Supporting Information

Photocatalyst-free Visible Light Driven Synthesis of *gem*-dihaloenones from Alkynes, Tetrahalomethanes and Water

Fuqing Zhang,^a Zixiang Wei,^a Wei Wu,^b Na Liu,^{a,b} Xinhan Li,^a Luqian Zou,^a Kaiming Wang,^a Jianbin Xu^{*a, b} and Baomin Fan^{* a, b}

[a] School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China.

[b] Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of

Education, Yunnan Minzu University, Kunming, Yunnan, 650504, China

E-mail addresses: xujianbin@ymu.edu.cn (Dr. Jianbin Xu); adams.bmf@hotmail.com (Prof. Baomin Fan).

Table of contents

1. General information		
 2. General procedure for the synthesis of α- gem-dihaloenones	2 2 	
		4
		5
	7. Spectral data of products	5
	8. NMR Spectral of α-gem-dihalovinyl ketones	
9. References	57	

1. General information

All commercially available reagents were obtained from commercial suppliers and used without further purification. All catalytic experiments were performed under an atmosphere of argon by using Glove Box. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker NMR spectrometer in CDCl₃ using TMS as an internal reference with chemical shift values reported in ppm. Abbreviations used in the NMR follow-up experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.

HRESIMS data were recorded on an LCMS-IT-TOF mass spectrometer (Shimadzu, Kyoto, Japan).

2. General procedure for the synthesis of α -gem-dihaloenones

To an oven dried Schlenk-tube, CBr₄ (0.4 mmol), Methanol (1.5 mL) were added under argon atmosphere. phenylacetylene (0.2 mmol) and ultrapure water (100 μ L) was added to the reaction mixture. The reaction mixture was stirred under the irradiation of 30 W LEDs (460 nm - 470 nm) at room temperature. After completion of the reaction (indicated by GC), the solution was concentrated in vacuum and the product was purified by silica gel column chromatography.

3. Control Experiment with H₂¹⁸O

To an oven dried Schlenk-tube, CBr₄ (0.4 mmol), Methanol (1.5 mL) were added under argon atmosphere. phenylacetylene (0.2 mmol) and H₂¹⁸O (100 μ L) was added to the reaction mixture. The reaction mixture was stirred under the irradiation of 30 W LEDs (460 nm - 470 nm) at room temperature. After completion of the reaction (indicated by GC), the solution was concentrated in vacuum and the product was purified by silica gel column chromatography to obtain **3a-¹⁸O**.

Figure S2. GC spectrum of 3a-18O

4. UV-Vis Absorption Spectra

The UV-Vis Absorption Spectra of phenylacetylene and CBr₄ in Methanol was introduced to a 1 cm path length quartz cuvette and analyzed using a Agilent Technologies Cary 8454 UV/ViS. The UV/vis spectrum of phenylacetylene showed no absorption. The ultraviolet/visible spectra of CBr₄ show weak absorption.

Figure S2. UV-Vis absorption spectra of phenylacetylene and CBr₄

5. Light/Dark experiment

To an oven dried Schlenk-tube, CBr₄ (0.4 mmol), Methanol (1.5 mL) were added under argon atmosphere. phenylacetylene (0.2 mmol) and ultrapure water (100 μ L) was added to the reaction mixture. The reaction mixture was stirred under the irradiation of 30 W LEDs (460 nm - 470 nm) at room temperature. The reaction tube was wrapped in tin foil and a 10 μ L sample of the reaction mixture was taken with a syringe and measured by GC. After being stirred for 4 hours in dark, a 10 μ L sample of the reaction mixture was taken with a syringe and measured by GC. The reaction mixture was then irradiated with a 30 W blue LEDs lamp and stirred for 4 hours. This process was repeated three times.

Figure S3. Light/Dark experiment

Figure S4. Emission spectrum

7. Spectral data of products

3,3-dibromo-1-phenylprop-2-en-1-one (3a)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3a** was obtained as a yellow oil. Yield: 42.2 mg (73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 8.4, 1.3 Hz, 2H), 7.85 (s, 1H), 7.64 – 7.59 (m, 1H), 7.50 (dd, J = 8.3, 7.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.9, 136.5, 134.0, 132.7, 129.0, 128.8, 103.6.

3,3-dibromo-1-(4-methoxyphenyl)prop-2-en-1-one (3b)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3b** was obtained as a yellow oil. Yield: 54.3 mg (85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.9 Hz, 2H), 7.76 (s, 1H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.7, 164.3, 133.2, 131.3, 129.3, 114.2, 101.7, 55.7.

3,3-dibromo-1-(4-ethylphenyl)prop-2-en-1-one (3c)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3c** was obtained as a colorless oil. Yield: 52.6 mg (83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.82 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.6, 151.2, 134.1, 132.9, 129.1, 128.5, 102.7, 29.1, 15.2.

3,3-dibromo-1-(4-butylphenyl)prop-2-en-1-one (3d)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3d** was obtained as a yellow oil. Yield: 57.4 mg (83%). ¹H NMR (400 MHz, Chloroform-d) δ

7.83 (d, J = 8.0 Hz, 3H), 7.33 – 7.26 (m, 2H), 2.72 – 2.63 (m, 2H), 1.61 (pd, J = 7.6, 1.5 Hz, 2H), 1.35 (ddd, J = 14.9, 7.4, 1.5 Hz, 2H), 0.97 – 0.89 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.5, 150.0, 134.1, 132.9, 129.0, 129.0, 102.7, 35.9, 33.3, 22.4, 14.0.

3,3-dibromo-1-(4-isopropylphenyl)prop-2-en-1-one (3e)

Purified by silica gel chromatography (petroleum), the desired product **3e** was obtained as a yellow oil. Yield: 50.8 mg (76%). ¹H NMR (400 MHz, Chloroform-d) δ 7.91 – 7.85 (m, 2H), 7.83 (d, J = 1.1 Hz, 1H), 7.53 – 7.47 (m, 2H), 1.34 (d, J = 1.2 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 187.5, 158.0, 133.9, 132.9, 128.8, 126.0, 102.8, 35.4, 31.2. HRMS (ESI) calcd for C₁₂H₁₃Br₂O⁺ [M+H]⁺ 330.9328, found 330.9324

3,3-dibromo-1-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one (3f)

Purified by silica gel chromatography (petroleum), the desired product **3f** was obtained as a yellow solid. Yield: 45.9 mg (61%). M.P. 39-41 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.9 Hz, 2H), 7.82 (s, 1H), 7.32 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.4, 153.3 (q, *J* = 11.1 Hz), 134.7, 132.1, 130.9, 120.7, 104.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.6. HRMS (ESI) calcd for C₁₀H₆Br₂F₃O₂⁺[M+H]⁺ 372.8681, found 372.8686

3,3-dibromo-1-(4-fluorophenyl)prop-2-en-1-one (3g)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3g** was obtained as a yellow oil. Yield: 31.7 mg (51%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (dd, J = 8.9, 5.3 Hz, 2H), 7.79 (s, 1H), 7.20 – 7.13 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.4, 167.6, 165.0, 132.9 (d, J = 3.1 Hz), 132.5, 131.6 (d, J = 9.5 Hz), 116.3 (d, J = 22.0 Hz), 103.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.3.

3,3-dibromo-1-(4-chlorophenyl)prop-2-en-1-one (3h)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3h** was obtained as a yellow solid. Yield: 31.9 mg (49%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.6 Hz, 2H), 7.80 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.7, 140.6, 134.9, 132.2, 130.2, 129.4, 104.3.

3,3-dibromo-1-(4-bromophenyl)prop-2-en-1-one (3i)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3i** was obtained as a yellow oil. Yield: 49.4 mg (67%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (t, *J* = 4.3 Hz, 3H), 7.64 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.9, 135.2, 132.4, 132.1, 130.2, 129.3, 104.5.

3,3-dibromo-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (3j)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3**j was obtained as a yellow solid. Yield: 27.3 mg (38%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (dt, J = 8.0, 0.9 Hz, 2H), 7.86 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.8, 139.4 (d, J = 1.4 Hz), 135.1 (q, J = 32.8 Hz), 131.9,

130.4, 129.1, 128.8, 126.1 (q, J = 3.7 Hz), 124.9 (d, J = 2.7 Hz), 122.2, 105.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.2.

1-(4-acetylphenyl)-3,3-dibromoprop-2-en-1-one (3k)

Purified by silica gel chromatography (petroleum), the desired product **3k** was obtained as a colorless oil. Yield: 34.1 mg (51%). M.P. 62-63 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.99 (m, 4H), 7.87 (s, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.4, 187.1, 140.7, 139.8, 132.1, 128.9, 105.3, 27.0. HRMS (ESI) calcd for C₁₁H₉Br₂O₂⁺ [M+H]⁺ 330.8964, found 330.8966

3,3-dibromo-1-(3-methoxyphenyl)prop-2-en-1-one (31)^[2]

Purified by silica gel chromatography (petroleum), the desired product **31** was obtained as a yellow oil. Yield: 39.4 mg (62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.50 – 7.45 (m, 2H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.16 – 7.12 (m, 1H), 3.86 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.6, 160.1, 137.8, 132.7, 130.0, 121.4, 120.6, 112.8, 103.6, 55.6.

3,3-dibromo-1-(*m*-tolyl)prop-2-en-1-one (**3m**)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3m** was obtained as a yellow oil. Yield: 43.9 mg (72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.75 – 7.71 (m, 2H), 7.44 – 7.35 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.0, 138.9, 136.5, 134.8, 132.9, 129.2, 128.9, 126.1, 103.2,

methyl 3-(3,3-dibromoacryloyl)benzoate (3n)

Purified by silica gel chromatography (petroleum), the desired product **3n** was obtained as a yellow solid. Yield: 38.6 mg (55%). M.P. 94-96 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (t, *J* = 1.5 Hz, 1H), 8.27 (dt, *J* = 7.8, 1.4 Hz, 1H), 8.15 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.91 (s, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.8, 166.1, 136.9, 134.6, 132.8, 132.0, 131.1, 129.6, 129.3, 105.0, 52.6. HRMS (ESI) calcd for C₁₁H₉Br₂O₃⁺ [M+H]⁺ 346.8913, found 346.8916

3,3-dibromo-1-(2-methoxyphenyl)prop-2-en-1-one (30)

Purified by silica gel chromatography (petroleum), the desired product **30** was obtained as a yellow oil. Yield: 20.8 mg (87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.70 (dd, J = 7.7, 1.9 Hz, 1H), 7.49 (ddd, J = 8.4, 7.3, 1.9 Hz, 1H), 7.05 – 6.99 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.1, 158.7, 136.2, 134.6, 131.2, 127.7, 121.1, 111.9, 101.6, 56.0. HRMS (ESI) calcd for C₁₀H₉Br₂O₂⁺[M+H]⁺ 318.8964, found 318.8969

3,3-dibromo-1-(o-tolyl)prop-2-en-1-one (**3p**)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3p** was obtained as a yellow oil. Yield: 20.9 mg (34%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.42 (td, *J* = 7.5, 1.5 Hz, 1H), 7.29 (dd, *J* = 11.5,

21.5.

7.9 Hz, 2H), 2.54 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.0, 139.4, 136.7, 135.4, 132.3, 132.2, 129.6, 126.0, 103.0, 21.2.

3,3-dibromo-1-(3,5-dimethoxyphenyl)prop-2-en-1-one (3q)

Purified by silica gel chromatography (petroleum), the desired product **3q** was obtained as a yellow oil. Yield: 43.6 mg (62%). M.P. 68-60°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.05 (d, *J* = 2.1 Hz, 2H), 6.67 (s, 1H), 3.84 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.5, 161.2, 138.4, 132.6, 106.5, 106.2, 103.7, 55.8.

3,3-dibromo-1-(naphthalen-2-yl)prop-2-en-1-one (3r)^[3]

Purified by silica gel chromatography (petroleum), the desired product **3r** was obtained as a yellow oil. Yield: 42.1 mg (62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (s, 1H), 8.03 – 7.97 (m, 3H), 7.91 (dd, *J* = 13.0, 8.4 Hz, 2H), 7.66 – 7.55 (m, 2H). ¹¹³C NMR (101 MHz, Chloroform-*d*) δ 187.9, 136.0, 133.9, 132.9, 132.6, 131.0, 129.8, 129.2, 129.1, 128.0, 127.2, 124.0, 103.2.

3,3-dibromo-1-(thiophen-2-yl)prop-2-en-1-one (3s)^[1]

Purified by silica gel chromatography (petroleum), the desired product **3s** was obtained as a yellow solid. Yield: 12.2 mg (21%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.75 – 7.71 (m, 2H), 7.17 (dd, J = 4.9, 3.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.4, 144.4, 135.4, 132.7, 131.4, 128.6, 105.0.

3,3-dibromo-1-cyclohexylprop-2-en-1-one (**3t**)

Purified by silica gel chromatography (petroleum), the desired product **3t** was obtained as a colorless oil. Yield: 20%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (s, 1H), 2.37 (tt, *J* = 11.0, 3.4 Hz, 1H), 1.90 – 1.76 (m, 4H), 1.67 (ddd, *J* = 11.3, 3.5, 2.1 Hz, 1H), 1.40 – 1.21 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.4, 133.4, 103.5, 51.6, 28.1, 25.9, 25.6. HRMS (ESI) calcd for C₉H₁₃Br₂O⁺ [M+H]⁺ 294.9328, found 294.9324.

3,3-dibromo-2-methyl-1-phenylprop-2-en-1-one (3u)^[2]

Purified by silica gel chromatography (petroleum), the desired product **3u** was obtained as a colorless oil. Yield: 19 mg (31%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.91 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (dd, *J* = 8.3, 7.0 Hz, 2H), 2.08 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.1, 142.6, 134.4, 133.8, 129.7, 129.2, 88.8, 22.4.

3,3-dibromo-1-(phenanthren-9-yl)prop-2-en-1-one (**3**v)

Purified by silica gel chromatography (petroleum), the desired product 3v was obtained as a yellow solid. Yield: 11.9 mg (15%). M.P. 113-114°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.76 – 8.61 (m, 3H), 8.17 (s, 1H), 7.99 (dd, J = 7.9, 1.4 Hz, 1H), 7.85 (s, 1H), 7.78 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.75 – 7.63 (m, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 190.7, 135.7, 133.8, 132.4, 132.1, 131.0, 130.3, 129.9, 129.6, 128.4, 127.9, 127.6, 127.4, 126.5, 123.1, 122.9, 103.9.

3,3-dibromo-1-(4-ethynylphenyl)prop-2-en-1-one (3w)

Purified by silica gel chromatography (petroleum), the desired product **3w** was obtained as a yellow solid. Yield: 11.4 mg (18%). M.P. 77-78°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.82 (s, 1H), 7.60 (d, *J* = 8.5 Hz, 2H), 3.29 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.0, 136.2, 132.7, 132.3, 128.7, 127.8, 104.4, 82.7, 81.2.

3,3-dichloro-1-phenylprop-2-en-1-one (4a)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4a** was obtained as a colorless oil. Yield: 20 mg (50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 7.0 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.28 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.8, 137.1, 135.7, 133.9, 129.0, 128.6, 124.2.

3,3-dichloro-1-(p-tolyl)prop-2-en-1-one (4b)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4b** was obtained as a colorless oil. Yield: 26.0 mg (60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.0 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.28 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.8, 137.1, 135.7, 133.9, 129.0, 128.6, 124.2.

3,3-dichloro-1-(4-ethylphenyl)prop-2-en-1-one (4c)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4c** was obtained as a colorless oil. Yield: 32.0 mg (70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.25 (s, 1H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.5, 151.1, 135.0, 134.7, 128.9, 128.5, 124.4, 29.1, 15.2.

3,3-dichloro-1-(4-isopropylphenyl)prop-2-en-1-one (4d)

Purified by silica gel chromatography (petroleum), the desired product **4d** was obtained as a colorless oil. Yield: 31.8 mg (65%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.25 (s, 1H), 2.97 (hept, *J* = 7.0 Hz, 1H), 1.27 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.4, 155.6, 134.9, 134.9, 129.0, 127.1, 124.4, 34.5, 23.7. HRMS (ESI) calcd for C₁₂H₁₃Cl₂O⁺ [M+H]⁺ 243.0338, found 243.0332.

1-(4-butylphenyl)-3,3-dichloroprop-2-en-1-one (4e)

Purified by silica gel chromatography (petroleum), the desired product **4e** was obtained as a colorless oil. Yield: 36.1 mg (70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.4 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.25 (s, 1H), 2.71 – 2.64 (m, 2H), 1.62 (p, J = 7.5 Hz, 2H), 1.36 (h, J = 7.3 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.4, 149.8, 134.9, 134.7, 129.0, 128.8, 124.4, 35.9, 33.3, 22.4, 14.0. HRMS (ESI) calcd for C₁₃H₁₅Cl₂O⁺ [M+H]⁺ 257.0494, found 254.0498.

3,3-dichloro-1-(4-methoxyphenyl)prop-2-en-1-one (4f)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4f** was obtained as a colorless oil. Yield: 37.6 mg (81%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 9.0 Hz, 2H), 7.20 (s, 1H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.5, 164.2, 131.1, 129.9, 124.5, 114.2, 55.7.

3,3-dichloro-1-(4-fluorophenyl)prop-2-en-1-one (4g)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4g** was obtained as a yellow oil. Yield: 15.2 mg (35%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (dd, J = 8.9, 5.3 Hz, 2H), 7.24 (s, 1H), 7.17 (t, J = 8.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3, 167.5, 165.0, 135.9, 133.4 (d, J = 3.0 Hz), 131.4 (d, J = 9.5 Hz), 123.9, 116.2 (d, J = 22.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.6.

3,3-dichloro-1-(4-chlorophenyl)prop-2-en-1-one (4h)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4h** was obtained as a colorless oil. Yield: 20.3 mg (43%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.22 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.6, 140.4, 136.4, 135.4, 130.0, 129.4, 123.7.

1-(4-bromophenyl)-3,3-dichloroprop-2-en-1-one (4i)^[4]

Purified by silica gel chromatography (petroleum), the desired product **4i** was obtained as a colorless oil. Yield: 19.6 mg (35%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 - 7.76 (m, 2H), 7.66 - 7.61 (m, 2H), 7.21 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.7, 136.5, 135.8, 132.4, 130.1, 129.2, 123.6.

4j

methyl 3-(3,3-dichloroacryloyl)benzoate (4j)

Purified by silica gel chromatography (petroleum), the desired product **4j** was obtained as a colorless oil. Yield: 21.3 mg (41%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (t, *J* = 1.8 Hz, 1H), 8.26 (dt, *J* = 7.7, 1.4 Hz, 1H), 8.13 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.59 (t, *J* = 7.9 Hz, 1H), 7.32 (s, 1H), 3.96 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.8, 166.2, 137.4, 136.9, 134.5, 132.7, 131.1, 129., 129.3, 123.6, 52.6.

3,3-dichloro-1-(2-methoxyphenyl)prop-2-en-1-one (4k)

Purified by silica gel chromatography (petroleum), the desired product **4k** was obtained as a colorless oil. Yield: 37.8 mg (82%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (dd, J = 7.7, 1.8 Hz, 1H), 7.49 (ddd, J = 8.4, 7.4, 1.9 Hz, 1H), 7.31 (s, 1H), 7.03 (dd, J = 7.5, 1.0 Hz, 1H), 6.96 (dd, J = 8.4, 1.0 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.4, 158.6, 134.4, 133.8, 131.1, 128.1, 128.0, 121.1, 111.8, 55.9. HRMS (ESI) calcd for C₁₀H₉Cl₂O₂⁺ [M+H]⁺ 230.9974, found 230.9971.

3,3-dichloro-1-(3,5-dimethoxyphenyl)prop-2-en-1-one (41)

Purified by silica gel chromatography (petroleum), the desired product **4I** was obtained as a colorless oil. Yield: 23.4 mg (45%). M.P. 36-37°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (s, 1H), 7.03 (d, *J* = 2.3 Hz, 2H), 6.67 (t, *J* = 2.3 Hz, 1H), 3.83 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.3, 161.2, 139.0, 135.7, 124.2, 106.4, 106.1, 55.8. HRMS (ESI) calcd for C₁₁H₁₁Cl₂O₃⁺ [M+H]⁺ 261.0080, found261.0076.

4m

3,3-dichloro-1-(naphthalen-2-yl)prop-2-en-1-one (4m)

Purified by silica gel chromatography (petroleum), the desired product **4m** was obtained as a colorless oil. Yield: 18.1 mg (36%). M.P. 51-53°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.39 (m, 1H), 8.03 – 7.96 (m, 2H), 7.94 – 7.87 (m, 2H), 7.60 (dddd, J = 21.6, 8.2, 6.8, 1.4 Hz, 2H), 7.41 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 186.7, 136.0, 135.5, 134.4, 132.6, 130.7, 129.8, 129.1, 129.0, 128.0, 127.2, 124.4, 124.0. HRMS (ESI) calcd for C₁₃H₉Cl₂O⁺ [M+H]⁺ 251.0025, found 251.0022.

3,3-dichloro-1-(thiophen-2-yl)prop-2-en-1-one (4n)^[2]

Purified by silica gel chromatography (petroleum), the desired product **4n** was obtained as a colorless solid. Yield: 4.2 mg (10%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.70 (m, 2H), 7.23 (s, 1H), 7.17 (dd, *J* = 4.9, 3.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 144.8, 136.6, 135.2, 132.4, 128.5, 123.3.

8. NMR Spectral of α -gem-dihalovinyl ketones

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

 $\begin{array}{c}
 \chi^{7.89} \\
 \chi^{7.81} \\
 \chi^{7.49} \\
 \chi^{7.49} \\
 \chi^{7.47}
\end{array}$

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

9. References

- 1. X. Zeng, Y. Xu, J. Liu, Y. Deng, Org. Lett., 2021, 23: 9058-9062.
- 2. Z. Y. Xu, Y. P. Liu, X. Liu, R. Fu, W. J. Hao, J. S. Tu, B. Jiang, *Adv. Synth. Catal.*, **2022**, *364*, 2666-2672.
- 3. R. Taylor, S. Beltrán-Rodil, M.Edwards, D.Pugh, M. Reid, Synlett, 2009, 2010, 602-606.
- 4. D. K. Li, Tetrahedron Lett., 2021, 87: 153551.