Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.

This journal is © The Royal Society of Chemistry 2023. The ESI for Org. Biomol. Chem., 2022, 20, 9385–9391, DOI: 10.1039/D2OB01970A, originally published on 11th November 2022, was updated on 21st March 2023.

Electronic Supplementary Information

Asymmetric Metal-Templated Route to Amino Acids with an Isoquinolone Core *via* Rh(III)-Catalyzed Coupling of Aryl Hydroxamates with Chiral Propargylglycine Ni(II) Complexes

Mikhail A. Arsenov,^a Nadezhda V. Stoletova,^a Tat'yana F. Savel'yeva,^a Alexander F. Smol'yakov,^{a,b} Victor I. Maleev,^a Dmitry A. Loginov,^{*a,b} Vladimir A. Larionov^{*a,c}

^aA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation

^bPlekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation ^cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation

*E-mail: dloginov@ineos.ac.ru, larionov@ineos.ac.ru

1.	General information	S2
2.	Instrumentation	S2
3.	Synthesis of the complex (<i>S</i> , <i>S</i>)-1b	S2
4.	Preparation and characterization of the complexes 1c-i	S3
5.	Procedure for a Rh(III)-catalyzed C-H Activation/Annulation of Aryl Hydroxamates 2	S 8
6.	Characterization of the Ni(II) complexes 3 and 4	S 8
7.	Procedure for decomposition of the chiral Ni(II) complexes (<i>S</i> , <i>S</i>)- 3aa and (<i>S</i> , <i>S</i>)- 3ba	S24
8.	X-ray diffraction study of the Ni(II) complex (<i>S</i> , <i>R</i>)-4ha	S25
9.	References	S27
10.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S28
11.	HPLC traces of enantiopure amino acid 5a and 5b	S138

General information

The reported catalytic reactions were performed in a 10 mL round-bottom flask. All solvents were purchased from commercial suppliers (Acros or Sigma-Aldrich). The Ni(II) complex (*S*,*S*)-**1a** was synthesized according to a literature procedure.^[S1-S3] Catalyst [Cp*RhCl₂]₂ and aryl hydroxamates were prepared as described in the literature.^[S4-S6] Purchased reagents from commercial suppliers were used without further purification. If not stated otherwise, column chromatography was performed with silica gel 60 M from Macherey-Nagel.

Instrumentation

Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Varian Inova 400, Bruker Avance 400 and Avance 300 spectrometers operating at 400 (300) MHz (¹H), 376 MHz (¹⁹F) and 101 MHz (¹³C{¹H}). Chemical shifts are reported in ppm relative to the residual solvent peak (CDCl₃: δ = 7.26 ppm for ¹H NMR, δ = 77.1 for ¹³C NMR; acetone-d6: δ = 29.84 and 206.26 ppm for ¹³C NMR; D₂O: δ = 4.79 ppm for ¹H NMR). NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, etc.), coupling constant, integration, and nucleus. High-resolution mass spectra were recorded on an AB Sciex TripleTOF 5600+ instrument using ESI ionization method (DuoSpray source). Optical rotations were measured on Krüss P3000 Automatic polarimeter in a 10 cm cell. X-ray crystallography diffraction data were collected on a Bruker APEX-II CCD diffractometer [λ (MoK_a) = 0.71073 Å, ω -scans, 2 θ <58°] at 120 K. Chiral HPLC was performed with Agilent 1200.

Synthesis of the complex (S,S)-1b

(S)-BBP-Ni(II)-Ala

A flame dried Schlenk flask equipped with a stir bar was charged with a solution of a chiral (*S*)-**BBP**-Ni(II)-Ala complex (*which was prepared according to a literature procedure*^[S1]) (500 mg, 1.0 equiv., 0.98 mmol) in 10 mL of THF followed by the addition of NaH (120 mg, 3.0 equiv., 2.94 mmol) and propargyl bromide (0.17 mL, 2.0 equiv., 1.96 mmol). The mixture was stirred at room temperature under argon for 5 hours. Full conversion for reaction was confirmed by TLC analysis (eluent: CHCl₃/EA (1:3)). Afterwards, 30 mL of EA and 30 mL of water were added to the reaction mixture. The aqueous layer was extracted with EA (3x10 mL). The combined organic layers were washed by brine and dried over Na₂SO₄; then, the solvent was evaporated on a rotary evaporator. The resulting residue was purified by column flash chromatography on silica gel (eluent: CHCl₃/EA (1:3)) to afford the desired chiral Ni(II) complex (*S*,*S*)-**1b** as a red powder (250 mg, 46% yield).

¹H NMR (400 MHz, CDCl₃): δ = 8.06 (d, *J* = 7.4 Hz, 2H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.54–7.45 (m, 2H), 7.42 (t, *J* = 7.2 Hz, 3H), 7.35–7.27 (m, 3H), 7.19–7.10 (m, 1H), 6.64 (d, *J* = 3.8 Hz, 2H), 4.47 (d, *J* = 12.6 Hz, 1H), 3.75 (d, *J* = 12.6 Hz, 1H), 3.71–3.61 (m, 1H), 3.56–3.37 (m, 2H), 2.81–2.59 (m, 2H), 2.53 (s, 1H), 2.52–2.38 (m, 2H), 2.14–1.92 (m, 3H), 1.34 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 182.2, 180.8, 173.8, 141.6, 136.3, 133.5, 133.4, 131.8, 130.0, 129.8, 129.1, 129.0, 128.7, 128.3, 127.9, 127.0, 124.4, 121.0, 80.5, 76.0, 73.2, 70.2, 63.5, 57.2, 30.7, 29.9, 29.1, 23.2 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₁H₃₀N₃NiO₃⁺ [M+H]⁺: 550.1635, found: 550.1638.

 $[\alpha]_D^{25}$ +1700 (*c* 0.02, MeOH).

Preparation and characterization of the complexes 1c-i

General procedure for the benzylation of a chiral Ni(II) complex (S,S)-1a with different benzyl bromides

A flame dried Schlenk flask equipped with a stir bar was charged with a solution of a chiral propargylglycine Ni(II) complex (S,S)-1a (300 mg, 1.0 equiv., 0.56 mmol) in 6 mL of DMF followed by the addition of NaOH (3.0 equiv., 1.7 mmol) and benzyl bromide (1.5 equiv., 0.84 mmol). The mixture was stirred at room temperature under argon for 3 hours. Full conversion for each reaction was confirmed by TLC analysis. Then, the reaction mixture was dissolved with H₂O and the precipitate formed was collected by filtration. The resulting residue was purified by column flash chromatography on silica gel to afford the desired Ni(II) complexes 1c-i.

Ni(II) complex (S,S)-1c

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and benzyl bromide, the product (*S*,*S*)-1c (*the first eluting diastereomer*) was isolated as a red powder (256 mg, 73% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 8.37-8.23$ (m, 2H), 8.01–7.88 (m, 2H), 7.60–7.38 (m, 8H), 7.33–7.20 (m, 3H), 7.16–7.00 (m, 2H), 6.59 (br. s, 2H), 4.24 (d, J = 12.2 Hz, 1H), 3.33–3.15 (m, 2H), 3.12–2.96 (m, 2H), 2.91 (d, J = 17.6 Hz, 1H), 2.72 (d, J = 13.8 Hz, 1H), 2.40 (s, 1H), 2.31–2.18 (m, 1H), 2.15–2.02 (m, 4H), 1.89–1.66 (m, 2H), 1.55–1.41 (m, 1H) ppm.

 $\begin{array}{c} & & & & \\ & & & \\ (S,S)\text{-1c} & & \\ & & & \\ 127.9, 127.8, 127.7, 123.6, 120.4, 80.9, 80.2, 72.9, 70.7, 64.5, 58.3, 43.4, 31.7, 30.6, 22.7 \text{ ppm.} \end{array}$

HRMS (ESI, m/z) calcd. for C₃₇H₃₄N₃NiO₃⁺ [M+H]⁺: 626.1948, found: 626.1944.

 $[\alpha]_D^{25}$ +1900 (c 0.02, MeOH).

Ni(II) complex (S,R)-1c

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and benzyl bromide, the product (*S*,*R*)-1c (*the second eluting diastereomer*) was isolated as a red powder (67 mg, 19% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.90–7.76 (m, 2H), 7.58–7.21 (m, 14H), 7.07 (br. s, 1H), 6.71 (d, *J* = 45.2 Hz, 2H), 4.29–4.12 (m, 1H), 3.73 (br. s, 1H), 3.48 (br. s, 1H), 3.34–3.07 (m, 3H), 2.93–2.79 (m, 2H), 2.54 (s, 1H), 2.46–2.24 (m, 2H), 2.05–1.79 (m, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.9, 180.2, 173.9, 141.4, 136.5, 135.7, 133.9, 132.8, 131.7, 131.4, 130.1, 129.9, 129.1, 128.8, 128.7, 128.6, 128.4, 128.2, 128.1, 127.3, 127.2, 126.5, 124.6, 120.8, 80.4, 80.1, 73.5, 69.8, 63.8, 58.5, 45.6, 30.8, 29.2, 23.4 ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₄N₃NiO₃⁺ [M+H]⁺: 626.1948, found: 626.1945.

 $[\alpha]_D^{25}$ +1500 (c 0.02, MeOH).

Ni(II) complex (S,S)-1d

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-*tert*-butylbenzyl bromide, the product (*S*,*S*)-1d (*the first eluting diastereomer*) was isolated as a red powder (274 mg, 72% yield); eluent: CH₂Cl₂/acetone (10:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.30 (d, J = 7.4 Hz, 2H), 8.01–7.91 (m, 2H), 7.60–7.46 (m, 4H), 7.45–7.35 (m, 3H), 7.31–7.19 (m, 3H), 7.14–7.01 (m, 2H), 6.64–6.51 (m, 2H), 4.27 (d, J = 12.5 Hz, 1H), 3.33 (d, J = 12.5 Hz, 1H), 3.21 (dd, J = 10.5, 6.7 Hz, 1H), 3.12–3.00 (m, 2H), 2.89 (d, J = 17.4 Hz, 1H), 2.68 (d, J = 13.8 Hz, 1H), 2.42 (s, 1H), 2.34–2.21 (m, 1H), 2.19–2.10 (m, 2H), 1.81–1.62 (m, 2H), 1.55–1.41 (m, 1H), 1.36 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.4, 179.6, 172.8, 150.5, 142.3, 136.6, 134.4, 133.8, 133.2, 131.8, 131.5, 130.7, 129.9, 129.4, 128.8, 128.7, 128.0, 127.9, 127.8, 127.7, 126.0, 123.6, 120.5, 80.8, 80.2, 72.9, 70.7, 64.4, 57.7, 42.8, 34.7, 31.9, 31.5, 30.8, 22.4 ppm.

HRMS (ESI, m/z) calcd. for C₄₁H₄₂N₃NiO₃⁺ [M+H]⁺: 682.2574, found: 682.2571.

 $[\alpha]_D^{25}$ +2150 (c 0.02, MeOH).

Ni(II) complex (S,R)-1d

Starting from a chiral Ni(II) complex (*S*,*S*)-**1a** and 4-*tert*-butylbenzyl bromide, the product (*S*,*R*)-**1b** (*the second eluting diastereomer*)was isolated as a red powder (70 mg, 18% yield); eluent: CH₂Cl₂/acetone (10:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 7.5 Hz, 2H), 7.63–7.42 (m, 8H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.23–7.15 (m, 3H), 7.07 (t, *J* = 7.7 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 6.65 (t, *J* = 7.5 Hz, 1H), 4.25 (d, *J* = 12.4 Hz, 1H), 3.71–3.52 (m, 2H), 3.33–3.21 (m, 2H), 3.13 (d, *J* = 12.4 Hz, 1H), 2.88–2.81 (m, 1H), 2.76 (d, *J* = 14.4 Hz, 1H), 2.56 (s, 1H), 2.48–2.36 (m, 2H), 2.05–1.85 (m, 3H), 1.28 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.8, 180.2, 173.8, 150.0, 141.5, 136.5, 134.1, 132.9, 132.6, 131.7, 131.3, 129.9, 129.7, 129.1, 128.9,

128.8, 128.4, 128.3, 128.2, 127.1, 125.6, 124.6, 120.8, 80.5, 80.1, 73.5, 70.0, 64.0, 58.4, 45.1, 34.5, 31.4, 30.8, 29.2, 23.3 ppm.

HRMS (ESI, m/z) calcd. for C₄₁H₄₂N₃NiO₃⁺ [M+H]⁺: 682.2574, found: 682.2580.

 $[\alpha]_D^{25}$ +1650 (c 0.02, MeOH).

Ni(II) complex (S,S)-1e

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-bromo-2-fluorobenzyl bromide, the product (*S*,*S*)-1e (*the first eluting diastereomer*) was isolated as a red powder (302 mg, 74% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (400 MHz, CDCl₃+CD₃OD (few drops)): δ = 8.24 (d, *J* = 7.3 Hz, 2H), 7.89–7.73 (m, 2H), 7.50–7.41 (m, 2H), 7.40–7.33 (m, 3H), 7.31–7.27 (m, 1H), 7.26–7.17 (m, 3H), 7.07–6.94 (m, 2H), 6.57–6.44 (m, 2H), 4.10 (d, *J* = 12.4 Hz, 1H), 3.31–3.17 (m, 3H), 2.95–2.82 (m, 1H), 2.66 (dd, *J* = 17.4, 2.5 Hz,

1H), 2.50 (d, *J* = 13.8 Hz, 1H), 2.38 (br. s, 1H), 2.34–2.23 (m, 1H), 2.12–2.00 (m, 1H), 1.90–1.75 (m, 3H), 1.67–1.56 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃+CD₃OD (few drops)): δ = 180.9, 179.7, 174.3, 141.8, 136.2, 134.7 (d, *J* = 5.2 Hz), 134.4, 134.0, 131.9, 131.3, 130.0, 129.3, 128.8, 128.7, 128.3 (d, *J* = 3.1 Hz), 128.2, 127.7, 127.5, 127.3 (d, *J* = 8.5 Hz), 123.2, 122.4 (d, *J* = 7.8 Hz), 122.2 (d, *J* = 13.2 Hz), 120.7, 119.4 (d, *J* = 26.3 Hz), 80.8, 79.8, 73.0, 70.9, 64.8, 58.3, 38.2, 30.8, 30.7, 22.6 ppm.

¹⁹F NMR (376 MHz, CDCl₃+CD₃OD (few drops)): $\delta = -110.2$ (s, 1F) ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₂BrFN₃NiO₃⁺ [M+H]⁺: 722.0959, found: 722.0963.

 $[\alpha]_D^{25}$ +1690 (c 0.026, MeOH).

Ni(II) complex (S,R)-1e

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-bromo-2-fluorobenzyl bromide, the product (*S*,*R*)-1e (*the second eluting diastereomer*) was isolated as a red powder (76 mg, 18% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.86 (d, *J* = 7.2 Hz, 2H), 7.74–7.64 (m, 1H), 7.60–7.47 (m, 3H), 7.45–7.27 (m, 8H), 7.08 (t, *J* = 7.2 Hz, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.65 (t, *J* = 7.6 Hz, 1H), 4.23 (d, *J* = 12.3 Hz, 1H), 3.81–3.67 (m, 1H), 3.58–3.44 (m, 1H), 3.41–3.30 (m, 2H), 3.20 (d, *J* = 12.3 Hz, 1H), 2.83 (d, *J* = 15.6 Hz, 1H), 2.67 (d, *J* = 14.5 Hz, 1H), 2.55 (br. s, 1H), 2.47–2.34 (m, 2H), 2.09–1.94 (m, 2H), 1.80 (d, *J* = 16.2 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.8, 179.9, 175.9, 162.6 (d, *J* = 11.0 Hz), 160.0, 141.2, 136.6, 134.1, 133.0, 131.5, 129.9, 129.7, 129.1, 129.0, 128.3, 128.2, 128.2, 128.1, 127.8 (d, *J* = 8.8 Hz), 127.6, 124.6, 121.9 (d, *J* = 15.4 Hz), 121.6 (d, *J* = 9.8 Hz), 120.9, 118.8 (d, *J* = 26.8 Hz), 80.3, 79.5, 73.6, 70.0, 64.1, 58.7, 39.9, 30.8, 28.9, 23.4 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.8$ (s, 1F) ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₂BrFN₃NiO₃⁺ [M+H]⁺: 722.0959, found: 722.0956.

 $[\alpha]_D^{25}$ +1125 (c 0.024, MeOH).

Ni(II) complex (S,S)-1f

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-bromobenzyl bromide, the product (*S*,*S*)-1f was isolated as a red powder (154 mg, 38% yield); eluent: $CH_2Cl_2/acetone$ (3:1).

¹H NMR (400 MHz, CDCl₃+CD₃OD (few drops)): $\delta = 8.32$ (d, J = 7.2 Hz, 2H), 7.94–7.86 (m, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.3 Hz, 2H), 7.57–7.48 (m, 2H), 7.46–7.38 (m, 1H), 7.32–7.27 (m, 2H), 7.26–7.22 (m, 2H), 7.17 (d, J = 7.6 Hz, 1H), 7.09–7.01 (m, 2H), 6.63–6.48 (m, 2H), 4.14 (d, J = 12.4 Hz, 1H), 3.30–3.19 (m, 2H), 3.02 (d, J = 13.7 Hz, 1H), 2.97–2.88 (m, 1H), 2.77 (dd, J = 17.4, 2.4 Hz, 1H), 2.62 (d, J = 13.7 Hz, 1H), 2.44 (br. s, 1H), 2.40–2.27 (m, 1H), 2.14–1.99 (m, 2H), 1.92–1.74 (m, 2H), 1.68–1.58 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃+CD₃OD (few drops)): δ = 180.9, 180.0, 173.3, 142.1, 136.2, 134.9, 134.5, 133.8, 132.6, 132.0, 132.0, 131.3, 130.1, 129.3, 128.8, 128.7, 128.1, 127.8, 127.7, 127.4, 123.5, 122.2, 120.9, 80.8, 79.6, 73.0, 70.8, 64.8, 58.5, 42.7, 31.3, 30.6, 22.6 ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₃BrN₃NiO₃⁺ [M+H]⁺: 704.1053, found: 704.1060.

 $[\alpha]_D^{25}$ +1850 (c 0.02, MeOH).

Ni(II) complex (S,S)-1g

Starting from a chiral Ni(II) complex (*S*,*S*)-**1a** and 2,3-difluorobenzyl bromide, the product (*S*,*S*)-**1g** was isolated as a red powder (219 mg, 59% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (300 MHz, CDCl₃): δ = 8.28 (d, *J* = 7.4 Hz, 2H), 8.07 (d, *J* = 8.7 Hz, 1H), 7.97–7.86 (m, 1H), 7.61–7.49 (m, 2H), 7.49–7.42 (m, 1H), 7.40–7.34 (m, 1H), 7.34–7.27 (m, 4H), 7.24–7.01 (m, 3H), 6.64–6.52 (m, 2H), 4.29 (d, *J* = 12.4 Hz, 1H), 3.47–3.32 (m, 2H), 3.33–3.20 (m, 1H), 3.14–3.03 (m, 1H), 2.87 (d, *J* = 15.4 Hz, 1H), 2.70 (d, *J* = 13.6 Hz, 1H), 2.41 (br. s, 1H), 2.38–2.13 (m, 2H), 2.08–1.79 (m, 3H), 1.68–1.53 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 178.9, 174.0, 151.8 (dd, *J* = 65.0, 11.7 Hz), 149.4 (dd, *J* = 64.0, 12.8 Hz), 142.5, 136.5, 134.2, 133.9, 131.9,

131.6, 129.9, 129.5, 128.9, 128.8, 128.3, 128.2, 127.7, 127.6, 127.5, 125.8 (d, *J* = 12.1 Hz), 124.7, 123.5, 120.4, 116.7 (d, *J* = 16.6 Hz), 80.5, 80.1, 73.1, 70.7, 64.4, 58.1, 38.3, 31.4, 30.8, 22.8 ppm.

¹⁹F NMR (282 MHz, CDCl₃): $\delta = -136.9$ (d, J = 21.4 Hz, 1F), -137.78 (d, J = 21.4 Hz, 1F) ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₂F₂N₃NiO₃⁺ [M+H]⁺: 662.1760, found: 662.1757.

 $[\alpha]_D^{25}$ +1900 (c 0.02, MeOH).

Ni(II) complex (S,S)-1h

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-trifluoromethylbenzyl bromide, the product (*S*,*S*)-1e was isolated as a red powder (197 mg, 51% yield); eluent: $CH_2Cl_2/acetone$ (10:1).

¹H NMR (300 MHz, CDCl₃): δ = 8.32 (d, *J* = 7.5 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 4H), 7.50–7.41 (m, 1H), 7.33–7.26 (m, 2H), 7.21 (d, *J* = 6.9 Hz, 1H), 7.14–7.03 (m, 2H), 6.65–6.52 (m, 2H), 4.24 (d, *J* = 12.5 Hz, 1H), 3.31–3.19 (m, 2H), 3.12 (d, *J* = 13.5 Hz, 1H), 3.06–2.97 (m, 1H), 2.96–2.87 (m, 1H), 2.77 (d, *J* = 13.5 Hz, 1H), 2.44 (br. s, 1H), 2.34–2.20 (m, 1H), 2.12–1.97 (m, 1H), 1.85–1.71 (m, 2H), 1.70–1.45 (m, 2H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 179.1, 173.2, 142.4, 140.4, 136.5, 134.4, 133.8, 132.0, 131.5, 131.4, 130.1, 129.5, 128.9, 128.8, 128.1, 127.9, 127.6, 127.5, 125.9, 125.8, 123.7, 120.6, 80.6, 79.9, 73.2, 70.6, 64.6, 58.2, 43.0, 31.8, 30.7, 22.5 ppm.

¹⁹F NMR (282 MHz, CDCl₃): $\delta = -62.4$ (s, 3F) ppm.

HRMS (ESI, m/z) calcd. for $C_{38}H_{33}F_3N_3NiO_3^+$ [M+H]⁺: 694.1822, found: 694.1818.

 $[\alpha]_D^{25}$ +3050 (c 0.02, MeOH).

Ni(II) complex (S,S)-1i

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-methoxycarbonylbenzyl bromide, the product (*S*,*S*)-1i was isolated as a red powder (140 mg, 37% yield); eluent: $CH_2Cl_2/acetone$ (3:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 8.29$ (d, J = 7.3 Hz, 2H), 8.13 (d, J = 8.2 Hz, 2H), 7.92–7.87 (m, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.55–7.50 (m, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.45–7.38 (m, 1H), 7.25–7.16 (m, 3H), 7.09–7.00 (m, 2H), 6.61–6.50 (m, 2H), 4.15 (d, J = 12.4 Hz, 1H), 3.90 (s, 3H), 3.26–3.15 (m, 2H), 3.09 (d, J = 13.6 Hz, 1H), 2.92–2.85 (m, 1H), 2.81 (dd, J = 17.4, 2.6 Hz, 1H), 2.72 (d, J = 13.6 Hz, 1H), 2.41 (t, J = 2.4 Hz, 1H), 2.23–2.14 (m, 1H), 2.13–2.05 (m, 1H), 2.02–1.92 (m, 1H), 1.85–1.75 (m, 1H), 1.67–1.55 (m, 1H), 1.50–1.39 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.9, 179.8, 173.4, 167.1, 142.0, 141.4, 136.3, 134.4, 133.8, 132.0, 131.4, 131.0, 130.2, 129.8, 129.4, 128.9, 128.8, 128.1, 127.9, 127.8, 127.5, 123.7, 120.8, 80.8, 79.7, 73.1, 70.7, 64.7, 58.5, 52.3, 43.4, 31.6, 30.5, 22.6 ppm.

HRMS (ESI, m/z) calcd. for $C_{39}H_{36}N_3NiO_5^+$ [M+H]⁺: 684.2003, found: 684.2000.

 $[\alpha]_D^{25}$ +2290 (c 0.024, MeOH).

General procedure for a Rh(III)-catalyzed C–H Activation/Annulation of Aryl Hydroxamates with Ni(II) complexes

A chiral Ni(II) complex 1 (1.0 equiv., 0.10 mmol), corresponding aryl hydroxamate 2 (1.0 equiv., 0.10 mmol), catalyst [Cp*RhCl₂]₂ (1.2 mg, 0.002 mmol, 4 mol% on Rh) and CsOAc (38 mg, 2.0 equiv., 0.20 mmol) were dissolved in methanol (1 mL). The reaction mixture was stirred at room temperature under standard air atmosphere overnight (\approx 16 h). Full conversion for each reaction was confirmed by TLC analysis. Afterwards, the solvent was removed in vacuo and the residue was purified by chromatography on SiO₂ column (\sim 15 cm). CH₂Cl₂ was used as a first eluent to remove traces of unreacted aryl hydroxamate, and then desired products **3** were eluted by CH₂Cl₂/acetone mixture (*see below for specific ratios*). Some of benzyl-substituted derivatives **3** and **4** were isolated as unseparable mixtures of regioisomers using CH₂Cl₂/acetone (1:3) as eluent. In the case of separation of regioisomers **4**, the mixture was additionally chromatographed on silica column by a mixture of CH₂Cl₂/petroleum ether/Et₃N (*see below for specific ratios*).

Characterization of the complexes 3 and 4

Ni(II) complex (S,S)-3aa

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*S*)-3aa was isolated as an orange powder (53 mg, 81% yield); eluent: CH₂Cl₂/acetone (1:1).

<u>Comment:</u> A gram-scale reaction was performed with 1.87 mmol of the Ni(II) complex (S,S)-1a (1.00 g) by the addition of 2a (0.411 g, 1.87 mmol), [Cp*RhCl₂]₂ (0.023 g, 0.037 mmol) and CsOAc (0.711 g, 3.74 mmol) in 20 mL of MeOH. Yield 0.87 g (72%).

¹H NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H, NH), 8.35 (d, *J* = 7.9 Hz, 1H), 8.17 (d, *J* = 8.6 Hz, 1H), 8.03 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.51–7.42 (m, 4H), 7.41–7.27 (m, 4H), 7.20–7.07 (m, 2H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.67–6.57 (m, 2H), 6.16 (s, 1H), 4.36 (t, *J* = 5.0 Hz, 1H), 4.29 (d, *J* = 12.7 Hz, 1H), 3.48 (d, *J* = 12.7 Hz, 1H), 3.37–3.23 (m, 2H), 2.98 (ddd, *J* = 19.0, 14.8, 5.0 Hz, 2H), 2.80–2.67 (m, 1H), 2.27–2.16 (m, 2H), 2.02– 1.92 (m, 1H), 1.73–1.63 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.5, 179.0, 172.2, 163.3, 143.0, 137.9, 135.6, 133.9, 133.7, 133.4, 132.8, 132.7, 131.6, 130.2, 129.5, 129.2, 129.04, 129.0, 128.0, 127.6, 127.2, 126.8, 126.3, 126.1, 125.6, 123.6, 120.8, 106.6, 70.5, 69.0, 63.5, 57.6, 38.9, 30.7, 23.7 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₇H₃₃N₄NiO₄⁺ [M+H]⁺: 655.1850, found: 655.1849.

 $[\alpha]_{D}^{25}$ +1450 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ab

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-chloro-*N*-(pivaloyloxy)benzamide 2b, the desired product (*S*,*S*)-3ab was isolated as an orange powder (54 mg, 78% yield); eluent: CH₂Cl₂/acetone (1:1).

¹H NMR (400 MHz, CDCl₃): δ = 11.08 (s, 1H, NH), 8.21 (d, *J* = 8.5 Hz, 1H), 8.14 (d, *J* = 8.7 Hz, 1H), 7.98 (d, *J* = 7.5 Hz, 2H), 7.42–7.36 (m, 3H), 7.35–7.27 (m, 3H), 7.25–7.18 (m, 2H), 7.13–7.07 (m, 2H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.60–6.48 (m, 2H), 6.10 (s, 1H), 4.33 (t, *J* = 4.6 Hz, 1H), 4.23 (d, *J* = 12.5 Hz, 1H), 3.44 (d, *J* = 12.5 Hz, 1H), 3.33 (dd, *J* = 10.1, 6.7 Hz, 1H), 3.19–3.11 (m, 1H), 3.00 (qd, *J* = 14.5, 4.6 Hz, 2H), 2.76–2.63 (m, 1H), 2.50–2.38 (m, 1H), 2.37–2.23 (m, 1H), 1.95–1.85 (m, 1H), 1.69–1.58 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.3, 178.7, 172.4, 163.4, 142.8, 139.3, 139.1, 137.7, 133.8, 133.6, 133.3, 132.6, 131.5, 130.0, 129.3, 129.2, 129.1, 128.9, 128.1, 127.2, 126.3, 125.3, 123.5, 123.4, 120.6, 105.8, 70.5, 69.4, 63.5, 57.4, 38.9, 30.7, 23.7 ppm.

HRMS (ESI, *m/z*) calcd. for C₃₇H₃₂ClN₄NiO₄⁺ [M+H]⁺: 689.1460, found: 689.1455.

 $[\alpha]_{D}^{25}$ +2550 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ac

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-bromo-*N*-(pivaloyloxy)benzamide 2c, the desired product (*S*,*S*)-3ac was isolated as an orange powder (52 mg, 71% yield); eluent: CH₂Cl₂/acetone (1:2).

¹H NMR (400 MHz, CDCl₃): δ = 10.64 (s, 1H, NH), 8.19–8.11 (m, 2H), 8.02 (d, *J* = 7.4 Hz, 2H), 7.57 (s, 1H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.47–7.39 (m, 2H), 7.47–7.39 (m, 3H), 7.18–7.01 (m, 4H), 6.62–6.52 (m, 2H), 6.05 (s, 1H), 4.36 (t, *J* = 5.1 Hz, 1H), 4.29 (d, *J* = 12.6 Hz, 1H), 3.49 (d, *J* = 12.6 Hz, 1H), 3.38 (dd, *J* = 10.5, 6.4 Hz, 1H), 3.30–3.21 (m, 1H), 3.04 (ddd, *J* = 19.2, 14.9, 5.2 Hz, 2H), 2.93–2.82 (m, 1H), 2.52–2.41 (m, 1H), 2.41–2.31 (m, 1H), 2.02–1.91 (m, 1H), 1.81–1.70 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.3, 178.8, 172.4, 163.4, 142.8, 139.5, 137.8, 133.7, 133.6, 133.3, 132.6, 131.5, 130.0, 129.9, 129.3, 129.1, 129.0, 128.4, 128.1, 127.8, 127.2, 126.3, 123.9, 123.4, 120.6, 105.5, 70.5, 69.3, 63.5, 57.4, 39.1, 30.7, 23.7 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₇H₃₂BrN₄NiO₄⁺ [M+H]⁺: 733.0955, found: 733.0952.

 $[\alpha]_{D}^{25}$ +1900 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ad

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-trifluoromethyl-*N*-(pivaloyloxy)benzamide 2d, the desired product (*S*,*S*)-3ad was isolated as an orange powder (61 mg, 85% yield); eluent: $CH_2Cl_2/acetone$ (1:2).

¹H NMR (400 MHz, CDCl₃): $\delta = 11.32$ (s, 1H, NH), 8.39 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 7.5 Hz, 2H), 7.68 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.45–7.36 (m, 2H), 7.32–7.27 (m, 2H), 7.26–7.19 (m, 2H), 7.13–6.99 (m, 3H), 6.59–6.48 (m, 2H), 6.24 (s, 1H), 4.38 (t, J = 4.9 Hz, 1H), 4.22 (d, J = 12.6 Hz, 1H), 3.45 (d, J = 12.6 Hz, 1H), 3.34 (dd, J = 10.5, 6.5 Hz, 1H), 3.17–2.97 (m, 3H), 2.78–2.65 (m, 1H), 2.52–2.41 (m, 1H), 2.40–2.25 (m, 1H), 1.97–1.85 (m, 1H), 1.70–1.60 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.2, 178.7, 172.5, 163.2, 142.8, 138.1, 138.0, 134.4, 134.1, 133.7, 133.6, 133.3, 132.6, 131.5, 130.0, 129.3, 129.1, 128.9, 128.5, 128.1, 127.3, 127.2, 126.4, 123.4, 122.5, 122.4, 120.6, 106.3, 70.5, 69.4, 63.5, 57.4, 39.0, 30.7, 23.7 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.0$ (s, 3F) ppm.

HRMS (ESI, *m/z*) calcd. for C₃₈H₃₂F₃N₄NiO₄⁺ [M+H]⁺: 723.1724, found: 723.1729.

 $[\alpha]_{D}^{25}$ +1500 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ae

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-methoxy-*N*-(pivaloyloxy)benzamide 2e, the desired product (*S*,*S*)-3ae was isolated as an orange powder (47 mg, 69% yield); eluent: CH₂Cl₂/acetone (1:2).

¹H NMR (400 MHz, CDCl₃): δ = 10.60 (s, 1H, NH), 8.23 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 8.6 Hz, 1H), 7.98 (d, *J* = 7.5 Hz, 2H), 7.46–7.38 (m, 2H), 7.34–7.27 (m, 2H), 7.25–7.18 (m, 2H), 7.14–7.02 (m, 3H), 6.98 (d, *J* = 8.7 Hz, 1H), 6.78 (s, 1H), 6.61–6.52 (m, 2H), 6.22 (s, 1H), 4.36–4.30 (m, 1H), 4.22 (d, *J* = 12.6 Hz, 1H), 3.84 (s, 3H), 3.42 (d, *J* = 12.6 Hz, 1H), 3.33–3.24 (m, 1H), 3.17–3.09 (m, 1H), 2.94 (ddd, *J* = 31.5, 14.5, 4.7 Hz, 2H), 2.57–2.44 (m, 1H), 2.36–2.19 (m, 2H), 1.95–1.85 (m, 1H), 1.60–1.49 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.4, 178.6, 172.3, 163.5, 163.1, 143.0, 140.2, 136.5, 133.8, 133.7, 133.4, 132.6, 131.6, 130.0, 129.5, 129.2, 129.1, 128.9, 128.2, 127.2, 126.3, 123.5, 120.6, 119.2, 116.6, 106.9, 106.7, 70.6, 69.4, 63.5, 57.6, 55.6, 38.8, 30.7, 23.6 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₈H₃₅N₄NiO₅⁺ [M+H]⁺: 685.1955, found: 685.1960.

 $[\alpha]_{D}^{25}$ +1500 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3af

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 4-nitro-*N*-(pivaloyloxy)benzamide 2f, the desired product (*S*,*S*)-3af was isolated as an orange powder (53 mg, 76% yield); eluent: CH₂Cl₂/acetone (1:1).

¹H NMR (400 MHz, CDCl₃): δ = 11.30 (s, 1H, NH), 8.40 (d, *J* = 8.7 Hz, 1H), 8.22 (s, 1H), 8.13–8.05 (m, 2H), 8.00 (d, *J* = 7.5 Hz, 2H), 7.42–7.36 (m, 2H), 7.31–7.20 (m, 4H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.06–6.97 (m, 2H), 6.57–6.48 (m, 2H), 6.16 (s, 1H), 4.38 (t, *J* = 5.1 Hz, 1H), 4.23 (d, *J* = 12.6 Hz, 1H), 3.47 (d, *J* = 12.6 Hz, 1H), 3.37 (dd, *J* = 10.6, 6.1 Hz, 1H), 3.24–3.12 (m, 2H), 3.04–2.87 (m, 2H), 2.59–2.48 (m, 1H), 2.45–2.29 (m, 1H), 1.97–1.88 (m, 1H), 1.83–1.73 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.2, 179.0, 172.4, 162.5, 150.3, 142.7, 139.2, 138.5, 133.6, 133.3, 132.7, 131.5, 130.1, 129.5, 129.3, 129.02, 129.0, 128.8, 128.1, 127.3, 126.4, 123.5, 121.4, 120.7, 120.0, 105.8, 70.5, 69.0, 63.6, 57.4, 39.3, 30.7, 23.9 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₇H₃₂N₅NiO₆⁺ [M+H]⁺: 700.1701, found: 700.1704.

 $[\alpha]_D^{25}$ +1550 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ag

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 2-bromo-*N*-(pivaloyloxy)benzamide 2g, the desired product (*S*,*S*)-3ag was isolated as an orange powder (48 mg, 66% yield); eluent: $CH_2Cl_2/acetone$ (1:1).

¹H NMR (400 MHz, CDCl₃): δ = 10.93 (s, 1H, NH), 9.11 (s, 1H), 8.32 (d, J = 8.3 Hz, 1H), 8.08–7.91 (m, 3H), 7.48–7.34 (m, 4H), 7.31–7.27 (m, 1H), 7.25–7.22 (m, 1H), 7.21 (s, 1H), 7.14–6.94 (m, 3H), 6.63–6.49 (m, 2H), 5.99 (s, 1H), 4.38–4.29 (m, 1H), 4.23 (d, J = 12.5 Hz, 1H), 3.48 (d, J = 12.5 Hz, 1H), 3.39–3.30 (m, 1H), 3.28–3.12 (m, 2H), 3.02–2.83 (m, 2H), 2.42–2.26 (m, 2H), 1.97–1.86 (m, 1H), 1.83–1.74 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.3, 179.1, 172.4, 162.5, 145.8, 142.8, 142.4, 141.0, 133.8, 133.7, 133.3, 132.9, 131.5, 130.3, 130.2, 129.7, 129.3, 129.1, 129.0, 127.9, 127.3, 127.2, 126.7, 126.3, 124.1, 123.6, 120.9, 105.2, 70.5, 68.7, 63.7, 57.4, 39.1, 30.6, 23.9 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₇H₃₂BrN₄NiO₄⁺ [M+H]⁺: 733.0955, found: 733.0955.

 $[\alpha]_D^{25}$ +1770 (*c* 0.039, MeOH).

Ni(II) complex (S,S)-3ah

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 2-methyl-*N*-(pivaloyloxy)benzamide 2h, the desired product (*S*,*S*)-3ah was isolated as an orange powder (30 mg, 43% yield); eluent: $CH_2Cl_2/acetone$ (2:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.16 (s, 1H, NH), 8.14 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 7.3 Hz, 2H), 7.71–7.61 (m, 1H), 7.57–7.42 (m, 3H), 7.37–7.26 (m, 5H), 7.22–7.10 (m, 2H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.70–6.59 (m, 2H), 5.98 (s, 1H), 4.36–4.25 (m, 2H), 3.51 (d, *J* = 12.8 Hz, 1H), 3.42–3.33 (m, 2H), 3.06–2.92 (m, 2H), 2.81 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.34–2.18 (m, 2H), 2.09–1.96 (m, 1H), 1.97–1.84 (m, 1H), 1.65 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.5, 179.0, 172.1, 161.4, 142.9, 140.8, 136.5, 133.7, 133.6, 133.5, 133.4, 132.9, 132.7, 131.6, 130.4, 129.6, 129.3, 129.1, 129.0, 127.9, 127.2, 126.3, 126.0, 123.8, 123.0, 122.9, 120.9, 106.1, 70.5, 68.5, 63.6, 57.6, 38.5, 31.1, 30.7, 23.9 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₈H₃₅N₄NiO₄⁺ [M+H]⁺: 669.2006, found: 669.2006.

 $[\alpha]_D^{25}$ +1625 (*c* 0.016, MeOH).

Ni(II) complex (S,S)-3ai

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 2,3,4,5-tetrafluoro-*N*-(pivaloyloxy)benzamide 2i, the desired product (*S*,*S*)-3ai was isolated as an orange powder (59 mg, 81% yield); eluent: CH₂Cl₂/acetone (2:1).

¹H NMR (400 MHz, CDCl₃): δ = 10.77 (s, 1H, NH), 8.13–8.03 (m, 3H), 7.54–7.39 (m, 3H), 7.39–7.27 (m, 3H), 7.20–7.08 (m, 2H), 6.99 (d, *J* = 6.8 Hz, 1H), 6.69–6.59 (m, 2H), 5.77 (s, 1H), 4.37–4.27 (m, 2H), 3.57 (d, *J* = 12.6 Hz, 1H), 3.50–3.26 (m, 4H), 2.84 (d, *J* = 12.4 Hz, 1H), 2.67–2.58 (m, 1H), 2.54–2.40 (m, 1H), 2.11–2.00 (m, 2H) ppm.

(S,S)-3ai ¹³C NMR (101 MHz, CDCl₃): $\delta = 180.4$, 179.5, 172.3, 159.0, 142.7, 139.2, 133.6, 133.5, 133.3, 132.7, 131.5, 130.3, 129.6, 129.3, 129.1, 129.0, 127.8, 127.3, 126.4, 124.7, 124.6, 123.8, 120.9, 110.5, 95.7, 70.4, 68.6, 63.5, 57.4, 39.0, 30.7, 24.1 ppm. The signals of carbon atoms bonded with fluorine atoms were not observed in ¹³C NMR because of their high multiplicity and low intensity.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -138.87$ (s, 1F), -147.82 (t, J = 18.2 Hz, 1F), -149.20 (t, J = 19.7 Hz, 1F), -158.52 (t, J = 18.8 Hz, 1F) ppm.

HRMS (ESI, *m/z*) calcd. for C₃₇H₂₉F₄N₄NiO₄⁺ [M+H]⁺: 727.1473, found: 727.1473.

 $[\alpha]_D^{25}$ +1750 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3aj

Starting from a chiral Ni(II) complex (*S*,*S*)-1a and 5-bromo-*N*-((*tert*-butoxycarbonyl)oxy)thiophene-3-carboxamide 2j, the desired product (*S*,*S*)-3aj was isolated as an orange powder (61 mg, 82% yield); eluent: $CH_2Cl_2/acetone$ (1:2).

¹H NMR (400 MHz, CDCl₃): δ = 11.55 (s, 1H, NH), 8.12 (d, *J* = 8.6 Hz, 1H), 8.01 (d, *J* = 7.5 Hz, 2H), 7.49–7.33 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 6.8 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.06–6.98 (m, 1H), 6.63–6.50 (m, 2H), 6.31 (s, 1H), 4.33–4.21 (m, 2H), 3.50 (d, *J* = 12.7 Hz, 1H), 3.38 (dd, *J* = 10.5, 6.4 Hz, 1H), 3.31–3.22 (m, 1H), 3.17 (dd, *J* = 14.7, 5.7 Hz, 1H), 2.99–2.81 (m, 2H), 2.61–2.49 (m, 1H), 2.46–2.32 (m, 1H), 2.05–1.95 (m, 1H), 1.85–1.76 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.3, 178.7, 172.4, 159.2, 150.6, 142.7, 138.2, 133.8, 133.6, 133.3, 132.6, 131.5, 130.0, 129.6, 129.3, 129.2, 129.0, 128.9, 128.0, 127.0, 126.9, 126.1, 123.3, 120.6, 112.0, 101.7, 70.5, 69.3, 63.5, 57.5, 38.8, 30.8, 23.7 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₅H₃₀BrN₄NiO₄S⁺ [M+H]⁺: 741.0499, found: 741.0493.

 $[\alpha]_D^{25}$ +1650 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ba

Starting from a chiral Ni(II) complex (*S*,*S*)-1b and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*S*)-3ba was isolated as an orange powder (57 mg, 82% yield); eluent: CH₂Cl₂/acetone (2:1).

<u>Comment:</u> A gram-scale reaction was performed with 1.82 mmol of the Ni(II) complex (S,S)-**1b** (1.00 g) by the addition of **2a** (0.40 g, 1.82 mmol), [Cp*RhCl₂]₂ (0.022 g, 0.036 mmol) and CsOAc (0.692 g, 3.64 mmol) in 20 mL of MeOH. Yield 0.95 g (78%).

¹H NMR (400 MHz, CDCl₃): $\delta = 10.18$ (s, 1H, NH), 8.38 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.9 Hz, 1H), 8.02 (d, J = 7.5 Hz, 2H), 7.66–7.58 (m, 1H), 7.54–7.39 (m, 5H), 7.36–7.28 (m, 3H), 7.24–7.16 (m, 2H), 7.13–7.06 (m, 1H), 6.65–6.54 (m, 3H), 4.23 (d, J = 12.6 Hz, 1H), 3.54 (d, J = 12.6 Hz, 1H), 3.30–3.21 (m, 2H), 3.01–2.87 (m, 2H), 2.18–1.98 (m, 2H), 1.95–1.77 (m, 2H), 1.51–1.39 (m, 1H), 1.25 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 181.4, 180.4, 173.1, 163.4, 142.1, 137.9, 136.4, 133.8, 133.4, 132.8, 132.1, 131.5, 130.4, 129.7, 128.9, 128.8, 128.3, 127.8, 127.4, 126.7, 126.2, 123.5, 120.6, 106.9, 76.7, 70.1, 63.7, 57.5, 43.4, 30.0, 29.9, 23.1 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₈H₃₅N₄NiO₄⁺ [M+H]⁺: 669.2006, found: 669.2007.

 $[\alpha]_D^{25}$ +1600 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-4ba

Starting from a chiral Ni(II) complex (*S*,*S*)-**1b** and *N*-(pivaloyloxy)benzamide **2a**, the product (*S*,*S*)-**4ba** (*the second eluting diastereomer*) was isolated *from a gram-scale reaction* as an orange powder (36 mg, 3% yield); eluent: CH₂Cl₂/acetone (1:3).

¹H NMR (400 MHz, CDCl₃): δ = 11.65 (s, 1H, NH), 8.49–8.42 (m, 1H), 8.09 (d, J = 8.9 Hz, 1H), 8.05 (d, J = 7.5 Hz, 2H), 7.55–7.49 (m, 1H), 7.47–7.39 (m, 5H), 7.32 (t, J = 7.6 Hz, 2H), 7.29–7.26 (m, 1H), 7.20–7.14 (m, 2H), 7.11–7.03 (m, 1H), 6.81 (d, J = 7.6 Hz, 1H), 6.60–6.55 (m, 2H), 4.28 (d, J = 12.6 Hz, 1H), 3.52 (d, J = 12.6 Hz, 1H), 3.40–3.31 (m, 2H), 3.31–3.23 (m, 1H), 3.08 (d, J = 15.4 Hz, 1H), 2.54–2.38 (m, 1H), 2.33–2.18 (m, 1H), 2.12–2.04 (m, 1H), 1.97–1.88 (m, 1H), 1.81–1.70 (m, 1H), 1.19 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.7, 180.4, 172.0, 163.4, 141.8, 137.9, 136.5, 133.7, 133.5, 132.4, 131.9, 131.3, 129.8, 129.3, 128.8, 128.7, 128.0, 127.6, 127.4, 127.2, 126.7, 126.5, 125.6, 123.6, 123.4, 120.4, 111.7, 78.2, 70.0, 63.5, 57.3, 40.4, 30.2, 29.3, 23.2 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₃₈H₃₅N₄NiO₄⁺ [M+H]⁺: 669.2006, found: 669.2000.

 $[\alpha]_D^{25}$ +1400 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3bd

Starting from a chiral Ni(II) complex (*S*,*S*)-**1b** and 4-trifluoromethyl-*N*-(pivaloyloxy)benzamide **2d**, the desired product (*S*,*S*)-**3bd** was isolated as an orange powder (66 mg, 89% yield); eluent: $CH_2Cl_2/acetone$ (2:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.70 (s, 1H, NH), 8.45 (d, *J* = 8.4 Hz, 1H), 8.06–7.97 (m, 3H), 7.78 (s, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.57–7.46 (m, 3H), 7.340–7.30 (m, 3H), 7.26–7.22 (m, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.13–7.08 (m, 1H), 6.59 (d, *J* = 4.2 Hz, 2H), 6.54 (s, 1H), 4.29 (d, *J* = 12.6 Hz, 1H), 3.59 (d, *J* = 12.6 Hz, 1H), 3.46–3.34 (m, 1H), 3.29 (dd, *J* = 10.4, 6.4 Hz, 1H), 2.97 (dd, *J* = 50.7, 15.1 Hz, 2H), 2.45–2.37 (m, 1H), 2.19–2.09 (m, 1H), 2.03–

1.91 (m, 2H), 1.64–1.60 (m, 1H), 1.32 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 181.9, 180.5, 173.5, 162.3, 142.3, 138.3, 137.8, 136.5, 133.8, 133.4, 132.4, 131.7, 130.6, 130.0, 129.2, 129.0, 128.7, 128.5, 128.1, 127.7, 127.6, 123.9, 123.5, 122.7, 120.9, 106.3, 76.4, 70.1, 63.8, 57.6, 43.2, 30.4, 30.0, 23.4 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.1$ (s, 3F) ppm.

HRMS (ESI, *m/z*) calcd. for C₃₉H₃₄F₃N₄NiO₄⁺ [M+H]⁺: 737.1880, found: 737.1877.

 $[\alpha]_D^{25}$ +1750 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3be

Starting from a chiral Ni(II) complex (*S*,*S*)-**1b** and 4-methoxy-*N*-(pivaloyloxy)benzamide **2e**, the desired product (*S*,*S*)-**3be** was isolated as an orange powder (55 mg, 79% yield); eluent: CH₂Cl₂/acetone (1:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 9.28$ (s, 1H, NH), 8.30 (d, J = 8.9 Hz, 1H), 8.09 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 7.1 Hz, 2H), 7.57–7.50 (m, 2H), 7.50–7.43 (m, 1H), 7.38–7.32 (m, 3H), 7.25–7.16 (m, 2H), 7.15–7.09 (m, 1H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 6.83 (d, J = 2.4 Hz, 1H), 6.64–6.59 (m, 2H), 6.47 (s, 1H), 4.27 (d, J = 12.6 Hz, 1H), 3.86 (s, 3H), 3.56 (d, J = 12.6 Hz, 1H), 3.36–3.28 (m, 1H), 3.24 (dd, J = 10.3, 6.7 Hz, 1H), 3.02–2.81 (m, 2H), 2.28–2.18 (m, 1H), 2.09–1.98 (m, 1H), 1.98–1.89 (m, 1H), 1.85–

1.73 (m, 1H), 1.57–1.46 (m, 1H), 1.28 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 181.4, 180.4, 173.1, 163.3, 162.9, 142.4, 140.1, 137.0, 136.6, 133.9, 133.5, 132.2, 131.6, 130.7, 129.9, 129.5, 129.0, 128.9, 128.4, 128.0, 127.6, 127.5, 123.8, 120.7, 119.3, 116.8, 106.9, 106.8, 76.8, 70.2, 63.8, 57.6, 55.7, 43.5, 30.2, 30.1, 23.2 ppm.

HRMS (ESI, *m/z*) calcd. for C₃₉H₃₇N₄NiO₅⁺ [M+H]⁺: 699.2112, found: 699.2108.

 $[\alpha]_{D}^{25}$ +2200 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3bf

Starting from a chiral Ni(II) complex (*S*,*S*)-1b and 4-nitro-*N*-(pivaloyloxy)benzamide 2f, the desired product (*S*,*S*)-3bf was isolated as an orange powder (57 mg, 80% yield); eluent: $CH_2Cl_2/acetone$ (2:1).

¹H NMR (400 MHz, CDCl₃): δ = 10.19 (s, 1H, NH), 8.46 (d, J = 8.8 Hz, 1H), 8.36 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 8.05 (t, J = 8.4 Hz, 3H), 7.60–7.47 (m, 3H), 7.43–7.33 (m, 3H), 7.30–7.24 (m, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.15–7.06 (m, 1H), 6.63–6.54 (m, 3H), 4.30 (d, J = 12.6 Hz, 1H), 3.63 (d, J = 12.6 Hz, 1H), 3.50–3.41 (m, 1H), 3.34 (dd, J = 10.3, 6.3 Hz, 1H), 3.04 (dd, J = 32.7, 15.3 Hz,

2H), 2.67–2.52 (m, 1H), 2.32–2.10 (m, 2H), 2.03–1.94 (m, 1H), 1.79–1.67 (m, 1H), 1.34 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.9, 173.5, 170.6, 162.7, 150.4, 142.2, 139.1, 136.4, 133.8, 133.4, 132.3, 132.2, 131.6, 131.5, 130.4, 130.0, 129.9, 129.1, 129.0, 128.5, 127.9, 127.7, 123.8, 122.0, 120.8, 120.1, 106.5, 76.7, 70.2, 63.8, 57.5, 43.4, 30.4, 29.8, 23.5 ppm.

HRMS (ESI, *m/z*) calcd. for C₃₈H₃₄N₅NiO₆⁺ [M+H]⁺: 714.1857, found: 714.1862.

 $[\alpha]_D^{25}$ +1600 (*c* 0.02, MeOH).

Ni(II) complexes (S,R)-4ca

Starting from a chiral Ni(II) complex (*S*,*S*)-1c and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4ca (*the first eluting diastereomer*) was isolated as an orange powder (41 mg, 55% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:2:1).

¹H NMR (400 MHz, CDCl₃): δ = 11.65 (s, 1H, NH), 8.22 (d, *J* = 8.7 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.65 (d, *J* = 5.5 Hz, 1H), 7.57–7.40 (m, 9H), 7.36–7.23 (m, 3H), 7.18–7.07 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 1H), 6.56 (t, *J* = 7.5 Hz, 2H), 6.48 (d, *J* = 8.3, 1H), 4.69 (d, *J* = 13.0 Hz, 1H), 4.01 (d, *J* = 13.0 Hz, 1H), 3.46 (d, *J* = 13.4 Hz, 1H), 3.31 (dd, *J* = 9.8, 7.7 Hz, 1H), 3.22 (d, *J* = 17.6 Hz, 1H), 3.08 (d, *J* = 13.4 Hz, 1H), 3.02–2.93 (m, 1H), 2.25 (d, *J* = 17.6 Hz, 1H), 2.16–

2.07 (m, 2H), 1.92–1.84 (m, 1H), 1.76–1.70 (m, 1H), 1.46–1.40 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.4, 179.6, 172.4, 163.5, 142.9, 137.4, 136.5, 136.2, 134.2, 132.6, 132.5, 132.2, 132.0, 131.6, 129.5, 129.3, 129.1, 129.0, 128.1, 128.0, 127.8, 127.6, 127.5, 126.9, 126.7, 126.2, 125.5, 123.7, 122.7, 120.8, 111.8, 79.8, 69.3, 63.0, 56.5, 47.2, 39.7, 30.1, 22.8 ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₉N₄NiO₄⁺ [M+H]⁺: 745.2319, found: 745.2322.

 $[\alpha]_{D}^{25}$ +1900 (*c* 0.02, MeOH).

Ni(II) complexes (S,R)-3ca

Starting from a chiral Ni(II) complex (*S*,*S*)-1c and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*R*)-3ca (*the second eluting diastereomer*) was isolated as an orange powder (27 mg, 36% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:2:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.48 (br. s, 1H, NH), 8.34 (t, *J* = 8.1 Hz, 3H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.56–7.38 (m, 10H), 7.32–7.23 (m, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.09–7.02 (m, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.77 (s, 1H), 6.58–6.49 (m, 2H), 4.54 (d, *J* = 12.6 Hz, 1H), 3.44–3.25 (m, 4H), 3.06–2.95 (m, 2H), 2.27–2.15 (m, 1H), 2.11–1.96 (m, 3H), 1.80–1.73 (m, 1H), 1.56–1.48 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 179.1, 172.5, 163.1, 142.7, 138.1, 136.4, 136.3, 135.8, 134.0, 133.5, 133.1, 132.3, 131.8, 131.6, 130.3, 129.3, 129.1, 129.0, 128.7, 128.6, 128.2, 127.8, 127.7, 127.3, 127.2, 126.8, 126.2, 124.9, 123.8, 120.7, 105.0, 78.9, 69.6, 64.2, 58.4, 46.8, 43.2, 30.4, 23.1 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₄H₃₉N₄NiO₄⁺ [M+H]⁺: 745.2319, found: 745.2322.

 $[\alpha]_D^{25}$ +2042 (*c* 0.07, MeOH).

Ni(II) complex (S,S)-3ca

Starting from a chiral Ni(II) complex (*S*,*R*)-1c and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*S*)-3ca (*the first eluting diastereomer*) was isolated as an orange powder (52 mg, 70% yield); eluent: $CH_2Cl_2/acetone$ (3:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 9.28$ (s, 1H, NH), 8.41 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 7.4 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.54–7.28 (m, 12H), 7.24–7.19 (m, 1H), 7.13–7.08 (m, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.88 (s, 1H), 6.65–6.59 (m, 2H), 4.14 (d, J = 12.9 Hz, 1H), 3.47–3.38 (m, 1H), 3.30 (d, J = 12.9 Hz, 1H), 3.22 (dd, J = 10.3, 6.2 Hz, 1H), 3.16 (br. s, 2 H), 3.05 (d, J = 16.0 Hz, 1H), 2.62 (d, J = 16.0 Hz, 1H), 2.47–2.34 (m, 1H), 2.02–1.92 (m, 2H), 1.90–1.79 (m, 1H), 1.63–1.52 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.9, 180.2, 173.3, 163.3, 142.2, 138.0, 136.6, 136.3, 135.8, 133.6, 133.1, 133.0, 132.1, 131.8, 130.2, 129.0, 128.9, 128.8, 128.4, 128.3, 127.9, 127.8, 127.6, 127.4, 126.9, 126.3, 125.4, 124.3, 120.9, 106.5, 79.6, 69.2, 63.0, 57.6, 47.2, 41.9, 30.6, 23.5 ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₉N₄NiO₄⁺ [M+H]⁺: 745.2319, found: 745.2320.

 $[\alpha]_{D}^{25}$ +1375 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-4ca

Starting from a chiral Ni(II) complex (*S*,*R*)-1c and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*S*)-4ca (*the second eluting diastereomer*) was isolated as an orange powder (10 mg, 14% yield); eluent: $CH_2Cl_2/acetone$ (1:3).

¹H NMR (400 MHz, CDCl₃): δ = 10.14 (s, 1H, NH), 8.47 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.5 Hz, 1H), 7.76 (s, 1H), 7.59–7.28 (m, 12H), 7.26–7.13 (m, 5H), 6.82–6.71 (m, 2H), 6.67–6.59 (m, 2H), 3.94 (d, *J* = 13.3 Hz, 1H), 3.61–3.54 (m, 1H), 3.50–3.44 (m, 1H), 3.32–3.21 (m, 3H), 2.59–2.38 (m, 2H), 2.16–2.09 (m, 2H), 1.96–1.82 (m, 1H), 1.74–1.64 (m, 2H) ppm.

The ¹³C NMR spectrum was not recorded due to the small amount of (S,S)-**4ca**.

HRMS (ESI, m/z) calcd. for C₄₄H₃₉N₄NiO₄⁺ [M+H]⁺: 745.2319, found:

745.2316.

 $[\alpha]_D^{25}$ +1477 (*c* 0.022, MeOH).

Ni(II) complex (S,R)-4da

Starting from a chiral Ni(II) complex (*S*,*S*)-1d and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4da (*the first eluting diastereomer*) was isolated as an orange powder (40 mg, 50% yield); eluent: EtOAc/Et₂O (1:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 11.60$ (s, 1H, NH), 8.27 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 6.7 Hz, 1H), 7.82 (d, J = 7.1 Hz, 2H), 7.75 (br. s, 1H), 7.61–7.48 (m, 3H), 7.47–7.28 (m, 7H), 7.25–7.20 (m, 1H), 7.20–7.09 (m, 2H), 7.07–6.95 (m, 1H), 6.68–6.52 (m, 3H), 6.46 (d, J = 8.7 Hz, 1H), 4.72 (d, J = 13.2 Hz, 1H), 4.08 (d, J = 13.2 Hz, 1H), 3.44 (d, J = 13.8 Hz, 1H), 3.38–3.16 (m, 2H), 3.12–2.99 (m, 2H), 2.32 (d, J = 17.5 Hz, 1H), 2.23–2.08 (m, 2H), 1.81–1.68 (m, 2H), 1.49–1.40 (m, 1H), 1.37 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.4, 179.8, 172.5, 163.8, 150.8, 142.8, 137.5, 136.5, 134.2, 133.1, 132.4, 132.2, 132.1, 131.2, 129.5, 129.1, 129.0, 128.2, 128.0, 127.8, 127.5, 127.0, 126.7, 126.2, 125.7, 123.7, 122.7, 120.8, 111.9, 79.8, 68.8, 62.4, 55.4, 46.6, 39.9, 34.8, 31.6, 30.5, 22.4 ppm.

HRMS (ESI, *m/z*) calcd. for C₄₈H₄₇N₄NiO₄⁺ [M+H]⁺: 801.2945, found: 801.2944.

 $[\alpha]_D^{25}$ +1650 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-3da

Starting from a chiral Ni(II) complex (*S*,*S*)-1d and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*R*)-3da (*the second eluting diastereomer*) was isolated as an orange powder (32 mg, 40% yield); eluent: EtOAc/Et₂O (1:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 9.32$ (s, 1H, NH), 8.38 (d, J = 6.9 Hz, 2H), 8.22 (d, J = 7.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 1H), 7.79–7.61 (m, 2H), 7.59–7.38 (m, 9H), 7.25–7.20 (m, 1H), 7.18–6.93 (m, 3H), 6.84 (s, 1H), 6.63–6.47 (m, 2H), 4.60 (d, J = 12.6 Hz, 1H), 3.49 (d, J = 12.6 Hz, 1H), 3.41–3.22 (m, 3H), 3.22–3.08 (m, 1H), 2.98 (d, J = 14.0 Hz, 1H), 2.29–2.18 (m, 1H), 2.15–1.99 (m, 2H), 1.94–1.77 (m, 2H), 1.56–1.44 (m, 1H), 1.37 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 179.3, 172.6, 163.2, 150.9, 142.6, 138.3, 136.4, 136.3, 134.0, 133.3, 133.1, 132.7, 132.3, 131.8, 131.2, 130.3, 129.1, 129.0, 128.7, 128.5, 127.7, 127.4, 127.3, 126.8, 126.3, 123.8, 120.8, 105.0, 78.9, 69.6, 63.9, 57.7, 46.2, 43.4, 34.8, 31.6, 30.8, 22.7 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₈H₄₇N₄NiO₄⁺ [M+H]⁺: 801.2945, found: 801.2949.

 $[\alpha]_{D}^{25}$ +1800 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3da

Starting from a chiral Ni(II) complex (*S*,*R*)-1d and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*S*)-3da (*the first eluting diastereomer*) was isolated as an orange powder (56 mg, 70% yield); eluent: $CH_2Cl_2/acetone$ (3:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 9.34$ (s, 1H, NH), 8.43 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.72–7.60 (m, 2H), 7.57–7.40 (m, 7H), 7.33 (t, J = 7.5 Hz, 2H), 7.29–7.21 (m, 3H), 7.19–7.10 (m, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.97 (s, 1H), 6.70–6.61 (m, 2H), 4.24 (d, J = 12.8 Hz, 1H), 3.38–3.29 (m, 2H), 3.29–3.16 (m, 2H), 3.07 (dd, J = 15.5, 10.1 Hz, 2H), 2.66 (d, J = 16.0 Hz, 1H), 2.56–2.40 (m, 1H), 2.14–2.02 (m, 1H), 1.97–1.82 (m, 2H), 1.67–1.56 (m, 1H), 1.27 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.9, 180.3, 173.3, 163.2, 150.2, 142.2, 137.9, 136.7, 136.5, 136.4, 133.6, 133.0, 132.7, 132.5, 132.0, 131.8, 130.1, 129.8, 129.0, 128.9, 128.6, 128.5, 128.3, 127.8, 127.7,

127.6, 126.8, 126.3, 125.6, 125.4, 124.3, 120.9, 106.3, 79.8, 69.0, 62.8, 57.1, 46.9, 41.6, 34.6, 31.4, 30.5, 23.3 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₈H₄₇N₄NiO₄⁺ [M+H]⁺: 801.2945, found: 801.2944.

 $[\alpha]_{D}^{25}$ +1650 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-4da

Starting from a chiral Ni(II) complex (*S*,*R*)-1d and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*S*)-4da (*the second eluting diastereomer*) was isolated as an orange powder (17 mg, 21% yield); eluent: $CH_2Cl_2/acetone$ (1:2).

¹H NMR (400 MHz, CDCl₃): δ = 11.04 (s, 1H, NH), 8.45 (d, *J* = 7.6 Hz, 1H), 8.23 (d, *J* = 8.7 Hz, 1H), 8.05 (s, 1H), 7.56–7.40 (m, 7H), 7.39–7.27 (m, 7H), 7.22 (t, *J* = 6.2 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.77–6.70 (m, 2H), 6.67–6.59 (m, 2H), 4.22 (d, *J* = 13.2 Hz, 1H), 3.54 (d, *J* = 13.2 Hz, 1H), 3.39–3.31 (m, 1H), 3.30–3.20 (m, 3H), 3.13 (d, *J* = 14.3 Hz, 1H), 2.88–2.72 (m, 1H), 2.52–2.33 (m, 2H), 2.28–2.12 (m, 1H), 1.92–1.75 (m, 2H), 1.21 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 181.3, 180.2, 172.9, 166.5, 150.5, 142.5, 137.8, 136.9, 134.1, 133.1, 132.5, 132.4, 132.3, 132.2, 131.4, 130.3, 129.6, 129.0, 128.8, 128.2, 128.1, 127.9, 127.8, 127.6, 127.0, 126.9, 126.4, 125.7, 124.3, 123.3, 121.0, 112.1, 74.4, 61.3, 55.3, 47.9, 38.5, 34.6, 31.5, 30.8, 23.6 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₈H₄₇N₄NiO₄⁺ [M+H]⁺: 801.2945, found: 801.2942.

 $[\alpha]_{D}^{25}$ +1225 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-4ea

Starting from a chiral Ni(II) complex (*S*,*S*)-1e and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4ea (*the first eluting diastereomer*) was isolated as an orange powder (55 mg, 65% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:8:1).

<u>Comment:</u> A gram-scale reaction was performed with 1.23 mmol of the Ni(II) complex (S,S)-1e (0.89 g) by the addition of 2a (0.272 g, 1.23 mmol), [Cp*RhCl₂]₂ (0.015 g, 0.025 mmol) and CsOAc (0.467 g, 2.26 mmol) in 20 mL of MeOH. Yield 0.67 g (64%).

¹H NMR (300 MHz, CDCl₃): $\delta = 12.15$ (d, J = 5.0 Hz, 1H, NH), 8.31 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 7.0 Hz, 3H), 7.65 (d, J = 5.6 Hz, 1H), 7.50–7.36 (m, 8H), 7.35–7.27 (m, 2H), 7.17–7.10 (m, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.59–6.38 (m, 4H), 4.78 (d, J = 13.0 Hz, 1H), 4.11 (d, J = 13.0 Hz, 1H), 3.70 (d, J = 13.4 Hz, 1H), 3.38 (dd, J = 9.6, 7.8 Hz, 1H), 3.15 (d, J = 17.7 Hz, 1H), 3.09–3.01 (m, 1H), 2.94 (d, J = 13.4 Hz, 1H), 2.39–2.17 (m, 2H), 2.11 (d, J = 17.7 Hz, 1H), 2.02–1.89 (m, 2H), 1.68–1.51 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.4, 179.2, 173.8, 163.8, 161.1, 142.9, 137.3, 136.6, 135.2 (d, *J* = 5.1 Hz), 134.3, 132.5, 132.3, 132.1, 129.3, 129.2, 129.1, 128.6, 128.5, 128.3, 127.7 (d, *J* = 10.1 Hz), 127.4, 126.8 (d, *J* = 7.3 Hz), 126.6, 126.0, 125.5, 123.4, 122.6, 122.5. 122.5 (d, *J* = 12.9 Hz), 120.6, 119.6 (d, *J* = 25.9 Hz), 111.9, 79.5, 69.0, 62.8, 56.1, 41.5, 39.3, 30.5, 22.8 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -110.4$ (s, 1F) ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₇BrFN₄NiO₄⁺ [M+H]⁺: 841.1330, found: 841.1324.

 $[\alpha]_D^{25}$ +1750 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-3ea

Starting from a chiral Ni(II) complex (*S*,*S*)-1e and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*R*)-3ea (*the second eluting diastereomer*) was isolated as an orange powder (22 mg, 26% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:4:1).

Yield in a gram-scale reaction (0.23 g, 22%).

¹H NMR (300 MHz, CDCl₃): δ = 8.87 (s, 1H, NH), 8.16 (d, *J* = 7.6 Hz, 2H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.30–7.04 (m, 10H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.88–6.79 (m, 1H), 6.62 (d, *J* = 7.6 Hz, 1H), 6.57 (s, 1H), 6.33–6.24 (m, 2H), 4.39 (d, *J* = 12.6 Hz, 1H), 3.41 (d, *J* = 13.7 Hz, 1H), 3.27 (d, *J* = 12.6 Hz, 1H), 3.23–3.03 (m, 2H), 2.95–2.84 (m, 1H), 2.67 (d, *J* = 13.7 Hz, 1H), 2.24–2.08 (m, 1H), 2.05–1.77 (m, 3H), 1.74–1.64 (m, 1H), 1.54–1.41 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 178.7, 173.7, 163.7, 163.3, 142.7, 138.1, 136.6, 136.3, 135.1 (d, J = 4.7 Hz), 134.1, 133.4, 133.0, 132.3, 131.8, 130.2, 129.2, 129.0, 128.7, 128.6, 128.4, 127.6 (d, J = 7.5 Hz), 127.2, 127.0 (d, J = 6.4 Hz), 126.7, 126.2, 124.8, 123.5, 122.7 (d, J = 9.6 Hz), 122.2 (d, J = 15.7 Hz), 120.6, 119.7 (d, J = 26.3 Hz), 104.6, 78.4, 69.7, 64.3, 58.5, 42.7, 41.3, 30.9, 23.2 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -110.2$ (s, 1F) ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₇BrFN₄NiO₄⁺ [M+H]⁺: 841.1330, found: 841.1331.

 $[\alpha]_{D}^{25}$ +1900 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-3ea

Starting from a chiral Ni(II) complex (*S*,*R*)-1e and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*S*)-3ea (*the first eluting diastereomer*) was isolated as an orange powder (55 mg, 66% yield); eluent: $CH_2Cl_2/acetone$ (3:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 9.53$ (s, 1H, NH), 8.40 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.72–7.59 (m, 2H), 7.54– 7.41 (m, 5H), 7.41–7.32 (m, 5H), 7.31–7.25 (m, 1H), 7.18–7.09 (m, 1H), 7.01–6.94 (m, 2H), 6.68–6.57 (m, 2H), 4.23 (d, J = 12.8 Hz, 1H), 3.50–3.37 (m, 2H), 3.33–3.18 (m, 2H), 3.03 (dd, J = 50.4, 15.8 Hz, 2H), 2.59–2.39 (m, 2H), 2.09–1.92 (m, 3H), 1.70–1.58 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.8, 179.7, 174.7, 163.4, 162.5, 160.0, 142.1, 137.9, 136.6, 136.2, 133.8, 133.1, 133.0, 132.8, 132.2, 131.7, 130.2, 129.1, 129.0, 128.5, 128.3 (d, *J* = 10.8 Hz), 128.0, 127.9, 127.8, 127.6 (d, *J* = 5.5 Hz), 126.9, 126.3, 125.3, 124.2, 122.4 (d, *J* = 15.2 Hz), 121.7 (d, *J* = 9.8 Hz), 120.9, 119.1 (d, *J* = 26.2 Hz), 106.5, 78.7, 69.2, 63.1, 57.5, 41.8, 40.9, 30.6, 23.5 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.2$ (s, 1F) ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₄H₃₇BrFN₄NiO₄⁺ [M+H]⁺: 841.1330, found: 841.1331.

 $[\alpha]_D^{25}$ +1350 (*c* 0.02, MeOH).

Ni(II) complex (S,S)-4ea

Starting from a chiral Ni(II) complex (*S*,*R*)-1e and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*S*)-4ea (*the second eluting diastereomer*) was isolated as an orange powder (18 mg, 21% yield); eluent: $CH_2Cl_2/acetone$ (1:2).

¹H NMR (300 MHz, CDCl₃): $\delta = 11.49$ (s, 1H, NH), 8.46 (d, J = 6.2 Hz, 1H), 8.14–8.07 (m, 1H), 8.01–7.94 (m, 1H), 7.64 (d, J = 6.8 Hz, 2H), 7.54–7.27 (m, 11H), 7.21–7.12 (m, 2H), 6.80–6.70 (m, 2H), 6.66–6.60 (m, 2H), 4.19 (d, J = 13.3 Hz, 1H), 3.59–3.44 (m, 2H), 3.39–3.19 (m, 3H), 3.01 (d, J = 14.9 Hz, 1H), 2.74–2.56 (m, 1H), 2.45 (d, J = 17.0 Hz, 1H), 2.41–2.26 (m, 1H), 2.16–2.03 (m, 2H), 1.84–1.74 (m, 1H) ppm.

 $(S,S)-4ea \xrightarrow{13}C NMR (101 MHz, CDCl_3): \delta = 181.1, 179.5, 174.1, 163.4, 162.8, 160.3, 142.4, 137.8, 136.7, 134.1, 133.3, 132.5, 132.4, 132.3, 131.9, 129.6, 129.1, 129.0, 128.1 (d,$ *J*= 9.4 Hz), 128.0, 127.9, 127.4 (d,*J*= 5.2 Hz), 127.0, 126.9, 126.8, 126.4, 124.2, 123.3, 123.1 (d,*J*= 15.4 Hz), 121.7 (d,*J*= 10.2 Hz), 121.0, 119.1 (d,*J*= 25.9 Hz), 111.9, 79.8, 68.9, 62.4, 56.7, 41.2, 38.9, 30.9, 23.7 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.3$ (s, 1F) ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₇BrFN₄NiO₄⁺ [M+H]⁺: 841.1330, found: 841.1325.

 $[\alpha]_{D}^{25}$ +1100 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-4fa

Starting from a chiral Ni(II) complex (*S*,*S*)-1f and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4fa (*the first eluting diastereomer*) was isolated as an orange powder (44 mg, 54% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:4:1).

¹H NMR (400 MHz, CDCl₃): δ = 12.05 (s, 1H, NH), 8.22 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 7.3 Hz, 3H), 7.67 (d, J = 8.1 Hz, 3H), 7.51–7.39 (m, 4H), 7.38–7.32 (m, 3H), 7.32–7.26 (m, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 7.7 Hz, 1H), 6.55 (t, J = 7.6 Hz, 2H), 6.45 (d, J = 8.2 Hz, 1H), 4.74 (d, J = 13.0 Hz, 1H), 4.03 (d, J = 13.0 Hz, 1H), 3.44–3.30 (m, 2H), 3.19 (d, J = 17.6 Hz, 1H), 3.06–2.93 (m, 2H), 2.31–2.15 (m, 3H), 2.00–1.82 (m, 2H), 1.61–1.49 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 179.4, 172.6, 163.7, 142.9, 137.3, 136.4, 135.1, 134.2, 133.2, 132.5, 132.4, 132.3, 132.2, 132.1, 129.6, 129.2, 129.1, 128.1, 128.0, 127.8, 127.7, 127.3, 126.7, 126.1, 125.6, 123.7, 122.6, 122.5, 120.8, 111.6, 79.6, 68.9, 62.9, 56.4, 46.5, 39.7, 30.3, 22.8 ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₈BrN₄NiO₄⁺ [M+H]⁺: 823.1424, found: 823.1420.

 $[\alpha]_{D}^{25}$ +1750 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-3fa

Starting from a chiral Ni(II) complex (*S*,*S*)-**1f** and *N*-(pivaloyloxy)benzamide **2a**, the desired product (*S*,*R*)-**3fa** (*the second eluting diastereomer*) was isolated as an orange powder (30 mg, 36% yield); eluent: CH₂Cl₂/PE/Et₃N (4:4:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.07 (s, 1H, NH), 8.37 (d, *J* = 7.4 Hz, 2H), 8.32 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.67–7.59 (m, 3H), 7.50–7.38 (m, 4H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.24–7.20 (m, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.07–7.00 (m, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.77 (s, 1H), 6.57–6.47 (m, 2H), 4.54 (d, *J* = 12.6 Hz, 1H), 3.43–3.22 (m, 4H), 3.07–2.97 (m, 1H), 2.91 (d, *J* = 13.7 Hz, 1H), 2.39–2.23 (m, 1H), 2.16–1.99 (m,

3H), 1.94–1.80 (m, 1H), 1.67–1.59 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.7, 178.9, 172.7, 163.4, 142.7, 138.1, 136.5, 136.2, 134.8, 134.0, 133.5, 133.3, 133.0, 132.3, 131.8, 130.3, 129.1, 129.0, 128.6, 128.5, 127.9, 127.7, 127.2, 126.9, 126.6, 126.1, 124.8, 123.8, 122.5, 120.7, 104.7, 78.6, 69.6, 64.4, 58.8, 46.2, 43.1, 30.6, 23.1 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₄H₃₈BrN₄NiO₄⁺ [M+H]⁺: 823.1424, found: 823.1427.

 $[\alpha]_D^{25}$ +2167 (*c* 0.012, MeOH).

Ni(II) complex (S,R)-4ga

Starting from a chiral Ni(II) complex (*S*,*S*)-1g and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4ga (*the first eluting diastereomer*) was isolated as an orange powder (50 mg, 64% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:4:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 12.16$ (s, 1H, NH), 8.30 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 5.6 Hz, 1H), 7.50–7.39 (m, 4H), 7.37–7.20 (m, 6H), 7.17–7.10 (m, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.61–6.51 (m, 2H), 6.51–6.44 (m, 2H), 4.78 (d, J = 13.0 Hz, 1H), 4.11 (d, J = 13.0 Hz, 1H), 3.84 (d, J = 13.4 Hz, 1H), 3.42–3.34 (m, 1H), 3.19–3.06 (m, 3H), 2.36–2.19 (m, 3H), 2.14–2.00 (m, 1H), 1.98–1.86 (m, 1H), 1.69–1.56 (m, 1H) ppm.

¹³C NMR (101 MHz, acetone-d6): δ = 180.9, 178.3, 173.7, 163.0, 144.4, 138.3, 137.5, 134.4, 134.3, 132.9, 132.3, 130.1, 129.6, 129.5, 129.4, 129.2, 128.7, 128.3, 128.2, 128.1, 127.8 (d, *J* = 4.9 Hz), 127.4, 127.3, 127.1 (d, *J* = 12.3 Hz), 126.8, 125.9, 124.5, 123.6, 120.6, 117.6 (d, *J* = 16.9 Hz), 111.8, 80.0, 69.7, 63.7, 57.4, 42.1, 39.7, 31.2, 23.6 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -136.7$ (d, J = 21.3 Hz, 1F), -138.2 (d, J = 21.3 Hz, 1F) ppm.

HRMS (ESI, m/z) calcd. for C₄₄H₃₇F₂N₄NiO₄⁺ [M+H]⁺: 781.2131, found: 781.2129.

 $[\alpha]_D^{25}$ +2430 (*c* 0.014, MeOH).

Ni(II) complex (S,R)-3ga

Starting from a chiral Ni(II) complex (*S*,*S*)-1g and *N*-(pivaloyloxy)benzamide 2a, the desired product (*S*,*R*)-3ga (*the second eluting diastereomer*) was isolated as an orange powder (23 mg, 29% yield); eluent: CH₂Cl₂/PE/Et₃N (4:4:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.79 (s, 1H, NH), 8.32 (d, *J* = 8.1 Hz, 1H), 8.27 (d, *J* = 7.2 Hz, 2H), 7.97 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.50–7.41 (m, 3H), 7.40–7.34 (m, 1H), 7.34–7.27 (m, 5H), 7.25–7.15 (m, 2H), 7.10–7.02 (m, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.72 (s, 1H), 6.59–6.51 (m, 2H), 4.60 (d, *J* = 12.7 Hz, 1H), 3.73 (d, *J* = 13.8 Hz, 1H), 3.52 (d, *J* = 12.7 Hz, 1H), 3.37 (dd, *J* = 9.7, 6.7 Hz, 1H), 3.30–3.16 (m, 2H), 3.06 (d, *J* = 13.8 Hz, 1H), 2.42–2.29 (m, 1H), 2.25–

2.07 (m, 3H), 2.00 (d, *J* = 17.9 Hz, 1H), 1.77–1.67 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 178.5, 173.6, 142.7, 136.4, 136.3, 134.0, 133.3, 133.0, 132.4, 131.8, 130.2, 129.4, 129.2, 129.1, 128.7, 128.4, 128.3, 127.7 (d, *J* = 3.5 Hz), 127.5, 127.4, 127.2, 127.1, 126.8, 126.3, 126.2, 125.4 (d, *J* = 12.4 Hz), 124.8, 123.8, 123.5, 120.7, 117.1 (d, *J* = 16.5 Hz), 104.9, 78.3, 69.8, 64.1, 58.1, 42.6, 41.2, 30.8, 23.3 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -136.7$ (dd, J = 22.6, 20.0 Hz, 1F), -138.1 (dd, J = 57.7, 21.6 Hz, 1F) ppm.

HRMS (ESI, *m/z*) calcd. for C₄₄H₃₇F₂N₄NiO₄⁺ [M+H]⁺: 781.2131, found: 781.2128.

 $[\alpha]_D^{25}$ +2615 (*c* 0.013, MeOH).

Ni(II) complex (S,R)-4ha

Starting from a chiral Ni(II) complex (*S*,*S*)-**1h** and *N*-(pivaloyloxy)benzamide **2a**, the product (*S*,*R*)-**4ha** (*the first eluting diastereomer*) was isolated as an orange powder (44 mg, 54% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (4:4:1).

¹H NMR (400 MHz, CDCl₃): $\delta = 12.09$ (s, 1H, NH), 8.28 (d, J = 8.7 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 8.0 Hz, 4H), 7.78–7.74 (m, 1H), 7.59 (d, J = 7.4 Hz, 2H), 7.51–7.33 (m, 5H), 7.32–7.26 (m, 1H), 7.25–7.20 (m, 1H), 7.19–7.11 (m, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.60–6.52 (m, 2H), 6.46 (d, J = 8.4 Hz, 1H), 4.78 (d, J = 13.0 Hz, 1H), 4.10 (d, J = 13.0 Hz, 1H), 3.49 (d, J = 13.3 Hz, 1H), 3.03–2.92 (m, 1H), 2.29 (d, J = 17.5 Hz, 1H), 2.23–

2.11 (m, 1H), 2.08–1.99 (m, 1H), 1.86–1.78 (m, 1H), 1.72–1.56 (m, 1H), 1.51–1.38 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.6, 179.3, 172.9, 163.8, 143.0, 140.3, 137.3, 136.4, 134.3, 132.7, 132.2, 132.1, 132.0, 131.8, 130.6, 130.3, 129.7, 129.2, 129.1, 128.2, 128.1, 127.8, 127.7, 127.2, 126.7, 126.1, 125.8, 125.7, 123.8, 122.6, 120.9, 111.5, 79.6, 68.6, 62.5, 55.7, 46.8, 39.8, 30.2, 22.5 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.4$ (s, 3F) ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₅H₃₈F₃N₄NiO₄⁺ [M+H]⁺: 813.2193, found: 813.2198.

 $[\alpha]_{D}^{25}$ +1850 (*c* 0.02, MeOH).

The structure of (S,R)-4ha was unambiguously established by single crystal X-ray analysis (see Figure 1 in the main text and X-Ray part *below*).

Ni(II) complex (S,R)-3ha

Starting from a chiral Ni(II) complex (*S*,*S*)-**1h** and *N*-(pivaloyloxy)benzamide **2a**, the desired product (*S*,*R*)-**3ha** (*the second eluting diastereomer*) was isolated as an orange powder (32 mg, 40% yield); eluent: CH₂Cl₂/PE/Et₃N (8:4:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.49 (s, 1H, NH), 8.37–8.24 (m, 3H), 7.89 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 8.1 Hz, 3H), 7.49–7.39 (m, 4H), 7.31–7.18 (m, 3H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.09–7.02 (m, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.83 (s, 1H), 6.59–6.48 (m, 2H), 4.56 (d, *J* = 12.6 Hz, 1H), 3.47–3.26 (m, 4H), 3.05–2.96 (m, 2H), 2.30–2.19 (m, 1H), 2.15 (d, *J* = 14.7 Hz, 1H), 2.04–1.92 (m, 2H), 1.73–1.60 (m, 1H), 1.59–1.48 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.7, 178.9, 173.0, 163.5, 142.7, 140.0, 138.1, 136.5, 136.2, 134.0, 133.3, 133.0, 132.5, 131.9, 131.8, 130.6, 130.4, 130.3, 129.2, 129.0, 128.6, 128.5, 128.0, 127.7, 127.2, 126.9, 126.7, 126.1, 126.08, 126.0, 125.6, 124.8, 123.8, 120.8, 104.8, 78.6, 69.4, 64.1, 58.1, 46.4, 43.3, 30.5, 22.8 ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.4$ (s, 3F) ppm.

HRMS (ESI, *m/z*) calcd. for C₄₅H₃₈F₃N₄NiO₄⁺ [M+H]⁺: 813.2193, found: 813.2199.

 $[\alpha]_D^{25}$ +1800 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-4ia

Starting from a chiral Ni(II) complex (*S*,*S*)-1i and *N*-(pivaloyloxy)benzamide 2a, the product (*S*,*R*)-4ia (*the first eluting diastereomer*) was isolated as an orange powder (44 mg, 55% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (8:4:1).

¹H NMR (400 MHz, CDCl₃): δ = 12.32 (s, 1H, NH), 8.27–8.17 (m, 3H), 7.95–7.87 (m, 3H), 7.72 (br. s, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.53–7.41 (m, 4H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.31–7.23 (m, 2H), 7.16 (t, *J* = 7.3 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.67–6.46 (m, 4H), 4.76 (d, *J* = 13.0 Hz, 1H), 4.04 (d, *J* = 13.0 Hz, 1H), 3.95 (s, 3H), 3.53 (d, *J* = 13.2 Hz, 1H), 3.37–3.29 (m, 1H), 3.22 (d, *J* = 17.6 Hz, 1H), 3.15 (d, *J* = 13.2 Hz, 1H), 3.00–2.92 (m, 1H), 2.29 (d, *J* = 17.6 Hz, 1H),

2.14–2.00 (m, 2H), 1.95–1.85 (m, 1H), 1.76–1.62 (m, 1H), 1.51–1.38 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.5, 179.3, 172.7, 166.9, 163.8, 142.8, 141.4, 137.3, 136.4, 134.2, 132.5, 132.2, 132.1, 132.0, 131.5, 130.3, 130.0, 129.6, 129.1, 129.0, 128.1, 128.0, 127.7, 127.6, 127.3, 126.7, 126.6, 126.0, 125.7, 123.8, 122.6, 120.8, 111.5, 79.5, 68.8, 62.7, 56.2, 52.4, 47.1, 39.7, 30.1, 22.6 ppm.

HRMS (ESI, *m/z*) calcd. for C₄₆H₄₁N₄NiO₆⁺ [M+H]⁺: 803.2374, found: 803.2368.

 $[\alpha]_D^{25}$ +1500 (*c* 0.02, MeOH).

Ni(II) complex (S,R)-3ia

Starting from a chiral Ni(II) complex (*S*,*S*)-**1i** and *N*-(pivaloyloxy)benzamide **2a**, the desired product (*S*,*R*)-**3ia** (*the second eluting diastereomer*) was isolated as an orange powder (29 mg, 36% yield); eluent: $CH_2Cl_2/PE/Et_3N$ (8:1:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.35 (s, 1H, NH), 8.36–8.26 (m, 3H), 8.19 (d, *J* = 8.1 Hz, 2H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.64–7.55 (m, 3H), 7.49–7.38 (m, 4H), 7.31–7.26 (m, 2H), 7.25– 7.20 (m, 1H), 7.16 (t, *J* = 7.3 Hz, 1H), 7.08–7.02 (m, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.77 (s, 1H), 6.58–6.50 (m, 2H), 4.52 (d, *J* = 12.6 Hz, 1H), 3.93 (s, 3H), 3.42–3.26 (m, 4H), 3.06 (d, *J* = 13.6 Hz, 1H), 3.02– 2.92 (m, 1H), 2.24–2.03 (m, 3H), 2.00–1.92 (m, 1H), 1.77–1.65 (m, 1H), 1.57–1.44 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 180.7, 178.9, 172.8, 166.9, 163.4, 142.7, 141.1, 138.1, 136.5, 136.2, 134.0, 133.4, 133.0, 132.4, 131.8, 131.6, 130.4, 130.3, 130.1, 129.1, 129.0, 128.5, 127.9, 127.7, 127.2, 127.0, 126.7, 126.1, 124.8, 123.9, 120.8, 104.8, 78.7, 69.5, 64.3, 58.5, 52.4, 46.6, 43.2, 30.4, 23.0 ppm.

HRMS (ESI, *m*/*z*) calcd. for C₄₆H₄₁N₄NiO₆⁺ [M+H]⁺: 803.2374, found: 803.2373.

 $[\alpha]_{D}^{25}$ +2100 (*c* 0.02, MeOH).

General procedure for decomposition of the chiral Ni(II) complexes (S,S)-3aa and (S,S)-3ba

To a suspension of the Ni(II) complex (S,S)-**3aa**(1.0 mmol) or (S,S)-**3ba** (1.3 mmol) in methanol (15.0 mL) was added 6N HCl (15.0 mL) and water (15 mL) and the whole was heated at 60 °C. Upon disappearance of the red color of the starting complex, the reaction was stopped. Afterward, the solution was changed to a suspension due to a white precipitate (HCl salt of (S)-**BPB**) appearing. The precipitate was filtered and washed with water (25.0 mL). The remaining amount of (S)-**BPB** was extracted with CH₂Cl₂ (2x5 mL). The aqueous layer was quenched by 25% aqueous NH₃ solution (3.0 mL) until pH=7 and concentrated to dryness and the residue was chromatographed with a cation exchange resin (Dowex 50x2, H⁺-form) (eluent: water and then 5% aqueous solution of ammonia) to afford the desired amino acid **5** as a white powder.

Amino Acid (S)-5a

Starting from the chiral Ni(II) complex (*S*,*S*)-**3aa** (0.7 g, 1.0 mmol), the desired AA (*S*)-**5a** was isolated as a white powder (163 mg, 70% yield).

Enantiomeric purity (>99% *ee*) was established by chiral HPLC analysis (Diasphere-110-Chirasel-E column: Nautilus-R, BioChemMack S&T, 5.0 mkm, 4.0x250 mm, methanol/0.1 M aq. solution of NaH₂PO₄*2H₂O = 20/80, flow rate = 0.8 mL/min, λ = 220 nm, 25 °C), t_R = 27.5 min (see Figure S111).

Amino Acid (S)-5b

Starting from the chiral Ni(II) complex (*S*,*S*)-**3ba** (0.87 g, 1.3 mmol), the desired AA (*S*)-**5b** was isolated as a white powder (256 mg, 80% yield).

Enantiomeric purity (>99% *ee*) was established by chiral HPLC analysis (Diasphere-110-Chirasel-E column: Nautilus-R, BioChemMack S&T, 5.0 mkm, 4.0x250 mm, methanol/0.1 M aq. solution of NaH₂PO₄*2H₂O = 20/80, flow rate = 0.8 mL/min, λ = 220 nm, 25 °C), t_R = 29.6 min (see Figure S111).

X-ray diffraction study of the Ni(II) complex (S,R)-4ha

Single crystal X-ray study of the Ni(II) complex was carried out in Center for molecule composition studies of INEOS RAS.

Dark-red single crystals of the Ni(II) complex (*S*,*R*)-**4ha** were obtained by slow interdiffusion of a twophase system containing hexane and a solution of the compound in CHCl₃. Single-crystal X-ray diffraction experiments were carried out with Bruker SMART APEX II diffractometer (graphite monochromated MoK_a radiation, $\lambda = 0.71073$ Å, ω -scan technique). The APEX II software^[S7] was used for collecting frames of data, indexing reflections, determination of lattice constants, integration of intensities of reflections, scaling and absorption correction. All calculations (space group and structure determination, refinements, graphics, and structure reporting) were made using the SHELXL2014^[S8] and OLEX2^[S9] program packages. The structures were solved by direct methods and refined by the full-matrix least-squares technique against F^2 with the anisotropic thermal parameters for all non-hydrogen atoms. Positions of hydrogen atoms were calc 4ulated and all were included in the refinement by the riding model with $U_{iso}(H) = 1.5U_{eq}(X)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(X)$ for other atoms. Experimental details and crystal parameters are listed in Tables S1.

CCDC 2203331 contains the supplementary crystallographic data for the complex (S,R)-4ha. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/structures</u>.

S25

(S,R)-4ha (CCDC 2203331)

Table S1. Crystallographic data for the complex (S,R)-4ha			
datablock	(<i>S</i> , <i>R</i>)-4ha		
Empirical formula	C ₉₁ H ₇₅ Cl ₃ F ₆ N ₈ Ni ₂ O ₈		
Formula weight	1746.36		
Anode [λ, Å]	MoKα [0.71073] sealed tube		
Crystal size, mm	0.31×0.18×0.04		
Crystal system	orthorhombic		
a, Å	15.529(2)		
b, Å	19.627(3)		
c, Å	31.278(4)		
α, °	90		
β, °	90		
γ, °	90		
Volume, Å ³	9533(2)		
Density, g/cm ⁻³	1.217		
Temperature, K	120		
$\mu, \rm mm^{-1}$	0.545		
Space group	P2 ₁ 2 ₁ 2 ₁		
Ζ	4		
F(000)	3608.0		
Reflections collected	172297		
Independent reflections	18714		
Parameters	1051		
R _{int}	0.1473		
$2\theta_{\min}$ - $2\theta_{\max}$, °	2.928–52		
wR ₂ (all reflections)	0.1194		
$R_1(I>2\sigma(I))$	0.0998		
GOF	1.019		
$\rho_{\rm min}/\rho_{\rm max}, e {\rm \AA}^{-3}$	-0.78/1.91		
Flack parameter	0.139(7)		

References

- S1. Y. N. Belokon, V. I. Tararov, V. I. Maleev, T. F. Savel'yeva, M. G. Ryzhov, *Tetrahedron: Asymmetry* **1998**, *9*, 4249.
- S2. S. Collet, P. Bauchat, R. Danion-Bougot, D. Danion, Tetrahedron: Asymmetry 1998, 9, 2121.
- S3. S. Parpart, A. Petrosyan, S. J. Ali Shah, R. A. Adewale, P. Ehlers, T. Grigoryan, A. F. Mkrtchyan, Z. Z. Mardiyan, A. J. Karapetyan, A. H. Tsaturyan, A. S. Saghyan, J. Iqbale, P. Langer, *RSC Adv.* 2015, 5, 107400.
- S4. C. White, A. Yates, P. M. Maitlis, Inorg. Synth. 1992, 29, 228.
- S5. C. Feng, T. P. Loh, Angew. Chem., Int. Ed. 2014, 53, 2722.
- S6. E. A. Trifonova, N. M. Ankudinov, A. A. Mikhaylov, D. A. Chusov, Y. V. Nelyubina, D. S. Perekalin, *Angew. Chem. Int. Ed.* **2018**, *57*, 7714.
- S7. APEX II software package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, WI 5317, 2005.
- S8. G. M. Sheldrick, Acta Cryst., Sect. A, 2008, 64, 112.
- S9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.

NMR spectra

S34

S42

S53

Figure S29. ¹H (400 MHz) NMR spectrum of the Ni(II) complex (*S*,*S*)-3ab (in CDCl₃)

Figure S33. ¹H (400 MHz) NMR spectrum of the Ni(II) complex (*S*,*S*)-3ad (in CDCl₃)

S64

Figure S51. ¹H (400 MHz) NMR spectrum of the Ni(II) complex (*S*,*S*)-4ba (in CDCl₃)

Figure S69. ¹H (300 MHz) NMR spectrum of the Ni(II) complex (*S*,*R*)-3da (in CDCl₃)

Figure S83. ¹⁹F (376 MHz) NMR spectrum of the Ni(II) complex (*S*,*S*)-3ea (in CDCl₃)

S111

S121

S132

