Combination of gold and redox enzyme catalysis to access valuable enantioenriched aliphatic $\boldsymbol{\beta}$-chlorohydrins

Electronic Supporting Information

Lorena Escot, Sergio González-Granda, Vicente Gotor-Fernández* andIván Lavandera*Organic and Inorganic Chemistry Department. University of Oviedo.Avenida Julián Clavería 8, 33006 Oviedo, Spain. Phone number: +34985103454(V.G.-F.); +34985103452 (I.L.); fax number: +34985103446.E-mail: vicgotfer@uniovi.es (V.G.-F.); lavanderaivan@uniovi.es (I.L.).
Index (Page 1 out of 120)
I. Compounds described in this contribution S3
II. General protocol for the synthesis of alkynes 1a-i and kinetic resolution of oct-1-yn-3-ol S4
II.1. Synthesis of alkynes $1 a$ and $1 b$ S4
II.2. Synthesis of alkyne 1c. S5
II.3. Synthesis of alkynes $1 d$ and $1 h$ S6
II.4. Synthesis of alkyne $1 e$. S7
II.5. Synthesis of alkyne $1 f$. S8
II.6. Synthesis of alkyne $\mathbf{1 g}$ S9
II.7. Synthesis of alkyne $1 i$ S11
II.8. Kinetic resolution of oct-1-yn-3-ol. S12
III. Optimization of the gold(I)-catalyzed hydration process of alkyne 1a S14
IV. Full characterization of α-halomethyl ketones 2 obtained through gold(I)-catalyzed hydration S16
V. Full characterization of $\boldsymbol{\beta}$-chlorohydrins 3 obtained after chemical reduction of α-chloro ketones 2 S18
VI. Experimental protocols and screening results for the reduction of α-chloromethyl ketones using different ADHs S20
VI.1. Bioreduction of $2 a$ using ADH-A S20
VI.2. Bioreduction of $2 a$ using ADH-T, TeSADH and SyADH. S20
VI.3. Bioreduction of $2 a$ using LbADH. S20
VI.4. Bioreduction of $2 a$ using commercial evo.1.1.200 S21
VI.5. Bioreduction of $2 a$ using commercial ADHs from Codexis S21
VI.6. Summary of results in the bioreduction of ketone $2 a$ S22
VI.7. Summary of results in the bioreduction of ketone $2 c$ S23
VI.8. Summary of results in the bioreduction of ketone 2d. S24
VI.9. Summary of results in the bioreduction of ketone $2 e$ S25
VI.10. Summary of results in the bioreduction of ketone $2 f$ f S26
VI.11. Summary of results in the bioreduction of ketone $\mathbf{2 g}$. S27
VI.12. Summary of results in the bioreduction of ketone $2 h$. S28
VI.13. Summary of results in the bioreduction of racemic and optically active ketone $2 i$ S30
VII. Optimization of the one-pot hydration-bioreduction cascade starting from alkyne 1a S32
VIII. Scope of the one-pot cascade process S34
IX. Scale-up of the one-pot cascade hydration-bioreduction processes. S36
X. Analytical data S37
X.1. GC analyses for the determination of product percentages S37
X.2. GC analyses for the determination of ee values of 1i, 2i and 3a-c,e,h,i S38
X.3. HPLC analyses for the determination of product percentages and enantiomeric excess values in reactions towards $3 d, f, g$. S48
XI. Optical rotation values of derivatives 3a-i obtained through the concurrent cascade approach S52
XII. Synthesis and characterization of epoxide $6 i$ to determine the absolute configuration of compound 3 i S53
XIII. Reference section S54
XIV. NMR spectra S56

I. Compounds described in this contribution

1a

1b

1c

1d

$1 e$

$1 f$

1 g

1h

(R)-1i

(S)-1i

Figure S1. Structure of chloroalkynes 1a-i studied in this contribution.

2a

$2 f$

2g

2h
(S)-2i

Figure S2. Structure of prochiral α-chloromethyl ketones 2a-i studied in this contribution.

3a

3b

3c

3d

$3 e$

rac-3i

3f

($2 R S, 3 R$)-3i

3h

Figure S3. Structure of chlorohydrins 3a-h and diester 3i studied in this contribution.

II. General protocol for the synthesis of alkynes 1a-i and kinetic resolution of oct-1-yn-3-ol

II.1. Synthesis of alkynes 1 a and $1 b$

Compounds 1a and 1b were synthesized following an adapted procedure to the one described by Nicolai et al (Scheme S1). ${ }^{1}$

Scheme S1. Synthesis of chlorinated alkynes 1a and 1b from the corresponding terminal alkynes.
N-chlorosuccinimide (NCS, $3.2 \mathrm{~g}, 24 \mathrm{mmol}, 1.20$ equiv) and silver acetate (AgOAc, $333.9 \mathrm{mg}, 2.4 \mathrm{mmol}, 0.10$ equiv) were added in this order to a solution of the corresponding acetylene ($20 \mathrm{mmol}, 1.0$ equiv) in acetone (80 mL), and the solution was refluxed overnight. After this time, the mixture was poured into ice, and the resulting aqueous layer extracted with pentane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane) afforded the corresponding chlorinated alkyne $\mathbf{1 a}$ or $\mathbf{1 b}$ as smelly colorless oils (2.57 g and 3.21 g , 89% and 93% isolated yield, respectively). The spectroscopic data of compounds $\mathbf{1 a}$ and 1b matched with the ones previously reported in the literature. ${ }^{1}$

1-Chlorooct-1-yne (1a): Colorless oil. R_{f} (pentane): 0.80. IR: v 2956, 2930, 2859, 2244, 1467, 1379, 1084, $726 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.19(t, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.57-1.47(m, 2 H), 1.44-1.26(m, 6 \mathrm{H}), 0.91(m, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $69.8(\mathrm{C}), 56.9(\mathrm{C}), 31.3\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right), 14.0$ $\left(\mathrm{CH}_{3}\right)$.

1-Chlorodec-1-yne (1b): Colorless oil. R_{f} ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane): 0.85. IR: v 2958, 2925, $2855,2317,1468,1083,724 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.18(t, J=7.0 \mathrm{~Hz}$, 2 H), 1.51 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.29(m, 10 \mathrm{H}), 0.90(t, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 69.7(\mathrm{C}), 56.9(\mathrm{C}), 31.8\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

II.2. Synthesis of alkyne 1 c

Compound 1c was synthesized following an adapted procedure to the one described by Bai et al (Scheme S2). ${ }^{2}$

Scheme S2. Synthesis of chlorinated alkyne 1c.
N-butyllithium (2.4 M solution in hexanes, $4.6 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1$ equiv) was added to a solution of ethynylcyclohexane ($1.3 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ equiv) in THF (30 mL) under nitrogen atmosphere, and the mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ before the addition of N-chlorosuccinimide (NCS, $1.49 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv). The reaction was then allowed to gradually warm to room temperature and subsequently quenched with an aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 30 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Purification by column chromatography (SiO_{2}, pentane) afforded the corresponding chlorinated alkyne $\mathbf{1 c}$ as a smelly colorless oil $(1.23 \mathrm{~g}, 86 \%$ of isolated yield).
(Chloroethynyl)cyclohexane (1c): Colorless oil. R_{f} (pentane): 0.80. IR: v 3005, 2990, 2929, 2855, 2319, 1462, 1275, 1267, 1261, 1049, $742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.13 MHz , CDCl_{3}): $\delta 2.44$ (apparent td, $\left.J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.84-1.67(m, 4 \mathrm{H}), 1.53-1.28(m, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 81.9(\mathrm{C}), 65.1(\mathrm{C}), 32.3\left(2 \mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 25.8(\mathrm{CH})$, $24.8\left(2 \mathrm{CH}_{2}\right)$.

II.3. Synthesis of alkynes 1 d and 1 h

Alkynes $\mathbf{1 d}$ and $\mathbf{1 h}$ were synthesized through a Corey-Fuchs reaction. ${ }^{3}$ In the case of alkyne $\mathbf{1 h}$, the development of a previous Swern oxidation to obtain an aldehyde was performed by adapting the protocol previously described by Marx and Tidwell (Scheme S3). ${ }^{4}$

Scheme S3. Synthesis of chlorinated alkynes 1d and 1h.

Oxalyl chloride ($1.5 \mathrm{~mL}, 17.5 \mathrm{mmol}, 1.35$ equiv) and dimethylsulfoxide (DMSO, 2.6 mL , $36.6 \mathrm{mmol}, 2.82$ equiv) were diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ under nitrogen atmosphere and the mixture was stirred at $-78^{\circ} \mathrm{C}$. After $15 \mathrm{~min},(E)$-3,7-dimethylocta-2,6-dien-1-ol ($2.3 \mathrm{~mL}, 12.97 \mathrm{mmol}, 1.0$ equiv) was added and stirred for further 30 min . Then, $\mathrm{Et}_{3} \mathrm{~N}$ ($5.2 \mathrm{~mL}, 37.2 \mathrm{mmol}, 2.87$ equiv) was added. The reaction was then allowed to gradually warm to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with an aqueous saturated NaHCO_{3} solution (30 mL) and then, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum.

In the second step, carbon tetrachloride $\left(\mathrm{CCl}_{4}, 5.7 \mathrm{~mL}, 60 \mathrm{mmol}, 3.0\right.$ equiv), triphenylphosphine ($\mathrm{Ph}_{3} \mathrm{P}, 15.8 \mathrm{~g}, 60 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Zn}(3.9 \mathrm{~g}, 60 \mathrm{mmol}, 3.0$ equiv) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ for 15 min at rt under nitrogen atmosphere. After that, the corresponding aldehyde was added dropwise. After 16 h , the black solution was concentrated in the rotary evaporator until approx. 50 mL of mixture remained. The residue was then purified via flash chromatography on silica gel (100% hexane) to obtain the desired 2,2-dichlorovinylated derivatives as yellow oils.

Subsequently, a 1 M solution of NaHMDS in THF ($10.05 \mathrm{~mL}, 10.05 \mathrm{mmol}, 1.05$ equiv) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a stirred solution of the corresponding 2,2dichlorovinylated derivative (10 mmol) in THF (25 mL). After 1 h , the reaction was
warmed to $0^{\circ} \mathrm{C}$, quenched with an aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. Then, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, washed with brine ($2 \times 20 \mathrm{~mL}$), and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed by evaporation under reduced pressure. Compounds $\mathbf{1 d}$ and $\mathbf{1 h}$ were isolated by column chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane $)$ to obtain the desired chlorinated alkynes $\mathbf{1 d}$ and $\mathbf{1 h}(1.19 \mathrm{~g}$ and $1.10 \mathrm{~g}, 72$ and 60% isolated yield, respectively). The spectroscopic data of compound $\mathbf{1 d}$ matched with the ones already reported in the literature. ${ }^{5}$
(4-Chlorobut-3-yn-1-yl)benzene (1d): Colorless oil. R_{f} (hexane): 0.49. IR: v 3028, 2928, 2859, 1604, 1454, 1076, 744, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.36-$ $7.22(m, 5 \mathrm{H}), 2.85(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(t, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}$, CDCl_{3}): $\delta 140.7$ (C), 128.9 (2CH), 128.8 (2CH), 126.8 (CH), 69.4 (C), 58.4 (C), 35.2 $\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{2}\right)$.
(\boldsymbol{E})-1-Chloro-4,8-dimethylnona-3,7-dien-1-yne (1h): Colorless oil. R_{f} (pentane): 0.83. IR: v 2966, 2913, 1625, 1439, 1376, 1273, 829, 754, $419 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300.13 \mathrm{MHz}$, CDCl_{3}): $\delta 5.22(m, 1 \mathrm{H}), 5.08(m, 1 \mathrm{H}), 2.12(m, 4 \mathrm{H}), 1.90(s, 3 \mathrm{H}), 1.70(s, 3 \mathrm{H}), 1.62(s$, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.4$ (C), 132.7 (C), $123.7(\mathrm{CH}), 104.0(\mathrm{CH}), 69.5$ (C), $68.1(\mathrm{C}), 39.0\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right)$.

II.4. Synthesis of alkyne $1 e$

Compound $\mathbf{1 e}$ was synthesized through esterification of hept-6-ynoic acid with ethanol and chemical chlorination of the resulting ethyl hept-6-ynoate. Both steps were performed following an adapted procedure to the one described by Nicolai et al (Scheme S4). ${ }^{1}$

Scheme S4. Synthesis of chlorinated alkyne $\mathbf{1 e}$.

Hept-6-ynoic acid ($1 \mathrm{~g}, 7.9 \mathrm{mmol}$), a concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution (0.88 mL) and ethanol (EtOH, 7.1 mL) were stirred at $80^{\circ} \mathrm{C}$ overnight. After that, the reaction was cooled at rt and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$

15 mL) and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed by evaporation under reduced pressure, yielding ethyl hept-6-ynoate that was used without further purification for the next step.

Then, NCS ($1.58 \mathrm{~g}, 11.85 \mathrm{mmol}, 1.50$ equiv) and $\mathrm{AgOAc}(132 \mathrm{mg}, 0.79 \mathrm{mmol}, 0.10$ equiv) were added in this order to the previous obtained ester ($7.9 \mathrm{mmol}, 1.0$ equiv) in acetone (25 mL), and the solution was refluxed overnight. After this time, the mixture was poured into ice, and the resulting aqueous layer extracted with pentane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$ afforded the corresponding chlorinated alkyne 1 e as a smelly colorless oil $(1.00 \mathrm{~g}, 67 \%$ isolated yield).

Ethyl 7-chlorohept-6-ynoate (1e): Colorless oil. $R_{\mathrm{f}}\left(10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $): 0.55$. IR: v 2938, 2239, 1732, 1298, 1273, 1178, 1028, 756, $747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.13 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.14(q t, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(t d, J=7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(t d, J=7.0$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.67(m, 2 \mathrm{H}), 1.60-1.49(m, 2 \mathrm{H}), 1.27(t t, J=7.1,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.9(\mathrm{C}), 69.5(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{C}), 34.2\left(\mathrm{CH}_{2}\right), 28.1$ $\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClO}_{2}\right)^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 189.0677$; found 189.0682 .

II.5. Synthesis of alkyne $1 f$

Compound $\mathbf{1 f}$ was synthesized by first protecting the alcohol function with a benzyl group and subsequent chlorination of the terminal alkyne (Scheme S5).

Scheme S5. Synthesis of chlorinated alkyne 1f.

A solution of prop-2-yn-1-ol ($883 \mu \mathrm{~L}, 15 \mathrm{mmol}, 1.0$ equiv) in THF (30 mL) was added dropwise to a solution of $\mathrm{NaH}(720 \mathrm{mg}, 18 \mathrm{mmol}, 1.2$ equiv) in THF (15 mL), and the resulting mixture was stirred 30 min at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After that, benzyl bromide ($1.95 \mathrm{~mL}, 16.5 \mathrm{mmol}$, 1.1 equiv) was added and the reaction was then allowed
to gradually warm to room temperature and stirred 2 h at rt . After this time, the reaction was quenched with an aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL), and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /\right.$ hexane $)$ afforded the corresponding benzylated alkyne.

Then, NCS ($2.85 \mathrm{~g}, 21.38 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{AgOAc}(357 \mathrm{mg}, 2.14 \mathrm{mmol}, 0.1$ equiv) were added in this order to the previous obtained benzylated alkyne ($14.25 \mathrm{mmol}, 1.0$ equiv) in acetone (40 mL), and the solution was refluxed overnight. After this time, the mixture was poured into ice, and the resulting aqueous layer extracted with pentane ($3 \times$ 40 mL). The combined organic layers were washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /\right.$ hexane $)$ afforded the corresponding chlorinated alkyne if as a smelly colorless oil ($2.12 \mathrm{~g}, 77 \%$ isolated yield). The spectroscopic data of compound $\mathbf{1 f}$ matched with the ones already reported in the literature. ${ }^{6}$
\{[(3-Chloroprop-2-yn-1-yl)oxy]methyl\}benzene (1f): Colorless oil. $R_{\mathrm{f}} \quad(5 \%$ EtOAc/hexane): 0.68. IR: v 3005, 2990, 2858, 1275, 1267, 1261, 1089, 748, $696 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.7 .43-7.31(m, 5 \mathrm{H}), 4.62(s, 2 \mathrm{H}), 4.21(s, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (75.5 MHz, CDCl_{3}): $\delta 137.6$ (C), 128.9 (2CH), 128.5 (2CH), 128.4 (CH), 72.1 $\left(\mathrm{CH}_{2}\right), 65.8(\mathrm{C}), 65.1(\mathrm{C}), 57.9\left(\mathrm{CH}_{2}\right)$. HRMS (ESI', m/z): calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClO}\right)^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 181.0415$; found 181.0420 .

II.6. Synthesis of alkyne $\mathbf{1 g}$

Compound $\mathbf{1 g}$ was synthesized by first protecting the alcohol moiety with a tosyl group and next via chemical chlorination of the terminal alkyne (Scheme S6).

Scheme S6. Synthesis of chlorinated alkyne $\mathbf{1 g}$.

Hex-5-yn-1-ol ($1.00 \mathrm{~g}, 10.2 \mathrm{mmol}, 1.0$ equiv), p-toluensulfonyl chloride ($2.33 \mathrm{~g}, 12.24$ mmol, 1.2 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($3.40 \mathrm{~mL}, 24.5 \mathrm{mmol}, 2.4$ equiv) were dissolved in dry MeCN $(50 \mathrm{~mL})$ and stirred overnight at rt under nitrogen atmosphere. After this time, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Purification by column chromatography ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexane $)$ afforded the corresponding tosylated derivative. The spectroscopic data of the compound matched with the ones already reported in the literature. ${ }^{7}$

Then, $\operatorname{NCS}(1.30 \mathrm{~g}, 9.77 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{AgOAc}(108.5 \mathrm{mg}, 0.65 \mathrm{mmol}, 0.1$ equiv) were added in this order to a solution of the obtained hex-5-yn-1-yl 5methylbenzenesulfonate ($6.51 \mathrm{mmol}, 1.0$ equiv) in acetone (25 mL). The solution was refluxed overnight, and then the mixture was poured into ice, extracting the resulting aqueous layer with pentane $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ hexane $)$ afforded the corresponding chlorinated alkyne $\mathbf{1 g}$ as a smelly colorless oil ($1.68 \mathrm{~g}, 74 \%$ isolated yield).

6-Chlorohex-5-yn-1-yl 4-methylbenzenesulfonate (1g): Colorless oil. R_{f} (50\% EtOAc/hexane): 0.89. IR: v 2954, 2925, 1598, 1357, 1175, 1097, 933, 816, 666, 556 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(d, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(d, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.06(t, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(s, 3 \mathrm{H}), 2.17(t, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(d q, J=8.0,6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.55 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.8$ (C), 133.1 (C), $129.9(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 69.8\left(\mathrm{C}+\mathrm{CH}_{2}\right), 68.6(\mathrm{C}), 27.8\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 21.6$ $\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{2}\right)$. HRMS (ESI', m/z): calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNaO}_{3} \mathrm{~S}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 309.0323; found 309.0332.

II.7. Synthesis of alkyne $1 i$

Compound $\mathbf{1 i}$ was synthesized by first protecting the alcohol moiety with an acetyl group and next via chemical chlorination of the terminal alkyne (Scheme S7).

Scheme S7. Synthesis of racemic chlorinated alkyne 1i.

Oct-1-yn-3-ol ($2.00 \mathrm{~g}, 15.85 \mathrm{mmol}, 1.0$ equiv), acetic anhydride ($2.25 \mathrm{~mL}, 23.78 \mathrm{mmol}$, 1.5 equiv) and DMAP (284 mg , 2.39 mmol , 0.15 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (65 mL), and stirred overnight at $40^{\circ} \mathrm{C}$. After this time, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ (25 mL), and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum, affording the corresponding acetate intermediate.

Then, NCS ($1.19 \mathrm{~g}, 8.92 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{AgOAc}(99 \mathrm{mg}, 0.59 \mathrm{mmol}, 0.1$ equiv) were added in this order to a solution of the so-obtained oct-1-yn-3-yl acetate (5.94 mmol , 1.0 equiv) in acetone (25 mL). The solution was refluxed overnight, and after this time, the mixture was poured into ice, and the resulting aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ 20 mL). The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$ afforded the corresponding chlorinated alkyne $1 \mathbf{i}$ as a smelly colorless oil ($1.16 \mathrm{~g}, 48 \%$ isolated yield).

1-Chlorooct-1-yn-3-yl acetate (1i): Colorless oil. R_{f} ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane): 0.81. IR: v 3045, 2929, 2861, 2244, 1740, 1369, 1273, 1257, 1219, 1017, 765, $749 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300.13 MHz, CDCl_{3}): $\delta 5.33(t, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(s, 3 \mathrm{H}), 1.79-1.70(m, 2 \mathrm{H}), 1.47-$ $1.26(m, 6 \mathrm{H}), 0.90(t, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 170.4(\mathrm{C}), 67.3$ (C), $64.6(\mathrm{CH}), 64.4(\mathrm{C}), 35.0\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $14.4\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClO}_{2}\right)^{+}(\mathrm{M}+\mathrm{H})^{+}$: 203.0833; found 203.0843.

II.8. Kinetic resolution of oct-1-yn-3-ol

Both acetylated 1i enantiomers were obtained through lipase-catalyzed kinetic resolution of oct-1-yn-3-ol following an adapted procedure to the one described by Zhu et al (Scheme S8). ${ }^{8}$

Scheme S8. Kinetic resolution of oct-1-yn-3-ol and synthesis of chlorinated alkynes (S) - and (R) $1 i$.

A suspension of racemic oct-1-yn-3-ol ($2.24 \mathrm{~g}, 16 \mathrm{mmol}, 1.0$ equiv), isopropenyl acetate ($1.76 \mathrm{~mL}, 16 \mathrm{mmol}, 1.0$ equiv) and immobilized CAL-B (Novozyme $435^{\circledR}, 320 \mathrm{mg}$) in toluene (80 mL) was stirred at rt for 4 h . After this time, the suspension was filtered off, washed (10 mL), and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ afforded the corresponding optically active (R)-alcohol ($987 \mathrm{mg}, 44 \%$ isolated yield) and (S)-acetate ($1.37 \mathrm{~g}, 47 \%$ isolated yield) both in enantiopure form (see Section X for analytical details).

On one hand, the enantiopure (S)-acetate was subjected to a chlorination reaction following the usual procedure: NCS ($1.50 \mathrm{~g}, 11.25 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{AgOAc}(125$ $\mathrm{mg}, 0.75 \mathrm{mmol}, 0.1$ equiv) were added in this order to a solution of (S)-oct-1-yn-3-yl acetate ($1.37 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$ equiv) in acetone (30 mL). The solution was refluxed overnight, and after this time, the mixture was poured into ice, and the resulting aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced
pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ afforded the corresponding chlorinated alkyne (S)-1i(>99\%ee) as a smelly colorless oil ($1.10 \mathrm{~g}, 32 \%$ isolated yield).

On the other hand, the unreacted (R)-alcohol from the lipase-catalyzed kinetic resolution was chemically acetylated. Therefore, (R)-oct-1-yn-3-ol ($987 \mathrm{mg}, 7.78 \mathrm{mmol}, 1.0$ equiv), acetic anhydride ($1.12 \mathrm{~mL}, 11.67 \mathrm{mmol}, 1.5$ equiv) and DMAP ($146 \mathrm{mg}, 1.17 \mathrm{mmol}, 0.15$ equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and stirred overnight at $40^{\circ} \mathrm{C}$. After this time, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The resulting crude without further purification was subjected to the chlorination reaction. Thus, $\operatorname{NCS}(1.56 \mathrm{~g}, 11.67 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{AgOAc}(130$ $\mathrm{mg}, 0.78 \mathrm{mmol}, 0.1$ equiv) were added in this order to a solution of the so-obtanined (R) -oct-1-yn-3-yl acetate ($7.78 \mathrm{mmol}, 1.0$ equiv) in acetone (25 mL). The solution was refluxed overnight, and after this time, the mixture was poured into ice, and the resulting aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent evaporated under reduced pressure. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$ afforded the corresponding chlorinated alkyne $(R)-\mathbf{1 i}(>99 e e)$ as a smelly colorless oil ($1.28 \mathrm{~g}, 37 \%$ isolated yield).

The spectroscopic data of optically active $\mathbf{1 i}$ enantiomers matched with those reported for the racemic compound that have been previously displayed. For the optical rotation value, see Section XI.

The absolute configuration of both enantiomers was assigned based on the known stereopreference of the CAL-B.

III. Optimization of the gold(I)-catalyzed hydration process of alkyne 1a

Table S1. Screening of gold(I) catalysts in the hydration reaction of 1-chlorooct-1-yne (1a).

${ }^{\text {a }}$ Product percentages were determined by GC analysis.

1-Chlorooctan-2-one (2a): ${ }^{9}$ Yellowish oil (190 mg, 96\%). R_{f} (5\% EtOAc/hexane): 0.60. IR: v 1693 and $769 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 4.07(s, 2 \mathrm{H}), 2.58(t, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.61 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.29(m, 6 \mathrm{H}), 0.88(t, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8(\mathrm{C}), 48.2\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 23.6$ $\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{ClO}\right)^{+}(\mathrm{M}+\mathrm{H})^{+}$: 163.0889; found 163.0883.
(Z)-1-Chloro-2-\{[(Z)-1-chlorooct-1-en-2-yl]oxy\}oct-1-ene (5a): ${ }^{9}$ Yellowish oil. R_{f} (hexane): 0.46. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.44(t, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(m, 4 \mathrm{H})$, $1.56-1.48(m, 4 \mathrm{H}), 1.30(m, 12 \mathrm{H}), 0.89(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.2$ $(2 \mathrm{C}), 100.1(2 \mathrm{CH}), 32.3\left(2 \mathrm{CH}_{2}\right), 31.5\left(2 \mathrm{CH}_{2}\right), 28.7\left(2 \mathrm{CH}_{2}\right), 26.6\left(2 \mathrm{CH}_{2}\right), 22.5\left(2 \mathrm{CH}_{2}\right)$, $14.1\left(2 \mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{O}\right)^{+}(\mathrm{M}+\mathrm{H})^{+}$: 307.1590; found 307.1587.

Table S2. Screening of the reaction medium, temperature and equivalents of 2PrOH in the hydration process of $\mathbf{1 a}$ using $\operatorname{IPrAuNTf}_{2}$ ($5 \mathrm{~mol} \%$).

Entry	Reaction medium ${ }^{\text {a }}$	$\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1 a} \\ (\%)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \mathbf{2 a} \\ (\%)^{\mathrm{b}} \\ \hline \end{gathered}$	By-products (\%) ${ }^{\text {b }}$
1	$\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}(4: 1)$	40	12	67	21
2	$\mathrm{H}_{2} \mathrm{O}:$ THF (4:1)	40	<1	72	28
3	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	40	<1	99	1
4	$\mathrm{H}_{2} \mathrm{O}: n$-Heptane (4:1)	40	3	78	19
5	$\mathrm{H}_{2} \mathrm{O}: \operatorname{MTBE}$ (4:1)	40	<1	63	37
6	$\begin{gathered} \text { Buffer Tris-HCl pH } 8.0 \text { (20 } \\ \mathrm{mM}): 2-\mathrm{Me}-\mathrm{THF}(4: 1) \end{gathered}$	40	<1	85	15
7	Buffer $\mathrm{PO}_{4}{ }^{3-} \mathrm{pH} 7.5$ (50 $\mathrm{mM}): 2-\mathrm{Me}-\mathrm{THF}(4: 1)$	40	54	34	12
8	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (95:5)	40	<1	42	58
9	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (9:1)	40	<1	48	52
10	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (85:15)	40	<1	79	21
11	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	20	<1	88	12
12	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	30	<1	91	9
13	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	45	<1	84	16
14	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{PrOH}(4: 1)$	40	<1	35	65
15	$\mathrm{H}_{2} \mathrm{O}$	40	<1	86	14
16	TPGS-750-M ${ }^{\text {c }}$	40	<1	60	40
17	$\mathrm{H}_{2} \mathrm{O}: \mathrm{DES}^{\mathrm{d}}(4: 1)$	40	<1	86	14
$18^{\text {e }}$	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	40	<1	93	7
$19^{\text {f }}$	$\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{Me}-\mathrm{THF}$ (4:1)	40	<1	92	8

${ }^{\text {a }}$ Volume/volume ratios appear in parentheses unless otherwise stated.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\mathrm{c}}$ This is a commercially available water solution that includes the surfactant in $2 \% \mathrm{w} / \mathrm{v}$.
${ }^{\text {d. }}$ Deep Eutectic Solvent formed by ChCl :Gly ($1: 2 \mathrm{~mol} / \mathrm{mol}$).
${ }^{\mathrm{e}}[\mathbf{1 a}]=150 \mathrm{mM}$.
${ }^{\mathrm{f}}[\mathbf{1 a}]=200 \mathrm{mM}$.
IV. Full characterization of α-halomethyl ketones 2 obtained through gold(I)catalyzed hydration

1-Chlorooctan-2-one (2a): ${ }^{9}$ Yellowish oil (190 mg, 96\%). See Section III for full compound characterization.

1-Chlorodecan-2-one (2b): ${ }^{10}$ Yellowish oil ($212 \mathrm{mg}, 96 \%$). R_{f} ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$): 0.65. IR: v 2924, 2855, 1733, 1719, 1459, 1401, 1378, 1131, 1069, 770, 759, 747, 725 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.09(s, 2 \mathrm{H}), 2.60(t, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(m$, $2 \mathrm{H}), 1.34-1.27(m, 10 \mathrm{H}), 0.90(t, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.8$ (C), $48.2\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.1\left(2 \mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}: 213.1017$; found 213.1027.

2-Chloro-1-cyclohexylethan-1-one (2c): ${ }^{11}$ Yellowish oil (200 mg, 89\%). R_{f} (2% EtOAc/hexane): 0.54. IR: v 2929, 2855, 1722, 1709, 1450, 1396, 1371, 1275, 1267, 1261, $768,742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.18(s, 2 \mathrm{H}), 2.64(t t, J=11.2,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.78(m, 4 \mathrm{H}), 1.69(m, 1 \mathrm{H}), 1.46-1.19(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 205.0(\mathrm{C}), 47.8\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 28.4\left(2 \mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 25.5\left(2 \mathrm{CH}_{2}\right)$. HRMS (ESI ${ }^{+}$, $\mathrm{m} / \mathrm{z})$: calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 183.0547; found 183.0548.

1-Chloro-4-phenylbutan-2-one (2d): ${ }^{11}$ Yellowish oil (182 mg, 82\%). R_{f} (10% EtOAc/hexane): 0.38. IR: v 3028, 2929, 1733, 1721, 1717, 1454, 1398, 1257, 1083, 1065, $752,698,552,495 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.20(m, 5 \mathrm{H}), 4.06(s$, 2H), $2.97(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.9(\mathrm{C}), 140.3(\mathrm{C}), 128.6(2 \mathrm{CH})$, $128.3(2 \mathrm{CH}), 126.4(\mathrm{CH}), 48.3\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}: 205.0391$; found 205.0399.

Ethyl 7-chloro-6-oxoheptanoate (2e): ${ }^{12}$ Yellowish oil (180 mg, 82\%). $R_{\mathrm{f}}(50 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane): 0.49. IR: v 2980, 2939, 1723, 1374, 1177, 1027, 768, $414 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$
(300.13 MHz, CDCl_{3}): $\delta 4.13(m, 4 \mathrm{H}), 2.64(m, 2 \mathrm{H}), 2.33(m, 2 \mathrm{H}), 1.67(m, 4 \mathrm{H}), 1.26(t$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.8(\mathrm{C}), 173.8(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 48.7$ $\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$, $23.3\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{ClO}_{3}\right)^{+}(\mathrm{M}+\mathrm{H})^{+}$: 207.0782; found 207.0785.

1-Benzyloxy-3-chloropropan-2-one (2f): ${ }^{13}$ Yellowish oil ($180 \mathrm{mg}, 82 \%$). $R_{\mathrm{f}}(20 \%$ EtOAc/hexane): 0.45. IR: v 3005, 2990, 1741, 1275, 1267, 1261, 1097, 763, 750, 698 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.33(m, 5 \mathrm{H}), 4.63(s, 2 \mathrm{H}), 4.32(s, 2 \mathrm{H})$, $4.27(s, 2 H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.3(\mathrm{C}), 136.6(\mathrm{C}), 128.7(2 \mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.0(2 \mathrm{CH}), 73.7\left(\mathrm{CH}_{2}\right)$, $73.6\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right)$. HRMS (ESI $\left.{ }^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClNaO}_{2}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}: 221.0340$; found 221.0347 .

6-Chloro-5-oxohexyl 4-methylbenzenesulfonate (2g): ${ }^{11}$ Yellowish oil ($189 \mathrm{mg}, 89 \%$). $R_{\mathrm{f}}(50 \% \mathrm{EtOAc} / \mathrm{hexane}): 0.65$. IR: v 2961, 2923, 2868, 1716, 1579, 1469, 1455, 1328, $1276,1153,768,749,736,704,548 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(d, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(d, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(m, 4 \mathrm{H}), 2.60(t, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(s, 3 \mathrm{H})$, 1.69 ($m, 4 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 202.0(\mathrm{C}), 144.9$ (C), 133.0 (C), 129.9 (2CH), $127.9(2 \mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right), 48.1\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{2}\right), 19.5$ $\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNaO}_{4} \mathrm{~S}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 327.0428; found 327.0444.

V. Full characterization of $\boldsymbol{\beta}$-chlorohydrins $\mathbf{3}$ obtained after chemical reduction of α-chloro ketones 2

Full characterizations of alcohols 3a-d,f,h appear below, while the obtained specific rotation values of the enantioenriched derivatives appear in Section XI (Table S20):

1-Chlorooctan-2-ol (3a): ${ }^{14}$ Yellowish oil ($29 \mathrm{mg}, 88 \%$). R_{f} ($10 \% \mathrm{EtOAc} /$ hexane): 0.37. IR: v 3375, 3005, 2987, 1275, 1260 and $763 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.79$ $(m, 1 \mathrm{H}), 3.63(d d, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(d d, J=11.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(b r s, 1 \mathrm{H})$, $1.57-1.47(m, 2 \mathrm{H}), 1.30(m, 8 \mathrm{H}), 0.87(t, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 71.5(\mathrm{CH}), 50.6\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 187.0866; found 187.0870.

1-Chlorodecan-2-ol (3b): ${ }^{15}$ Yellowish oil ($33 \mathrm{mg}, 86 \%$). R_{f} ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$): 0.40. IR: v 3347, 3005, 1275, 1267, 1261, 769, $759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $3.82(m, 1 \mathrm{H}), 3.66(d d, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(d d, J=11.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(d, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(m, 2 \mathrm{H}), 1.30(m, 12 \mathrm{H}), 0.90(t, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 71.5(\mathrm{CH}), 50.6\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}: 215.1173$; found 215.1176 .

2-Chloro-1-cyclohexylethan-1-ol (3c): ${ }^{16}$ Yellowish oil (22 mg, 68\%). R_{f} (20% EtOAc/pentane): 0.25. IR: v 3367, 3005, 1275, 1267, 1261, 741, $726 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.76-3.68$ ($m, 1 \mathrm{H}$), 3.61-3.52 ($m, 2 \mathrm{H}$), $2.20(s, 1 \mathrm{H}$), 1.92 (m, $1 \mathrm{H}), 1.82-1.65(m, 4 \mathrm{H}), 1.52(m, 1 \mathrm{H}), 1.35-1.00(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 75.6(\mathrm{CH}), 49.2\left(\mathrm{CH}_{2}\right), 41.3(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 185.0704; found 185.0709 .

1-Chloro-4-phenylbutan-2-ol (3d): ${ }^{17}$ Yellowish oil (34 mg, 91\%). R_{f} (30\% EtOAc/hexane): 0.51. IR: v 3414, 3364, 2951, 2911, 1600, 1423, 1344, 1091, 1076, 854, $754,728,700,597,510,474,466 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.21(m$, $5 \mathrm{H}), 3.85(m, 1 \mathrm{H}), 3.66(d d, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(d d, J=11.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-$
$2.73(m, 2 \mathrm{H}), 2.32(d, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $141.3(\mathrm{C}), 128.5(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 126.1(\mathrm{CH}), 70.6(\mathrm{CH}), 50.5\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right)$, $31.8\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClNaO}\right)^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 207.0547; found 207.0551.

1-Benzyloxy-3-chloropropan-2-ol (3f): ${ }^{18}$ Yellowish oil (36 mg, 89\%). R_{f} (10% EtOAc/hexane): 0.12. IR: v $3359,2989,2962,1275,1267,1261,1098,764,750 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.33(m, 5 \mathrm{H}), 4.59(s, 2 \mathrm{H}), 4.10-3.99(m, 1 \mathrm{H})$, $3.73-3.52(m, 4 \mathrm{H}), 2.57(d, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.6(\mathrm{C})$, $128.5(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.8(2 \mathrm{CH}), 73.6\left(\mathrm{CH}_{2}\right), 70.8\left(\mathrm{CH}_{2}\right), 70.3(\mathrm{CH}), 46.1\left(\mathrm{CH}_{2}\right)$.
(\boldsymbol{E})-1-Chloro-4,8-dimethylnona-3,7-dien-2-ol (3h): ${ }^{19}$ Yellowish oil (30 mg, 74\%). R_{f} ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane): 0.17 . IR: v 3347, 2967, 2916, 2849, 1668, 1441, 1276, 1259, 1060, 1003, 763, $749 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.20(d, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(t$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(d t, J=7.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.43(m, 2 \mathrm{H}), 2.31(m, 1 \mathrm{H}), 2.13-$ $2.00(m, 4 H), 1.72(s, 3 H), 1.69(s, 3 H), 1.61(s, 3 H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $141.7(\mathrm{C}), 131.9(\mathrm{C}), 123.6(\mathrm{CH}), 123.0(\mathrm{CH}), 68.8(\mathrm{CH}), 49.7\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right)$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}\right)$: calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{ClNaO}\right)^{+}$ $(\mathrm{M}+\mathrm{Na})^{+}: 225.1017$; found 225.1023. (S)-3h, ee $>99 \%,[\alpha]_{\mathrm{D}}{ }^{20}:-3.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.

VI. Experimental protocols and screening results for the reduction of α chloromethyl ketones using different ADHs

VI.1. Bioreduction of 2 a using ADH-A

α-Chloroketone 2a ($2.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 2-Me-THF ($120 \mu \mathrm{~L}$), 2-PrOH ($0.03 \mathrm{mmol}, 2.4$ $\mu \mathrm{L})$, a NADH aqueous solution ($10 \mathrm{mM}, 60 \mu \mathrm{~L}$), distilled water ($420 \mu \mathrm{~L}$) and lyophilized cells of E. coli overexpressing ADH-A (10 mg) were successively added to a 1.5 mL Eppendorf tube. Then, the recipient was closed and kept under orbital shaking at 220 rpm at $40^{\circ} \mathrm{C}$ for 24 h . After this time, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 0.5 \mathrm{~mL})$, the organic layers combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated, measuring then the reaction conversion and the enantiomeric excess of alcohol 3a by GC analyses.

VI.2. Bioreduction of 2a using ADH-T, TeSADH and SyADH

α-Chloroketone 2a ($2.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 2-Me-THF ($120 \mu \mathrm{~L}$), 2-PrOH ($0.03 \mathrm{mmol}, 2.4$ $\mu \mathrm{L}$), a NADPH aqueous solution ($10 \mathrm{mM}, 60 \mu \mathrm{~L}$), distilled water ($420 \mu \mathrm{~L}$) and lyophilized cells of E. coli overexpressing the corresponding ADH (10 mg) were successively added to a 1.5 mL -Eppendorf tube. Then, the recipient was closed and kept under orbital shaking at 220 rpm at $40^{\circ} \mathrm{C}$ for 24 h . After this time, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 0.5 \mathrm{~mL}$), the organic layers combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated, measuring then the reaction conversion and the enantiomeric excess of alcohol 3a by GC analyses.

VI.3. Bioreduction of 2a using LbADH

α-Chloroketone 2a ($2.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 2-Me-THF ($126 \mu \mathrm{~L}$), 2-PrOH ($0.03 \mathrm{mmol}, 2.4$ $\mu \mathrm{L}$), a NADPH aqueous solution ($10 \mathrm{mM}, 60 \mu \mathrm{~L}$), a MgCl_{2} aqueous solution ($10 \mathrm{mM}, 60$ $\mu \mathrm{L})$, distilled water ($384 \mu \mathrm{~L}$) and lyophilized cells of E. coli overexpressing LbADH (10 mg) were successively added to a 1.5 mL -Eppendorf tube. Then, the recipient was closed and kept under orbital shaking at 220 rpm at $40^{\circ} \mathrm{C}$ for 24 h . After this time, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 0.5 \mathrm{~mL}$), the organic layers combined, dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated, measuring then the reaction conversion and the enantiomeric excess of alcohol 3a by GC analyses.

VI.4. Bioreduction of 2a using commercial evo.1.1.200

α-Chloroketone 2a ($2.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 2-Me-THF ($126 \mu \mathrm{~L}$), 2-PrOH ($0.03 \mathrm{mmol}, 2.4$ $\mu \mathrm{L}$), a NADH aqueous solution ($10 \mathrm{mM}, 60 \mu \mathrm{~L}$), a MgCl_{2} aqueous solution ($10 \mathrm{mM}, 60$ $\mu \mathrm{L})$, distilled water $(384 \mu \mathrm{~L})$ and evo.1.1.200 $(2.4 \mathrm{mg})$ were successively added to a 1.5 mL -Eppendorf tube. Then, the recipient was closed and kept under orbital shaking at 220 rpm at $40^{\circ} \mathrm{C}$ for 24 h . After this time, the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 0.5 \mathrm{~mL})$, the organic layers combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated, measuring then the reaction conversion and the enantiomeric excess of alcohol 3a by GC analyses.

VI.5. Bioreduction of $2 a$ using commercial ADHs from Codexis

The selected commercially available Codexis KRED (2.4 mg) was added to a 1.5 mL Eppendorf tube containing α-chloroketone 2a ($2.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 2-Me-THF (126 $\mu \mathrm{L}$), 2-PrOH ($0.03 \mathrm{mmol}, 2.4 \mu \mathrm{~L}$), a NADPH aqueous solution ($10 \mathrm{mM}, 60 \mu \mathrm{~L}$), a MgCl_{2} aqueous solution $(10 \mathrm{mM}, 60 \mu \mathrm{~L})$ and distilled water $(384 \mu \mathrm{~L})$. Then, the recipient was closed and kept under orbital shaking at 220 rpm at $40^{\circ} \mathrm{C}$ for 24 h . After this time, the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 0.5 \mathrm{~mL})$, the organic layers combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solution was concentrated, measuring then the reaction conversion and the enantiomeric excess of alcohol 3a by GC analyses.

VI.6. Summary of results in the bioreduction of ketone $2 a$

Table S3. Screening of different ADHs for the asymmetric bioreduction of 2a. ${ }^{\text {a }}$

Entry	$\mathrm{ADH}^{\text {b }}$	3a (\%) ${ }^{\text {c }}$	3a ee (\%) ${ }^{\text {d }}$
1	ADH-A	>99	>99 (R)
2	ADH-T	68	71 (R)
3	TeSADH	<1	$n . d$.
4	SyADH	36	62 (S)
5	LbADH	>99	$>99(S)$
6	evo.1.1.200	97	>99 (S)
7	KRED-P1-A04	97	>99 (S)
8	KRED-P1-A12	65	76 (S)
9	KRED-P1-B02	97	84 (S)
10	KRED-P1-B05	48	70 (S)
11	KRED-P1-B10	81	86 (S)
12	KRED-P1-B12	98	>99 (S)
13	KRED-P1-C01	99	79 (S)
14	KRED-P1-H08	99	58 (S)
15	KRED-P2-B02	99	<1
16	KRED-P2-C02	98	60 (S)
17	KRED-P2-C11	95	80 (S)
18	KRED-P2-D03	95	46 (S)
19	KRED-P2-D11	98	>99 (S)
20	KRED-P2-D12	97	>99 (S)
21	KRED-P2-G03	99	35 (S)
22	KRED-P2-H07	98	86 (S)
23	KRED-P3-B03	96	>99 (R)
24	KRED-P3-G09	98	>99 (R)
25	KRED-P3-H12	98	>99 (R)

${ }^{a}$ See Sections VI. 1 to VI. 5 for general procedures with all tested enzymes.
${ }^{\mathrm{b}}$ The coupled-substrate system employing 2-PrOH as cosubstrate was used for cofactor recycling purposes.
${ }^{c}$ Product percentages were determined by GC analysis (see Section X for further details).
${ }^{\mathrm{d}}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

VI.7. Summary of results in the bioreduction of ketone 2 c

Table S4. Screening of different ADHs for the asymmetric bioreduction of $\mathbf{2 c} .^{\text {a }}$

Entry	ADH	3c $(\%)^{\mathrm{b}}$	3c $e e(\%)^{\mathrm{c}}$
1	ADH-A	51	$>99(R)$
2	ADH-T	41	$>99(R)$
3	TeSADH	<1	$n . d$.
4	SyADH	<1	$n . d$.
5	LbADH	98	$>99(S)$
6	evo.1.1.200	>99	$>99(S)$
7	KRED-P1-A04	>99	$>99(S)$
8	KRED-P1-A12	97	$>99(S)$
9	KRED-P1-B02	98	$85(S)$
10	KRED-P1-B05	9	$n . d$.
11	KRED-P1-B10	98	$81(S)$
12	KRED-P1-B12	98	$95(S)$
13	KRED-P1-C01	>99	<1
14	KRED-P1-H08	99	<1
15	KRED-P2-B02	98	<1
16	KRED-P2-C02	96	$10(S)$
17	KRED-P2-C11	97	$97(S)$
18	KRED-P2-D03	98	$55(S)$
19	KRED-P2-D11	>99	$6(S)$
20	KRED-P2-D12	72	$87(S)$
21	KRED-P2-G03	98	$91(S)$
22	KRED-P2-H07	97	$>99(S)$
23	KRED-P3-B03	15	$60(R)$
24	KRED-P3-G09	6	$n . d$.
25	KRED-P3-H12	26	$96(R)$

${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of $\mathbf{2 c}$ considering the mmol substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

VI.8. Summary of results in the bioreduction of ketone 2d

Table S5. Screening of different ADHs for the asymmetric bioreduction of 2d. ${ }^{\text {a }}$

Entry	ADH	3d (\%) ${ }^{\text {b }}$	3d $e e(\%)^{\text {c }}$
1	ADH-A	>99	>99 (R)
2	ADH-T	98	>99 (R)
3	$T e S A D H$	47	>99 (R)
4	HlADH	3	n.d.
5	LbADH	99	$>99(S)$
6	evo.1.1.200	99	>99 (S)
7	KRED-P1-A04	99	>99 (S)
8	KRED-P1-A12	99	>99 (S)
9	KRED-P1-B05	55	>99 (S)
10	KRED-P1-B10	98	>99 (S)
11	KRED-P1-B12	99	>99 (S)
12	KRED-P1-C01	98	<1
13	KRED-P1-H08	98	80 (S)
14	KRED-P2-B02	98	<1
15	KRED-P2-C02	96	<1
16	KRED-P2-C11	99	<1
17	KRED-P2-D03	99	>99 (S)
18	KRED-P2-D11	99	<1
19	KRED-P2-D12	92	86 (S)
20	KRED-P2-G03	99	42 (S)
21	KRED-P2-H07	99	94 (S)
22	KRED-P3-B03	93	>99 (S)
23	KRED-P3-G09	64	26 (R)
24	KRED-P3-H12	80	$74(R)$

[^0]
VI.9. Summary of results in the bioreduction of ketone $2 e$

Table S6. Screening of different ADHs for the asymmetric bioreduction of 2e. ${ }^{\text {a }}$

Entry	ADH	3e $(\%)^{\mathrm{b}}$	3e ee $(\%)^{\mathrm{c}}$
1	ADH-A	>99	$>99(R)$
2	ADH-T	10	$n . d$.
3	$T e S A D H$	48	$n . d$.
4	$H l A D H$	21	$7 . d$.
5	LbADH	99	$>99(S)$
6	evo.1.1.200	99	$>99(S)$
7	KRED-P1-A04	99	$>99(S)$
8	KRED-P1-A12	98	$>99(S)$
9	KRED-P1-B02	98	$86(S)$
10	KRED-P1-B05	35	$n . d$.
11	KRED-P1-B10	99	$>99(S)$
12	KRED-P1-B12	98	$94(S)$
13	KRED-P1-C01	99	$58(S)$
15	KRED-P2-B02	>99	<1
16	KRED-P2-C02	99	$22(S)$
18	KRED-P2-D03	99	$30(S)$
19	KRED-P2-D11	99	$>99(S)$
20	KRED-P2-D12	91	$>99(S)$
21	KRED-P2-G03	99	$>99(S)$
22	KRED-P2-H07	99	$>99(S)$
23	KRED-P3-B03	>99	$46(S)$
24	KRED-P3-G09	41	$n . d$.
25	KRED-P3-H12	70	<1

${ }^{a}$ Procedures already applied to ketone 2a were used for the bioreduction of 2e considering the mmol substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

VI.10. Summary of results in the bioreduction of ketone $2 f$

Table S7. Screening of different ADHs for the asymmetric bioreduction of $\mathbf{2 f}$. ${ }^{\text {a }}$

Entry	ADH	3f (\%) ${ }^{\text {b }}$	3f $e e(\%)^{\text {c }}$
1	ADH-A	99	>99 (R)
2	ADH-T	20	n.d.
3	TeSADH	89	40 (S)
4	HlADH	40	n.d.
5	LbADH	>99	>99 (S)
6	evo.1.1.200	99	>99 (S)
7	KRED-P1-A04	99	>99 (S)
8	KRED-P1-A12	98	>99 (S)
9	KRED-P1-B02	70	>99 (S)
10	KRED-P1-B05	61	>99 (S)
11	KRED-P1-B10	>99	>99 (S)
12	KRED-P1-B12	97	>99 (S)
13	KRED-P1-C01	>99	68 (S)
14	KRED-P1-H08	93	<1
15	KRED-P2-B02	95	42 (S)
16	KRED-P2-C02	>99	76 (S)
17	KRED-P2-C11	97	>99 (S)
18	KRED-P2-D03	>99	>99 (S)
19	KRED-P2-D11	>99	>99 (S)
20	KRED-P2-D12	>99	40 (S)
21	KRED-P2-G03	>99	>99 (S)
22	KRED-P2-H07	>99	>99 (S)
23	KRED-P3-B03	>99	>99 (R)
24	KRED-P3-G09	65	>99 (R)
25	KRED-P3-H12	91	>99 (R)

$\overline{{ }^{\text {a }} \text { Procedures already applied to ketone 2a were used for the bioreduction of } \mathbf{2 f} \text { considering the mmol }}$ substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by HPLC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by HPLC analysis. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

VI.11. Summary of results in the bioreduction of ketone $\mathbf{2 g}$

Table S8. Screening of different ADHs for the asymmetric bioreduction of $\mathbf{2 g}$. ${ }^{\text {a }}$

Entry	ADH	$\mathbf{3 g}(\%)^{\text {b }}$	3g ee (\%) ${ }^{\text {c }}$
1	ADH-A	99	>99 (R)
2	ADH-T	35	96 (R)
3	$T e S A D H$	11	90 (R)
4	HlADH	11	$30(R)$
5	LbADH	>99	$>99(S)$
6	evo.1.1.200	>99	>99 (S)
7	KRED-P1-A04	>99	>99 (S)
8	KRED-P1-A12	>99	>99 (S)
9	KRED-P1-B02	>99	98 (S)
10	KRED-P1-B05	28	96 (S)
11	KRED-P1-B10	99	98 (S)
12	KRED-P1-B12	99	94 (S)
13	KRED-P1-C01	99	90 (S)
14	KRED-P1-H08	99	90 (S)
15	KRED-P2-B02	99	64 (S)
16	KRED-P2-C02	99	34 (S)
17	KRED-P2-C11	99	>99 (S)
18	KRED-P2-D03	99	62 (S)
19	KRED-P2-D11	99	>99 (S)
20	KRED-P2-D12	88	94 (S)
21	KRED-P2-G03	99	>99 (S)
22	KRED-P2-H07	99	>99 (S)
23	KRED-P3-B03	98	80 (R)
24	KRED-P3-G09	66	$50(R)$
25	KRED-P3-H12	91	$86(R)$

[^1]
VI.12. Summary of results in the bioreduction of ketone $2 h$

Table S9. Screening of different ADHs for the asymmetric bioreduction of $\mathbf{2 h} .^{\text {a }}$

Entry	ADH	3 i (\%) ${ }^{\text {b }}$	$3 \mathrm{i} e \mathrm{e}(\%)^{\text {c }}$
1	ADH-A	2	n.d.
2	ADH-T	<1	n.d.
3	TeSADH	<1	n.d.
4	LbADH	53	>99 (S)
5	HladH	49	$>99(S)$
6	evo.1.1.200	<1	n.d.
7	KRED-P1-A04	55	>99 (S)
8	KRED-P1-A12	10	n.d.
10	KRED-P1-B02	45	>99 (S)
11	KRED-P1-B05	<1	n.d.
12	KRED-P1-B10	6	n.d.
13	KRED-P1-B12	14	n.d.
14	KRED-P1-C01	18	n.d.
15	KRED-P1-H08	6	n.d.
16	KRED-P2-B02	51	<1
17	KRED-P2-C02	11	n.d.
18	KRED-P2-C11	27	n.d.
19	KRED-P2-D03	14	n.d.
20	KRED-P2-D11	36	n.d.
21	KRED-P2-D12	4	n.d.
22	KRED-P2-G03	48	>99 (R)
23	KRED-P2-H07	56	>99 (S)
24	KRED-P3-B03	20	n.d.
25	KRED-P3-G09	68	88 (R)
26	KRED-P3-H12	<1	n.d.

${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of $\mathbf{2 h}$ considering the mmol substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

Table S10. Screening of different ADHs for the asymmetric bioreduction of $\mathbf{2 h}$ using a higher amount of $2-\mathrm{PrOH} .{ }^{\text {a }}$

Entry	ADH	3h $(\%)^{\mathrm{b}}$	3h $e e(\%)^{\mathrm{c}}$
1	LbADH	93	$>99(S)$
2	$H l A D H$	<1	n.d.
3	KRED-P1-A04	94	$>99(S)$
4	KRED-P1-B02	>99	$>99(S)$
5	KRED-P2-B02	92	$>99(S)$
6	KRED-P2-G03	68	$88(R)$
7	KRED-P2-H07	87	$>99(S)$
8	KRED-P3-G09	10	n.d.

${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of $\mathbf{2 h}$ considering the mmol substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. n.d.: not determined.

VI.13. Summary of results in the bioreduction of racemic and optically active ketone $2 i$

Table S11. Screening of different ADHs for the asymmetric bioreduction of rac-2i. ${ }^{\text {a }}$

Entry	ADH	$3 \mathbf{i}$ (\%) ${ }^{\text {b }}$	3i $d e(\%)^{\text {c }}$	3 i ee (\%) ${ }^{\text {c }}$	
				syn	anti
1	ADH-A	50	96 (anti)	n.d.	>99 (2R,3R)
2	ADH-T	42	>99 (anti)	n.d.	$88(2 R, 3 R)$
3	TeSADH	40	>99 (anti)	n.d.	$86(2 R, 3 R)$
4	HladH	34	>99 (anti)	n.d.	>99 ($2 R, 3 R$)
5	LbADH	56	82 (anti)	n.d.	$>99(2 S, 3 S)$
6	evo.1.1.200	>99	<1	$95(2 S, 3 R)$	$>99(2 S, 3 S)$
7	KRED-P1-A04	82	36 (anti)	$95(2 S, 3 R)$	$>99(2 S, 3 S)$
8	KRED-P1-A12	64	60 (syn)	>99 (2S,3R)	$95(2 S, 3 S)$
9	KRED-P1-B02	98	<1	$95(2 S, 3 R)$	$96(2 S, 3 S)$
10	KRED-P1-B05	40	>99 (anti)	n.d.	$94(2 S, 3 S)$
11	KRED-P1-B10	32	>99 (anti)	n.d.	$92(2 S, 3 S)$
12	KRED-P1-B12	84	18 (syn)	>99 (2S,3R)	$94(2 S, 3 S)$
13	KRED-P1-C01	80	36 (syn)	>99 (2S,3R)	$95(2 S, 3 S)$
14	KRED-P1-H08	43	59 (anti)	$95(2 S, 3 R)$	$>99(2 S, 3 S)$
15	KRED-P2-B02	94	18 (anti)	$96(2 R, 3 S)$	>99 ($2 R, 3 R$)
16	KRED-P2-C02	59	72 (anti)	$96(2 R, 3 S)$	>99 ($2 R, 3 R$)
17	KRED-P2-C11	78	26 (anti)	>99 (2S,3R)	$>99(2 S, 3 S)$
18	KRED-P2-D03	81	42 (anti)	$96(2 S, 3 R)$	$>99(2 S, 3 S)$
19	KRED-P2-D11	98	4 (syn)	>99 (2S,3R)	$96(2 S, 3 S)$
20	KRED-P2-D12	66	54 (anti)	$96(2 S, 3 R)$	>99 ($2 S, 3 S$)
21	KRED-P2-G03	>99	24 (anti)	$96(2 S, 3 R)$	>99 ($2 S, 3 S$)
22	KRED-P2-H07	92	20 (syn)	>99 (2S,3R)	$96(2 S, 3 S)$
23	KRED-P3-B03	32	>99 (anti)	n.d.	>99 ($2 R, 3 R$)
24	KRED-P3-G09	48	>99 (anti)	n.d.	>99 ($2 R, 3 R$)
25	KRED-P3-H12	30	>99 (anti)	n.d.	>99 (2R,3R)

${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of rac-2i considering the mmol substrate/weight enzyme ratio.
${ }^{\text {b }}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantio- and diastereomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer of each isomer appears in parentheses. Change in the CIP priority.

Table S12. Screening of different ADHs for the asymmetric bioreduction of (R)-2i. ${ }^{\text {a }}$

Entry	ADH	$\mathbf{3 i}(\%)^{\mathbf{b}}$	$\mathbf{3 i}$ de $(\%)^{\mathrm{c}}$	$\mathbf{3 i} e e(\%)^{\mathrm{c}}$
1	ADH-A	>99	>99 (anti)	$>99(2 R, 3 R)$
2	evo.1.1.200	>99	$>99($ syn $)$	$>99(2 S, 3 R)$
3	KRED-P1-A04	>99	$>99($ syn $)$	$>99(2 S, 3 R)$
4	KRED-P1-B02	>99	$>99($ syn $)$	$>99(2 S, 3 R)$
5	KRED-P2-B02	>99	96 (anti)	$>99(2 R, 3 R)$
6	KRED-P2-C02	>99	82 (anti)	$>99(2 R, 3 R)$
7	KRED-P2-G03	>99	38 (syn)	$>99(2 S, 3 R)$

${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of (R)-2i considering the mmol substrate/weight enzyme ratio.
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantio- and diastereomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer of each isomer appears in parentheses. Change in the CIP priority.

Table S13. Screening of different ADHs for the asymmetric bioreduction of (S)-2i. ${ }^{\text {a }}$

Entry	ADH	$\mathbf{3 i}(\%)^{\mathbf{b}}$	3i $d e(\%)^{\mathbf{c}}$	3i $e e(\%)^{\mathrm{c}}$
1	ADH-A	>99	$>99($ syn $)$	$>99(2 R, 3 S)$
2	evo.1.1.200	>99	>99 (anti)	$>99(2 S, 3 S)$
3	KRED-P1-A04	>99	>99 (anti)	$>99(2 S, 3 S)$
4	KRED-P1-B02	>99	>99 (anti)	$>99(2 S, 3 S)$
5	KRED-P2-B02	>99	94 (syn)	$>99(2 R, 3 S)$
6	KRED-P2-C02	>99	$62($ syn $)$	$>99(2 R, 3 S)$
7	KRED-P2-G03	>99	94 (anti)	$>99(2 S, 3 S)$

${ }^{2}$ Procedures already applied to ketone 2a were used for the bioreduction of (S)-2i considering the mmol substrate/weight enzyme ratio.
${ }^{\text {b }}$ Product percentages were determined by GC analysis.
${ }^{c}$ Enantio- and diastereomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer of each isomer appears in parentheses. Change in the CIP priority.

VII. Optimization of the one-pot hydration-bioreduction cascade starting from alkyne 1a

Table S14. Optimization of the hydration-bioreduction cascade starting from 1a.

		 1a (0.05 mmol)		IPrAuNTf $_{2}(x \mathrm{~mol} \%)$ ADH (x mg) $\mathrm{H}_{2} \mathrm{O}: 2-\mathrm{MeTHF}(4: 1 \mathrm{v} / \mathrm{v})$ 2-PrOH $(2$ equiv) $40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	 3a					
Entry	Enzyme (mg)	$\begin{gathered} \mathrm{IPrAuNTf}_{2} \\ (\mathrm{~mol} \%) \end{gathered}$	Vessel ${ }^{\text {a }}$	Concentration (mM)	Stirring	$\begin{gathered} \text { 1a } \\ (\%)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \text { 2a } \\ (\%)^{\mathbf{b}} \end{gathered}$	By-products (\%) ${ }^{\text {b }}$	$\begin{gathered} \text { 3a } \\ (\%)^{\mathbf{b}} \end{gathered}$	$\begin{aligned} & \text { 3a } e e \\ & (\%)^{c} \end{aligned}$
1	ADH-A ${ }^{\text {d (2) }}$	2	Vial	100	Magnetic	69	<1	3	28	>99 (R)
2	ADH-A ${ }^{\text {d (2) }}$	2	Vial	100	$220 \mathrm{rpm}^{\text {e }}$	58	<1	4	38	>99 (R)
3	ADH-A ${ }^{\text {d (2) }}$	2	Eppendorf	100	$220 \mathrm{rpm}^{\text {e }}$	48	1	11	40	>99 (R)
4	ADH-A ${ }^{\text {d }}$ (2)	5	Vial	100	Magnetic	9	<1	13	78	>99 (R)
5	ADH-A ${ }^{\text {d }}$ (2)	6	Vial	100	Magnetic	<1	<1	4	96	$>99(R)$
6	LbADH (10)	2	Vial	100	Magnetic	<1	<1	10	90	>99 (S)
7	LbADH (10)	2	Vial	100	$220 \mathrm{rpm}^{\text {e }}$	<1	<1	7	93	>99 (S)
8	LbADH (10)	6	Vial	100	$220 \mathrm{rpm}^{\text {e }}$	<1	<1	2	98	$>99(S)$
9	KRED-P2-D11 (2)	2	Vial	100	Magnetic	34	<1	9	57	>99 (S)
10	KRED-P2-D11 (2)	2	Vial	100	$220 \mathrm{rpm}^{\text {e }}$	3	30	2	65	>99 (S)
11	KRED-P2-D11 (2)	3	Vial	100	$220 \mathrm{rpm}^{\text {e }}$	14	1	5	80	>99 (S)

Table S14 continuation.

Entry	Enzyme (mg)	IPrAuNTf $_{2}$ $\left(\mathrm{~mol}^{2}\right)$	Vessel $^{\mathrm{a}}$	Concentration (mM)	Stirring	1a $(\%)^{\mathrm{b}}$	2a $(\%)^{\mathrm{b}}$	By-products $(\%)^{\mathrm{a}}$	3a $(\%)^{\mathrm{b}}$	3a $e e$ $(\%)^{\mathrm{c}}$
12	KRED-P2-D11 (2)	4	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	7	93	$>99(S)$
13	KRED-P2-D11 (2)	5	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	8	92	$>99(S)$
14	KRED-P2-D11 (2)	6	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	9	91	$>99(S)$
15	KRED-P2-D11 (3)	4	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	75	9	16	$>99(S)$
16	KRED-P2-D11 (5)	4	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	16	19	65	$>99(S)$
17	KRED-P2-D11 (7)	4	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	7	93	$>99(S)$
18	KRED-P2-D11 (7)	4	Vial	150	$220 \mathrm{rpm}^{\mathrm{c}}$	<1	<1	10	90	$>99(S)$
19	KRED-P2-D11 (7)	4	Vial	200	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	13	87	$>99(S)$
20	KRED-P2-D11 (10)	4	Vial	100	$220 \mathrm{rpm}^{\mathrm{e}}$	<1	<1	7	93	$>99(S)$

${ }^{a}$ Vial: glass vial ($19 \times 130 \times 3 \mathrm{~mm}$). Eppendorf (1.5 mL).
${ }^{\mathrm{b}}$ Product percentages were determined by GC analysis.
${ }^{\text {c }}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP. The configuration of the major enantiomer appears in parentheses.
d. ADH-A semi-purified by heat treatment.
${ }^{\mathrm{e}}$ Orbital shaking.

VIII. Scope of the one-pot cascade process

Table S15. Scope of the concurrent cascade via gold-catalyzed hydration and stereoselective bioreduction of alkynes 1a-i.

	IPrAuNTf ${ }_{2}$ ($\mathrm{mol} \%$)	OH
R	ADH	
1a-i	2-PrOH (2 equiv)	(R)- or (S)-3a-i
0.05 mmol	$\mathrm{H}_{2} \mathrm{O}: 2 \mathrm{Me}-\mathrm{THF}(4: 1 \mathrm{v} / \mathrm{v})$	
(100 mM)	T, 24 h	

Entry	Compound	R	Enzyme	Stirring	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{IPrAuNTf}_{2} \\ (\mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathbf{1} \\ (\%)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} 2 \\ (\%)^{\mathrm{a}} \end{gathered}$	By- products $(\%)^{\mathrm{a}}$	$\begin{gathered} 3 \\ (\%)^{\mathrm{a}} \end{gathered}$	$\begin{aligned} & 3 e e \\ & (\%)^{\mathrm{b}} \end{aligned}$
1	1a	$\mathrm{C}_{6} \mathrm{H}_{13}$	ADH-A	Magnetic	40	6	<1	<1	4	96	>99 (R)
2	1a	$\mathrm{C}_{6} \mathrm{H}_{13}$	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	6	<1	<1	2	98	>99 (S)
3	1b	$\mathrm{C}_{8} \mathrm{H}_{17}$	ADH-A	Magnetic	40	5	<1	9	10	81	>99 (R)
4	1b	$\mathrm{C}_{8} \mathrm{H}_{17}$	LbADH	$220 \mathrm{rpm}^{\mathrm{c}}$	40	5	<1	<1	7	93	$>99(S)$
5	1c	Cy	LbADH	$220 \mathrm{rpm}^{\mathrm{c}}$	40	5	<1	<1	18	82	$>99(S)$
6	1d	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	ADH-T	Magnetic	40	5	<1	<1	<1	>99	>99 (R)
7	1d	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	<1	<1	>99	$>99(S)$
8	1e	$\mathrm{EtO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}$	ADH-A	Magnetic	40	5	<1	2	<1	98	>99 (R)
9	1e	$\mathrm{EtO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}$	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	9	<1	91	$>99(S)$
10	$1 f$	BnOCH_{2}	ADH-A	Magnetic	45	7.5	<1	<1	40	60	>99 (R)
11	$1 f$	BnOCH_{2}	LbADH	$220 \mathrm{rpm}^{\text {c }}$	45	7.5	19	5	<1	76	>99 (S)

Table S15 continuation.

Entry	Compound	R	Enzyme	Stirring	T (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{IPrAuNTf}_{2} \\ (\operatorname{mol} \%) \end{gathered}$	$\begin{gathered} \mathbf{1} \\ (\%)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathbf{2} \\ (\%)^{\mathrm{a}} \end{gathered}$	Byproducts $(\%)^{\mathrm{a}}$	$\begin{gathered} \mathbf{3} \\ (\%)^{\mathrm{a}} \end{gathered}$	$3 e e(\%)^{\text {b }}$
12	1 g	$\mathrm{TsO}\left(\mathrm{CH}_{2}\right)_{4}$	ADH-A	Magnetic	40	5	<1	40	<1	60	>99 (R)
13	1 g	$\mathrm{TsO}\left(\mathrm{CH}_{2}\right)_{4}$	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	<1	<1	>99	>99 (S)
14	$1 h^{\text {d }}$	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}= \\ \mathrm{CH} \end{gathered}$	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	6	<1	94	>99 (S)
15	(R)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	KRED-P2-B02	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	<1	<1	>99	$\begin{gathered} 96 \% ~ d e, \\ >99 e e \\ (2 R, 3 R) \end{gathered}$
16	(R)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	evo.1.1.200	Magnetic	40	5	<1	<1	<1	>99	$\begin{gathered} >99 \% ~ d e \\ >99 e e \\ (2 S, 3 R) \end{gathered}$
17	(S)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	KRED-P2-B02	$220 \mathrm{rpm}^{\text {c }}$	40	5	<1	2	<1	98	$\begin{gathered} >99 \% ~ d e \\ >99 e e \\ (2 R, 3 S) \end{gathered}$
18	(S)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	evo.1.1.200	Magnetic	40	5	<1	<1	<1	>99	$\begin{gathered} >99 \% ~ d e \\ >99 e e \\ (2 S, 3 S) \end{gathered}$

${ }^{\text {a }}$ Product percentages were determined by GC analysis.
${ }^{\mathrm{b}}$ Enantiomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP, except for alcohol $\mathbf{3 d}$, $\mathbf{3 f}$ and $\mathbf{3 g}$ where HPLC analyses were required.
${ }^{\text {c }}$ Orbital shaking.
${ }^{\mathrm{d}} 10 \% \mathrm{v} / v$ of $2-\mathrm{PrOH}$ was employed.

IX. Scale-up of the one-pot cascade hydration-bioreduction processes

Table S16. Scale-up of the one-pot cascade hydration-bioreduction processes.

					Cl -3b,d-i				
Entry	Compound	R	Amount of alkyne (mg)) Enzyme	Stirring	T (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { IPrAuNTf }_{2} \\ (\mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \hline \mathbf{3} \\ (\%)^{\mathrm{a}} \end{gathered}$	$3 e e(\%)^{\text {b }}$
1	1b	$\mathrm{C}_{8} \mathrm{H}_{17}$	100	ADH-A	Magnetic	40	5	72	>99 (R)
2	1b	$\mathrm{C}_{8} \mathrm{H}_{17}$	100	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	86	>99 (S)
3	1c	Cy	50	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	73	>99 (S)
4	1d	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	50	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	88	>99 (S)
5	1e	$\mathrm{EtO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}$	50	ADH-A	Magnetic	40	5	81	>99 (R)
6	$1 f$	BnOCH_{2}	100	LbADH	$220 \mathrm{rpm}^{\text {c }}$	45	7.5	63	>99 (S)
7	1g	$\mathrm{TsO}\left(\mathrm{CH}_{2}\right)_{4}$	50	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	87	$>99(S)$
8	$\mathbf{1 h}^{\text {d }}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}$	50	LbADH	$220 \mathrm{rpm}^{\text {c }}$	40	5	75	>99 (S)
9	(R)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	50	KRED-P2-B02	$220 \mathrm{rpm}^{\text {c }}$	40	5	83	$\begin{gathered} 96 \% \mathrm{de},>99 e e \\ (2 R, 3 R) \end{gathered}$
10	(R)-1i	$\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}(\mathrm{OAc})$	50	evo.1.1.200	Magnetic	40	5	85	$\begin{gathered} >99 \% ~ d e,>99 e e \\ (2 S, 3 R) \end{gathered}$

${ }^{a}$ Isolated yields after chromatographic column.
${ }^{\mathrm{b}}$ Enantio- and diastereomeric excess values were determined by GC analysis using a chiral column after acetylation of the halohydrin obtained in the reaction crude with acetic anhydride and DMAP, except for alcohol $\mathbf{3 d}$, $\mathbf{3 f}$ and $\mathbf{3 g}$ where HPLC analyses were required.
${ }^{\text {c }}$ Orbital stirring.
d. $10 \% ~ v / v$ of $2-\mathrm{PrOH}$ was employed.

X. Analytical data

X.1. GC analyses for the determination of product percentages

An Agilent HP-1 ($30 \mathrm{~m} \times 0.32 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}, 12.2 \mathrm{psi} \mathrm{N}_{2}$) or a DB-1701 column (30 m x $0.25 \mathrm{~cm} \times 0.25 \mu \mathrm{~m}, 12.2 \mathrm{psi}_{2}$) were used for the determination of the conversion values in the cascade and sequential protocols. The experimental conditions are indicated in Table S17.

Table S17. GC analytical conditions and retention times for the determination of conversion values.

Entry	Substrate	Column	Program ${ }^{\text {a }}$	Retention time (min)
1	1a	HP-1	70/0/2/94/0/15/200/5	4.1
2	2 a	HP-1	70/0/2/94/0/15/200/5	8.4
3	3 a	HP-1	70/0/2/94/0/15/200/5	9.4
4	1b	HP-1	70/0/2/94/0/15/200/5	10.8
5	2b	HP-1	70/0/2/94/0/15/200/5	14.9
6	3b	HP-1	70/0/2/94/0/15/200/5	15.6
7	1c	HP-1	70/0/2/94/0/15/200/5	4.9
8	2 c	HP-1	70/0/2/94/0/15/200/5	9.9
9	3 c	HP-1	70/0/2/94/0/15/200/5	11.2
10	1 e	HP-1	70/0/2/94/0/15/200/5	12.4
11	2 e	HP-1	70/0/2/94/0/15/200/5	15.7
12	3 e	HP-1	70/0/2/94/0/15/200/5	16.2
13	1 h	DB-1701	70/0/5/100/2/1/130/2/20/200/1	18.4
14	2 h	DB-1701	70/0/5/100/2/1/130/2/20/200/1	37.5
15	3h	DB-1701	70/0/5/100/2/1/130/2/20/200/1	38.8
16	1 i	HP-1	90/0/1/120/2/20/200/0	9.0
17	2 i	HP-1	90/0/1/120/2/20/200/0	16.1
18	3 i	HP-1	90/0/1/120/2/20/200/0	26.1 (anti); 27.3 (syn)
${ }^{\text {a }} \mathrm{GC}$ program: initial temp. $\left({ }^{\circ} \mathrm{C}\right.$) / time (min) / ramp $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time (min) / ramp $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ $/$ temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) / \mathrm{ramp}\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ final temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time (min).				

X.2. GC analyses for the determination of ee values of 1 i, 2i and 3a-c,e,h,i

Chiralsil Dex CB ($30 \mathrm{mx} 0.32 \mathrm{mx} 0.25 \mu \mathrm{~m}, 12.2 \mathrm{psi} \mathrm{N}_{2}$) or Chirasil RtbDEXse (30 m x $0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}, 12.2 \mathrm{psi}_{2}$) was employed for the determination of the enantiomeric excess values of ester $\mathbf{1 i}$, keto ester $\mathbf{2 i}$ and alcohols $\mathbf{3 a - c}, \mathbf{e}, \mathbf{h}, \mathbf{i}$ (Table S18).

Table S18. GC analyses for the determination of the $e e$ values of keto ester $\mathbf{2 i}$ and alcohols $\mathbf{3 a}$ c,e,h,i.

Entry	Compound	Column	Program ${ }^{\text {a }}$	Retention time (min) ${ }^{\text {b }}$	
1	3a	Chiralsil Dex CB	70/3/5/180/1	21.4 (R)	21.8 (S)
2	3b	Chiralsil Dex CB	70/3/5/180/1	28.2 (R)	28.9 (S)
3	3c	Chiralsil RtbDEXse	70/3/5/180/1	39.6 (R)	40.0 (S)
4	3 e	Chiralsil Dex CB	$\begin{gathered} 70 / 3 / 5 / 160 / 10 / 2 / \\ 180 / 5 \end{gathered}$	30.2 (R)	30.9 (S)
5	3h	Chiralsil Dex CB	70/3/5/180/1	24.6 (R)	24.7 (S)
6	1 i	Chiralsil Dex CB	70/3/5/180/1	35.0 (R)	35.2 (S)
7	2 i	Chiralsil Dex CB	70/3/5/180/1	22.0 (R)	22.2 (S)
8	$3 \mathbf{1}$	Chiralsil Dex CB	70/3/5/180/1	$\begin{gathered} 24.2(2 R, 3 R), \\ 24.3(2 S, 3 S) \end{gathered}$	$\begin{array}{r} 24.6(2 R, 3 S), \\ 24.7(2 S, 3 R) \end{array}$

${ }^{\text {a }}$ GC program: initial temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) / \mathrm{ramp}\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) / \mathrm{ramp}\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ final temp. $\left({ }^{\circ} \mathrm{C}\right) /$ time (min).
${ }^{\mathrm{b}}$ Alcohols were in situ acetylated employing DMAP and acetic anhydride.

3a
Acetylated racemic alcohol 3a

Acetylated alcohol (S)-3a in $>99 \%$ ee (after bioreduction with $L b A D H$)

Acetylated alcohol (R)-3a in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S4. GC chromatograms of acetylated racemic halohydrin and optically active 3a obtained using selective ADHs.

3b

Acetylated racemic alcohol 3b

Acetylated alcohol (S)-3b in $>99 \%$ ee (after bioreduction with LbADH)

Acetylated alcohol $(R) \mathbf{- 3 b}$ in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S5. GC chromatograms of acetylated racemic halohydrin and optically active 3b obtained using selective ADHs.

3c

Acetylated racemic alcohol 3c

Acetylated alcohol (S)-3c in >99\% ee (after bioreduction with LbADH)

Figure S6. GC chromatograms of acetylated racemic halohydrin and optically active $\mathbf{3 c}$ obtained using LbADH.

Acetylated alcohol (S)-3e in $>99 \%$ ee (after bioreduction with $L b A D H)$

Acetylated alcohol (R)-3e in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S7. GC chromatograms of acetylated racemic halohydrin and optically active $\mathbf{3 e}$ obtained using selective ADHs.

3h

Acetylated racemic alcohol 3h

Acetylated alcohol (S)-3h in $>99 \%$ ee (after bioreduction with $L b A D H$)

Acetylated alcohol $(R)-\mathbf{3 h}$ in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S8. GC chromatograms of acetylated racemic halohydrin and optically active $\mathbf{3 h}$ obtained using selective ADHs.

Acetylated racemic alcohol 1i

Acetylated alcohol (S)-1i in $>99 \%$ ee (after kinetic resolution with CAL-B)

Acetylated alcohol $(R)-\mathbf{1 i}$ in $>99 \%$ ee (after kinetic resolution with CAL-B)

Figure S9. GC chromatograms of acetylated racemic alcohol and optically active $\mathbf{1 i}$ obtained using selective CAL-B.

rac-2i
Acetylated racemic alcohol 2i

Acetylated alcohol (S)-2i in $>99 \%$ ee (after kinetic resolution with CAL-B)

Acetylated alcohol $(R)-\mathbf{2 i}$ in $>99 \% ~ e e$ (after kinetic resolution with CAL-B)

Figure S10. GC chromatograms of acetylated racemic halohydrin and optically active $\mathbf{2 i}$ obtained using CAL-B.

rac-3i

Diacetylated racemic diol 3i

Diacetylated diol $(2 R, 3 S)-\mathbf{3 i}$ in $>99 \% ~ d e,>99 \% ~ e e$ (after bioreduction of (S)-2i with KRED-P2B02)

Diacetylated diol $(2 R, 3 R)-\mathbf{3 i}$ in $>99 \%$ de,$>99 \%$ ee (after bioreduction of (R) - $\mathbf{2 i}$ with KRED-P2B02)

Diacetylated diol $(2 S, 3 S)-3 i$ in $>99 \%$ de, $>99 \%$ ee (after bioreduction of (S) - $\mathbf{2 i}$ with evo.1.1.200)

Diacetylated diol $(2 S, 3 R)-\mathbf{3 i}$ in $96 \% ~ d e,>99 \% ~ e e($ after bioreduction of $(R)-\mathbf{2 i}$ with evo.1.1.200)

Figure S11. GC chromatograms of racemic and optically active diacetylated $\mathbf{3 i}$ obtained using selective ADHs.

X.3. HPLC analyses for the determination of product percentages and enantiomeric

 excess values in reactions towards $3 d, f, g$For the cascade and sequential approaches towards the synthesis of halohydrins $\mathbf{3 d}, \mathbf{f}, \mathbf{g}$, the determination of the conversion values and the enantiomeric excess values were performed through HPLC analyses using different columns and conditions as specified in the Experimental Section of the manuscript and in Table S19.

Table S19. HPLC analytical conditions and retention times of alcohols 3d,f-g (temperature column: $30^{\circ} \mathrm{C}$).

Entry	Compound	Column	Flow $(\mathrm{mL} / \mathrm{min})$	n-Hexane/propan- 2-ol $(\mathrm{v} / \mathrm{v})$	Retention time (min)
$\mathbf{1}$	$\mathbf{1 d}$	Chiralcel OD-H	0.8	$90: 10$	11.0
2	$\mathbf{2 d}$	Chiralcel OD-H	0.8	$90: 10$	13.6
3	3d	Chiralcel OD-H	0.8	$90: 10$	$8.8(R), 11.4(S)$
4	$\mathbf{1 f}$	Chiralcel OD-H	0.8	$95: 5$	16.3
5	$\mathbf{2 f}$	Chiralcel OD-H	0.8	$95: 5$	22.8
$\mathbf{6}$	$\mathbf{3 f}$	Chiralcel OD-H	0.8	$95: 5$	$14.5(S), 17.3(R)$
7	$\mathbf{1 g}$	Chiralpak AD-H	1.0	$85: 15$	6.4
8	$\mathbf{2 g}$	Chiralpak AD-H	1.0	$85: 15$	17.5
9	$\mathbf{3 g}$	Chiralpak AD-H	1.0	$85: 15$	$21.8(R), 22.5(S)$

3d

HPLC separation for both enantiomers of racemic alcohol 3d

Alcohol (S)-3d in >99\% ee (after bioreduction with LbADH)

Alcohol (R)-3d in >99\% ee (after bioreduction with ADH-T)

Figure S12. HPLC chromatograms of racemic halohydrin and optically active 3d obtained using selective ADHs.

3f

HPLC separation for both enantiomers of racemic alcohol $\mathbf{3 f}$

Alcohol (S)-3f in >99\% ee (after bioreduction with LbADH)

Alcohol (R)-3f in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S13. HPLC chromatograms of racemic halohydrin and optically active 3f obtained using selective ADHs.

$3 g$

HPLC separation for both enantiomers of racemic alcohol $\mathbf{3 g}$

Alcohol (S)-3g in $>99 \%$ ee (after bioreduction with LbADH)

Alcohol $(R) \mathbf{- 3 g}$ in $>99 \%$ ee (after bioreduction with ADH-A)

Figure S14. HPLC chromatograms of racemic halohydrin and optically active $\mathbf{3 g}$ obtained using selective ADHs.
XI. Optical rotation values of derivatives 3a-i obtained through the concurrent cascade approach

Table S20. Specific rotation of chiral halohydrins obtained through the gold(I)/ADH cascade.

Entry	Enzyme	Compound	$e e(\%)^{\text {a }}$	Experimental $[\alpha]_{\mathrm{D}}{ }^{20}$
1	LbADH	3a	$>99(S)^{\text {b }}$	$+2.4\left(c 1.0, \mathrm{CHCl}_{3}\right)^{\text {d }}$
2	ADH-A	3 a	$>99(R)^{\text {b }}$	$-3.5\left(c 1.0, \mathrm{CHCl}_{3}\right)^{\mathrm{d}}$
3	LbADH	3b	$>99(S)^{\text {b }}$	+27.0 (c 1.0, CHCl_{3})
4	ADH-A	3b	$>99(R)^{\text {b }}$	$-32.9\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$
5	ADH-A	3 c	$>99(R)^{\text {b }}$	$-6.5\left(c 1.0, \mathrm{CHCl}_{3}\right)^{\text {e }}$
6	LbADH	3d	$>99(S)^{\text {c }}$	$-8.7\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$
7	ADH-A	3 e	$>99(R)^{\text {b }}$	$+0.7\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$
8	LbADH	3 f	$>99(S)^{\text {c }}$	$-1.6\left(c 1.0, \mathrm{CHCl}_{3}\right)^{\mathrm{f}}$
9	ADH-A	3 f	$>99(R)^{\text {c }}$	$+1.4\left(c 1.0, \mathrm{CHCl}_{3}\right)^{8}$
10	LbADH	3 g	$>99(S)^{\text {c }}$	$-78.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$
11	LbADH	3h	$>99(S)^{\text {b }}$	-3.5 (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$
12	CAL-B	1 i	$>99(S)^{\text {b }}$	-91.1 (c 1.0, CHCl_{3})
13	CAL-B	2 i	$>99(R)^{\text {b }}$	$+8.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$
14	evo.1.1.200	3 i	$d e>99, e e>99(2 S, 3 R)^{\text {b }}$	+1.2 (c $\left.1.0, \mathrm{CHCl}_{3}\right)$
15	KRED-P2-B02	$3 i$	de 96, ee >99 ($2 R, 3 R)^{\text {b }}$	$+8.9\left(\right.$ c 1.0, $\left.\mathrm{CHCl}_{3}\right)$

${ }^{2}$ Absolute configuration of the compounds 3a-i in parentheses.
${ }^{\mathrm{b}}$ Enantiomeric excess values were measured by GC analysis.
${ }^{\mathrm{c}}$ Enantiomeric excess values were measured by HPLC analysis.
${ }^{\text {d }}$ Optical rotation values were compared with those already described in the literature. ${ }^{14}$
${ }^{e}$ Optical rotation values were compared with those already described in the literature. ${ }^{16}$
${ }^{\mathrm{f}}$ Optical rotation values were compared with those already described in the literature. ${ }^{20}$
${ }^{g}$ Optical rotation values were compared with those already described in the literature. ${ }^{21}$

XII. Synthesis and characterization of epoxide 6i to determine the absolute configuration of compound 3 i

Compound $\mathbf{6 i}$ was synthesized through basic hydrolysis of diester $(2 R, 3 S)$ - $\mathbf{3 i}$ with sodium methoxide in methanol (Scheme S9).

Compound ($2 R, 3 S$)-3i ($60 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv) was dissolved in methanol (5 mL) and sodium methoxide ($24.5 \mathrm{mg}, 0.45 \mathrm{mmol}$, 2 equiv) was added and stirred overnight at rt . After this time, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane), afforded the corresponding epoxide derivative $\mathbf{6 i}$ ($55 \mathrm{mg}, 85 \%$ isolated yield). The spectroscopic data and the optical rotation of this compound matched with the ones already reported in the literature. ${ }^{22}$
(S)-1-((S)-Oxiran-2-yl)hexan-1-ol ($\mathbf{6 i} \mathbf{i}$: Colorless oil. $\mathrm{R}_{\mathrm{f}}\left(80 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane): $0.57 .{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.42$ (quint, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06-2.93 ($m, 1 \mathrm{H}$), $2.83(t, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(d d, J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(d, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.13(m, 8 \mathrm{H})$, $0.90(t, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 72.2(\mathrm{CH}), 55.9(\mathrm{CH}), 45.6\left(\mathrm{CH}_{2}\right)$, $34.7\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+1.6\left(1.0 c, \mathrm{CHCl}_{3}\right)$. Lit: ${ }^{20}[\alpha]_{D}{ }^{26}=+4.4\left(0.1 c, \mathrm{CHCl}_{3}\right)$.

XIII. Reference section

1. (a) S. Nicolai, R. Sedigh-Zadeh and J. Waser, $\operatorname{Pd}(0)$-catalyzed alkene oxy- and aminoalkynylation with aliphatic bromoacetylenes, J. Org. Chem., 2013, 78, 3783; (b) J. T. Sarmiento, M. Cárcel, C. R. de Arellano, T. Varea, G. Asensio and A. Olmos, Straightforward synthesis of α-chloromethylketimines catalyzed by gold(I). A clean way to building blocks, J. Org. Chem., 2022, 87, 3114.
2. Y.-B. Bai, Z. Luo, Y. Wang, J.-M. Gao and L. Zhang, Au-catalyzed intermolecular [2+2] cycloadditions between chloroalkynes and unactivated alkenes, J. Am. Chem. Soc., 2018, 140, 5860.
3. E. J. Corey and P. L. Fuchs, A synthetic method for formyl \rightarrow ethynyl conversion $(\mathrm{RCHO} \rightarrow \mathrm{RC} \equiv \mathrm{CH}$ or $\mathrm{RC} \equiv \mathrm{CR}$ '), Tetrahedron Lett., 1972, 13, 3769.
4. M. Marx and T. T. Tidwell, Reactivity-selectivity in the Swern oxidation of alcohols using dimethyl sulfoxide-oxalyl chloride, J. Org. Chem., 1984, 49, 793.
5. R. Gauthier, M. Mamone and J.-F. Paquin, Gold-catalyzed hydrofluorination of internal alkynes using aqueous HF, Org. Lett., 2019, 21, 9024.
6. H. Murase, K. Senda, M. Senoo, T. Hata and H. Urabe, Rhodium-catalyzed intramolecular hydroarylation of 1-halo-1-alkynes: Regioselective synthesis of semihydrogenated aromatic heterocycles, Chem. Eur. J., 2014, 20, 317.
7. M. E. Maier and B. Schöffling, Intramolecular cycloadditions of mesoionic carbonyl ylides with alkynes. Synthesis of 5,6-dihydro-4H-cyclopenta- and 4,5,6,7-tetrahydrobenzo[b]furan derivatives, Chem. Ber., 1989, 122, 1081.
8. C. Zhu, J. L. Schwarz, S. Cembellín, S. Greßies and F. Glorius, Highly selective manganese(I)/Lewis acid cocatalyzed direct C-H propargylation using bromoallenes, Angew. Chem. Int. Ed., 2018, 57, 437.
9. S. González-Granda, L. Escot, I. Lavandera and V. Gotor-Fernández, Unmasking the hidden carbonyl group using gold(I) catalysts and alcohol dehydrogenases: Design of a thermodynamically-driven cascade toward optically active halohydrins, ACS Catal., 2022, 12, 2552.
10. L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang and W. He, Gold-catalyzed hydration of haloalkynes to α-halomethyl ketones, J. Org. Chem., 2013, 78, 9190.
11. W. He, L. Xie, Y. Xu, J. Xiang and L. Zhang, Electrophilicity of α-oxo gold carbene intermediates: Halogen abstractions from halogenated solvents leading to the formation of chloro/bromomethyl ketones, Org. Biomol. Chem., 2012, 10, 3168.
12. I. M. Sakhautdinova and A. F. Mukhamet'yanova, Cycloaddition of bromo(chloro)methyl ketones and allenoates of adipic acid monoesters to fullerene C_{60}, Russ. J. Gen. Chem., 2018, 88, 2528.
13. S. Rendler, J. H. Schaetzer, S. Hachisu, P. Maienfisch, T. Pitterna, O. Jacob and J. Y. Cassayre, Preparation of insecticidal triazinone derivatives, World patent, WO2013079350 A1, 2013.
14. T. M. Poessl, B. Kosjek, U. Ellmer, C. C. Gruber, K. Edegger, K. Faber, P. Hildebrandt, U. T. Bornscheuer and W. Kroutil, Non-racemic halohydrins via biocatalytic hydrogen-transfer reduction of halo-ketones and one-pot cascade reaction to enantiopure epoxides, Adv. Synth. Catal., 2005, 347, 1827.
15. A. Träff, K. Bogár, M. Warner and J.-E. Bäckvall. Highly efficient route for enantioselective preparation of chlorohydrins via dynamic kinetic resolution, Org. Lett., 2008, 10, 4807.
16. T. Ema, N. Ura, M. Yoshii, T. Korenaga and T. Sakai, Empirical method for predicting enantioselectivity in catalytic reactions: Demonstration with lipase and oxazaborolidine, Tetrahedron, 2009, 65, 9583.
17. P. Kumar, M. Pandey, P. Gupta, S. V. Naidu and D. D. Dhavale, Enantio- and diastereocontrolled total synthesis of (+)-strictifolione, Eur. J. Org. Chem., 2010, 6993.
18. Y. Toda, K. Tanaka, R. Matsuda, T. Sakamoto, S. Katsumi, M. Shimizu, F. Ito and H. Suga, A phosphonium ylide as a visible light organophotoredox catalyst, Chem. Commun., 2021, 57, 3591.
19. M. Lautens and M. L. Maddess, Chemoselective cross metathesis of bishomoallylic alcohols: Rapid access to fragment A of the cryptophycins, Org. Lett., 2004, 6, 1883.
20. A. R. Dar, M. A. Aga, B. Kumar, S. K. Yousuf and S. C. Taneja, Regioselective monochloro substitution in carbohydrates and non-sugar alcohols via Mitsunobu reaction: Applications in the synthesis of reboxetine, Org. Biomol. Chem., 2013, 11, 6195.
21. F. Sun, G. Xu, J. Wu and L. Yang, A new and facile preparation of tert-butyl ($3 R, 5 S$)-6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate, Tetrahedron: Asymmetry, 2007, 18, 2454.
22. H. Jang, I. Shin, D. Lee, H. Kim and D. Kim, Stereoselective substrate-controlled asymmetric syntheses of both 2,5-cis- and 2,5-trans-tetrahydrofuranoid oxylipids: Stereodivergent intramolecular amide enolate alkylation, Angew. Chem. Int. Ed., 2016, 55, 6497.

Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 1a.

Figure S16. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 a}$.

Figure $\mathbf{S 1 7} .^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 b}$.

Figure S18. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 b}$.

Figure S19. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 c}$.

Figure S20. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 c}$.

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 1d.

Figure S22. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $1 \mathbf{d}$.

Figure $\mathbf{S} 23 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 e}$.

Figure S24. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 e}$.

Figure S25. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 f}$.

Figure S26. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 f}$.

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 g}$.

Figure S28. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 g}$.

Figure S29. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 h}$.

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 h}$.

Figure $\mathbf{S 3 1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $1 \mathbf{i}$.

Figure S32. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 i}$.

Figure S33. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 2a

Figure S34. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 a}$.

Figure S35. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of by-product $\mathbf{5 a}$ detected in the hydration of $\mathbf{1 a}$.

Figure S36. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of by-product $\mathbf{5 a}$ detected in the hydration of $\mathbf{1 a}$.

Figure S37. DEPT-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of by-product $\mathbf{5 a}$ detected in the hydration of $\mathbf{1 a}$.

Figure S38. HMBC-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of by-product 5a detected in the hydration of 1a.

Figure S39. NOESY-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of by-product $\mathbf{5 a}$ detected in the hydration of $\mathbf{1 a}$.

Figure S40. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 b}$.

Figure $\mathbf{S 4 1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 b}$.

Figure S42. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 c}$.

Figure $\mathrm{S} 43 .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 c}$.

Figure S44. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 2d.

Figure S45. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 2d.

Figure S46. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 e}$.

Figure $\mathbf{S 4 7 .}{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 e}$.

Figure S48. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 f}$.

Figure $\mathbf{S 4 9} .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 f}$.

Figure S50. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 2g.

Figure $\mathbf{S 5 1} .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 g}$.

Figure S52. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 h}$.

Figure S53. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 h}$.

Figure S54. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 i}$.

Figure $\mathbf{S 5 5} .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 i}$.

Figure S56. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 3a.
(

Figure S57. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 3a.

Figure S58. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 b}$.

Figure $\mathbf{S 5 9 .}{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 b}$.

Figure S60. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 c}$.
S101

Figure S61. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 c}$.

Figure S62. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 3d.

Figure S63. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 3d.

Figure S64. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 e}$.

Figure S65. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 e}$.
(

Figure S66. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound 3f.
S107

Figure S67. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 f}$.

Figure S68. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 g}$.
S109
(

Figure S69. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 g}$.

Figure $\mathbf{S 7 0 .}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 h}$.

Figure $\mathbf{S} 71 .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 h}$.

Figure $\mathbf{S 7 2} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound rac-3i.

S113

Figure S73. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound rac-3i.

Figure $\mathbf{S 7 4}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound syn-3i.

Figure $\mathbf{S 7 5 .}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound syn-3i.

Figure S76. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound anti-3i.

Figure S77. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound anti-3i.

Figure S78. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 i}$.
S119
(

Figure $\mathbf{S 7 9 .}{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 i}$.

[^0]: ${ }^{\text {a }}$ Procedures already applied to ketone 2a were used for the bioreduction of 2d considering the mmol substrate/weight enzyme ratio.
 ${ }^{\mathrm{b}}$ Product percentages were determined by HPLC analysis.
 ${ }^{\text {c }}$ Enantiomeric excess values were determined by chiral HPLC analysis. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority. $n . d$.: not determined.

[^1]: ${ }^{a}$ Procedures already applied to ketone 2a were used for the bioreduction of $\mathbf{2 g}$ considering the mmol substrate/weight enzyme ratio.
 ${ }^{\mathrm{b}}$ Product percentages were determined by HPLC analysis.
 ${ }^{c}$ Enantiomeric excess values were determined by HPLC analysis. The configuration of the major enantiomer appears in parentheses. Change in the CIP priority.

