂/EtOAc 8:2 to CH₂Cl₂/EtOAc/AcOH 80:20:1 provided carboxylic acid **4** as colorless glass (7.1 mg, 19 µmol, 90% yield). **R**_f = 0.34 (silica gel, CH₂Cl₂/EtOAc/AcOH 80:20:1); $[\alpha]_D^{25} = +12$ (c = 0.14, MeOH); ¹H NMR (500 MHz, CD₃OD): $\delta = 7.58$ (d, J = 8.7 Hz, 1 H, H-6), 7.08 (d, J = 2.5 Hz, 1 H, H-3), 6.89 (dd, J = 8.7, 2.5 Hz, 1 H, H-5), 4.10–4.04 (m, 2 H, H-8 & H-12), 2.40 (t, J = 7.2 Hz, 2 H, H-10 & H-10'), 1.99 (q, J = 7.2 Hz, 2 H, H-9 & H-9') ppm; ¹³C NMR (125 MHz, CD₃OD): $\delta = 176.8$ (s, C-11), 153.4 (s, C-4), 137.4 (s, C-6), 134.9 (q, J = 31.6 Hz, C-2), 126.4 (q, J = 282.9 Hz, C-14), 124.3 (q, J = 272.9 Hz, C-16), 118.3 (s, C-15), 114.8 (br s, C-5), 111.5 (br s, C-3), 94.5 (br d, J = 2.4 Hz, C-1), 71.3 (q, J = 29.7 Hz, C-12), 52.0 (s, C-8), 30.9 (s, C-10), 28.7 (s, C-9) ppm; HRMS (ESI –): m/z calculated for C₁₄H₁₁F₆N₂O₃⁻ [M–H]⁻: 369.0668, found 369.0671.

Position	Compound 3 $\delta_{\!\!H^{\!\!\!\!\!+,\$}}$	Position	Compound 4 (this work) $\delta_{\!\scriptscriptstyle H}$ (mult., J in Hz)	Difference $(\delta_4 - \delta_3)$
1	_	1	_	_
2	_	2	_	_
3	7.07	3	7.08 (d <i>, J</i> = 2.5 Hz)	0.01
4	_	4	_	_
5	6.89	5	6.89 (dd, <i>J</i> = 8.7, 2.5 Hz)	0.00
6	7.56	6	7.58 (d <i>, J</i> = 8.7 Hz)	0.02
7	_	7	_	_
8	_	11	_	_
9	2.24	10	2.40 (t <i>, J</i> = 7.2 Hz)	0.16 ^{§§}
10	1.94	9	1.99 (q, <i>J</i> = 7.2 Hz)	0.05
11	4.00	8	4.10–4.04 (m)	
12	4.07	12	4.10–4.04 (m)	
13	_	13	_	_
14	_	14	_	_
15	-	15	-	
16	_	16	_	_

Table S1. ¹H NMR (600 MHz, CD3OD) data reported⁷ for compound **3** vs.¹H NMR (500 MHz, CD3OD) signals observed for compound **4**.

[‡] No information regarding signal multiplicities / coupling constants was reported.

§ The actual spectrum was not reported.

§§ A difference of -0.02 ppm is calculated assuming that the reported chemical shift of 2.24 ppm was actually 2.42 ppm.

Ib. LC-HRMS Analysis

A Dionex UHPLC system (Thermo Scientific, Bremen, Germany) was used for the chromatographic separation. The system consisted of a vacuum degasser, a high-pressure binary pump, an autosampler with a temperature-controlled sample tray set at 7 °C and a column oven set at 30 °C. Chromatographic separation was performed at 30 °C using a Zorbax Eclipse Plus C18 column ($100 \times 2.1 \text{ mm i.d.}$, $1.8 \mu \text{m}$ particle size; Agilent Technologies). The mobile phase consisted of 5 mM ammonium formate in 0.02% formic acid (solvent A) and a mixture of acetonitrile/water (90:10 v/v) containing 5 mM ammonium formate and 0.01% formic acid (solvent B). A gradient elution program was employed at a constant flow rate of 0.2 mL min⁻¹with solvent B starting at 5% for 3 min, increasing to 30% in 4 min, increasing to 90% in 11 min and then, set back to 5% in 11.5 min. Post-run equilibrium time was 3.5 min. The injection volume was 5 μ L.

The mass spectrometer was a QExactive plus benchtop Orbitrap-based mass spectrometer (ThermoScientific, Bremen, Germany) operated in the negative polarity mode and equipped with a heated electro-spray ionization (HESI) source. Source parameters were: sheath gas (nitrogen) flow rate, auxiliary gas (nitrogen) flow rate and sweep gas flow rate: 40, 10 and 1 arbitrary units respectively, capillary temperature: 300 °C, heater temperature: 30 °C, spray voltage: +4.0 kV (positive polarity). The instrument operated in FS mode from m/z 100–1000 at 17,500 resolving power and duty cycle of 100 ms and in MS/MS mode from m/z 100–1000 at 17,500 resolving power and duty cycle of 62 ms (product ion mode). The automatic gain control (AGC) was set to 106. The mass calibration of the Orbitrap instrument was evaluated in both positive and negative modes daily and external calibration was performed prior to use following the manufacturer's calibration protocol.

II. References

- 1 D. B. G. Williams and M. Lawton, J. Org. Chem., 2010, 75, 8351–8354.
- 2 M. C. Pirrung, *The Synthetic Organic Chemist's Companion*, 2006.
- 3 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923–2925.
- 4 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512–7515.
- 5 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176–2179.
- 6 L. Zhi (Ligand Pharmaceuticals, Inc.), World Intellectual Property Organization, 2009, WO2009082437A2.
- 7 M. Thevis, A. Lagojda, D. Kuehne, A. Thomas, J. Dib, A. Hansson, M. Hedeland, U. Bondesson, T. Wigger, U. Karst and W. Schänzer, *Rapid Commun. Mass Spectrom.*, 2015, **29**, 991–999.
- 8 L. Geldof, O. J. Pozo, L. Lootens, W. Morthier, P. Van Eenoo and K. Deventer, Drug Test. Anal., 2017, 9, 168–178.
- 9 C. P. Miller (Radius Health, Inc.), World Intellectual Property Organization, 2012, WO2012047617A1.

IV. LC–HRMS Analysis

Full scan mass spectrum in negative ionization mode of (4*R*,5*R*)-4-{[4-cyano-3-(trifluoromethyl)phenyl]amino}-6,6,6-trifluoro-5-hydroxyhexanoic acid (4).

Product ion mass spectrum of the deprotonated molecular ion $[M-H]^-$ of compound **4** with m/z 369 at a collision energy of 25 eV.

Product ion mass spectrum of the anion with m/z 369 from a LGD-4033-positive human urine sample at a collision energy of 25 eV.

Comparative analysis of 4-arylamino-5-hydroxyhexanoic acid **4** and a LGD-4033-positive human urine sample with LC–HRMS in negative ionization mode at the *m*/*z* 369: blank.

Comparative analysis of 4-arylamino-5-hydroxyhexanoic acid **4** and a LGD-4033-positive human urine sample with LC–HRMS in negative ionization mode at the m/z 369: urine-derived sample.

Time (min)

Comparative analysis of 4-arylamino-5-hydroxyhexanoic acid **4** and a LGD-4033-positive human urine sample with LC–HRMS in negative ionization mode at the m/z 369: synthetic metabolite **4**.

Comparative analysis of 4-arylamino-5-hydroxyhexanoic acid **4** and a LGD-4033-positive human urine sample with LC–HRMS in negative ionization mode at the m/z 369: co-injection of **4** and urine-derived sample.