Diastereoselective Reversible C-C Bond Exchange of Oxindole-Thiazolidinediones for Dynamic Combinatorial Chemistry

Ananta Gorai, Gargi Chakraborti, Soumya Jyoti Basak and Jyotirmayeee Dash*

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India, E-mail: <u>ocjd@iacs.res.in</u>.

Table of contents

1.0 General Information	S 2
2.0 Synthesis of oxindolyl-thiazolidinediones	S 3
3.0 Solvent optimization for reversible exchange reaction	S 8
4.0 Optimization of exchange reaction condition in aqueous media	S 8
5.0 Reversible exchange reaction at optimised condition	S 9
6.0 Synthesis of bi-indolinedione derivatives (GP-4)	S 10
7.0 Potential Dynamic Combinatorial Library	S12
8.0 HPLC data	S12
9.0 Crystal data	S23
10.0 NMR and mass spectra	S 30

1.0 General information

All experiments were carried out in flame-dried reaction vials. Solvents were dried using standard procedures. All starting materials were obtained from commercial suppliers and used as received. Products were purified by flash chromatography on silica gel (100-200 mesh, Merck). Unless otherwise stated, yields refer to analytical pure samples. NMR spectra were recorded in CDCl₃ and DMSO-d₆. ¹**H** NMR spectra were recorded at 500 MHz using Brüker AVANCE 500 MHz and JEOL 400 MHz instruments at 278 K. Signals are quoted as δ values in ppm using residual protonated solvent signals as internal standard (CDCl₃: δ 7.26 ppm). Data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on either a JEOL-400 (100 MHz), or a Brüker AVANCE 500 MHz (125 MHz) with complete proton decoupling. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane with the solvent as the internal reference (CDCl₃: δ 77.26 ppm). **HRMS** analyses were performed with Q-TOF YA263 high resolution (Water Corporation) instruments by +ve mode electrospray ionization.

2.0 Synthesis of oxindolyl-thiazolidinediones 2

General procedure for the aldol reaction (GP-1)¹⁹**:** To a solution of thiazolidinedione **3** (1.0 equiv) in water was added isatin **1** (1.0 equiv) and stirred at room temperature until the complete consumption of the starting materials. The completion of the reaction was checked by TLC. The reaction mixture was filtered and dried under vacuum to afford the oxindolyl-thiazolidinediones **2** as solid residue in high yields and purity. Compound **2aa** was purified by flash chromatography using ethyl acetate—hexane (Table S1).

Table S1. Synthesis of oxindolyl-thiazolidinedione conjugates via on-water aldol reactions.

3-Benzyl-5-(3-hydroxy-1-methyl-2-oxoindolin-3-yl)-thiazolidine-2,4-dione (2aa)¹⁹

Using the general procedure (**GP-1**), methyl protected isatin **1b** (77.76 mg, 0.48 mmol) and benzyl protected thiazolidinedione **3b** (100 mg, 0.48 mmol) were stirred in water for 24 h. After the completion of the reaction, the crude mixture was extracted with ethyl acetate (3×15 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was then purified by flash chromatography with ethyl acetate–hexane (5/95 to

20/80) to afford **2aa** (166.9 mg, 94%) as a viscous liquid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.58 (d, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.13 (s, 1H), 7.10 (t, *J* = 6.7 Hz, 2H), 7.05 – 6.99 (m, 2H), 6.50 (d, *J* = 7.3 Hz, 2H), 5.26 (s, 1H), 4.45 (m, 2H), 3.15 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.5, 170.9, 169.9, 144.1, 134.8, 130.7, 128.3, 127.1, 126.2, 124.3, 122.4, 108.9, 74.2, 57.9, 43.9, 26.2. HRMS (ESI) calculated for C₁₉H₁₆N₂KO₄S [M+K]⁺ 407.0462, found 407.0459.

3-Benzyl-5-(1-benzyl-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (2ab)

Using the general procedure (**GP-1**), benzyl protected isatin **2a** (100 mg, 0.4214 mmol) and benzyl protected thiazolidinedione **3b** (87.35 mg, 0.4214 mmol) were stirred for 48 h in water to afford compound **2ab** (170.3 mg, 91%) as an off-white solid. NMR of *anti* diastereomer: ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 4.2 Hz, 4H), 7.37 (dd, J = 10.4, 5.8 Hz, 2H), 7.32 (d, J = 6.3 Hz, 4H), 7.28 (s, 2H), 7.07 (t, J = 7.5 Hz,

1H), 6.77 (d, J = 7.9 Hz, 1H), 5.07 (d, J = 15.7 Hz, 1H), 4.97 (s, 1H), 4.90 (d, J = 15.7 Hz, 1H), 4.80 (d, J = 14.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 171.9, 169.9, 143.7, 135.1, 134.7, 131.4, 129.0, 128.8, 128.2, 128.0, 127.7, 124.5, 123.7, 110.3, 60.7, 45.9, 44.6. HRMS (ESI) calculated for C₂₅H₂₀N₂NaO₄S [M+Na]⁺ is 467.1041, found 467.1042.

3-Benzyl-5-(1-ethyl-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (2ac)

Using the general procedure (**GP-1**), ethyl protected isatin **1d** (100 mg, 0.57 mmol) and benzyl protected thiazolidinedione **3b** (118 mg, 0.57 mmol) were stirred in water for 12 hours to afford **2ac** (202.8 mg, 93%) as an orange solid. NMR of major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.15 (d, *J* = 3.9 Hz, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.9 Hz, 1H), 4.83

(s, 1H), 4.73 - 4.62 (m, 2H), 3.83 (dd, J = 14.2, 7.2 Hz, 1H), 3.69 (dt, J = 14.2, 7.2 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 171.7, 170.1, 143.5, 134.7, 131.5, 128.7, 128.2, 126.1, 124.7, 123.5, 109.3, 54.5, 45.6, 35.3, 12.5. HRMS (ESI) calculated for C₂₀H₁₉N₂O₄S [M+H]⁺ is 383.1066, found 383.1066.

3-Benzyl-5-(3-hydroxy-2-oxo-1-phenylindolin-3-yl)-thiazolidine-2,4-dione (2ad)¹⁹

Using the general procedure (GP-1), phenyl protected isatin 1c (37.9 mg, 0.17 mmol, 1.0 equiv)

and benzyl protected thiazolidinedione **3b** (35.2 mg, 0.17 mmol, 1.0 equiv) were stirred for 48 h in water to afford **2ad** (67.3 mg, 92%) as a colorless solid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) 7.68 (d, 1H, J = 8.9 Hz), 7.63 (t, 2H, J = 9.6 Hz), 7.51 (t, 1H, J = 9.4 Hz), 7.45–7.43 (m, 2H), 7.40–7.38 (m, 1H), 7.14 (d, 1H, J = 9.1 Hz), 7.10–7.04 (m, 3H), 6.73 (d, 1H, J = 9.9 Hz), 6.50 (d, 2H, J = 9.1 Hz), 5.38 (s, 1H), 4.72–4.35

(m, 2H); ¹³C NMR (125 MHz, DMSO-d₆) 174.2, 170.9, 170.3, 143.8, 134.8, 134.0, 130.9, 129.8, 128.4, 128.3, 127.1, 126.2, 125.9, 124.9, 123.1, 109.3, 74.3, 58.3, 44.0. HRMS (ESI) calculated for C₂₄H₁₉N₂O₄S [M+H]⁺ 431.1060, found 431.1063.

5-(1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)-3-methylthiazolidine-2,4-dione (2ba)

Using the general procedure (**GP-1**), benzyl protected isatin **1a** (147.13 mg, 0.62 mmol) and methyl protected thiazolidinedione **3d** (81.3 mg, 0.62 mmol) were stirred in water for 48 hours to afford **2ba** (214.5 mg, 94%) as an orange solid. NMR of major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.24 (dd, *J* = 4.8, 1.3 Hz, 3H), 7.13 (s, 2H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H),

4.86 (s, 1H), 4.72 - 4.60 (m, 2H), 3.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 135.0, 131.5, 129.0, 128.0, 127.5, 124.4, 123.8, 110.3, 53.3, 44.4, 37.5. HRMS (ESI) calculated for C₁₉H₁₇N₂O₄S [M+H]⁺ is 369.0909, found 369.0974.

5-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)-3-methylthiazolidine-2,4-dione (2bb)¹⁹

Using the general procedure (**GP-1**), methyl protected isatin **1b** (77.7 mg, 0.4825 mmol) and methyl protected thiazolidinedione **3d** (63.28 mg, 0.4825 mmol) were stirred in water for 12 h. The residue was isolated by filtration to afford **2bb** (137.9 mg, 96%) as a light orange solid. NMR of *anti*-diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.54 (d, *J* = 7.9 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.07 (s, 1H), 7.02 (t, *J* = 7.4 Hz, 2H), 5.15 (s, 1H),

3.15 (s, 3H), 2.64 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.4, 171.1, 170.1, 143.9, 130.6, 126.5, 123.9, 122.4, 108.9, 74.1, 57.3, 27.1, 26.2. HRMS (ESI) calculated for C₁₃H₁₂N₂NaO₄S [M+Na]⁺ is 315.0415, found 315.0417.

5-(1-Ethyl-3-hydroxy-2-oxoindolin-3-yl)-3-methylthiazolidine-2,4-dione (2bc)¹⁹

Using the general procedure (**GP-1**), ethyl protected isatin **1d** (146.98 mg, 0.839 mmol) and methyl protected thiazolidinedione **3d** (110 mg, 0.839 mmol) were stirred in water for 12 h to afford **2bc** (248.5 mg, 96%) as a white solid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.54 (d, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.1 Hz, 2H), 7.00 (t, *J* = 7.5 Hz, 1H), 5.15 (s, 1H), 3.78 – 3.64 (m, 2H), 2.65 (s, 3H),

1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.0, 171.1, 170.0, 143.1, 130.6, 126.7, 124.1, 122.2, 108.9, 74.0, 57.3, 34.3, 27.2, 12.0. HRMS (ESI) calculated for C₁₄H₁₅N₂O₄S [M+H]⁺ is 307.0747, found 307.0749.

5-(3-Hydroxy-2-oxo-1-phenylindolin-3-yl)-3-methylthiazolidine-2,4-dione (2bd)¹⁹

Using the general procedure (**GP-1**), phenyl protected isatin **1c** (138.2 mg, 0.62 mmol) and methyl protected thiazolidinedione **3d** (81.3 mg, 0.62 mmol) were stirred in water for 48 h to afford **2bd** (210.8 mg, 98%) as a white solid.

NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.66 – 7.61 (m, 3H), 7.50 (t, J = 7.5 Hz, 1H), 7.46 (d, J = 8.5 Hz, 2H), 7.32 (m, 2H), 7.08 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.9 Hz, 2H), 5.28 (s, 1H), 2.69 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.1, 171.1, 170.4, 143.8, 134.0, 130.7, 129.8, 128.4, 126.6, 126.2, 124.5, 123.0, 109.3, 74.1, 57.8, 27.3. HRMS (ESI) calcd for C₁₈H₁₅N₂O₄S [M+H]⁺ 355.0747, found 355.0745.

5-(1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)-3-ethylthiazolidine-2,4-dione (2ca)¹⁹

Using the general procedure (GP-1), benzyl protected isatin 1a (147 mg, 0.62 mmol) and ethyl

protected thiazolidinedione **3a** (90 mg, 0.62 mmol) and were stirred in water for 48 h to provide **2ca** (215.6 mg, 91%) as a light brown solid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.57 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.27 (m, 2H), 7.24 (s, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 5.19 (s, 1H), 4.99 – 4.95 (m, 2H), 3.24 (tt, 2H, *J* = 6.8, 13.6 Hz, 2H), 0.51 (t, *J* = 7.1 Hz, 1H).

¹³C NMR (125 MHz, DMSO-d₆) δ 174.7, 170.9, 169.8, 143.2, 135.9, 130.4, 128.5, 127.4, 127.3, 126.5, 124.0, 122.4, 109.5, 74.4, 57.2, 43.2, 35.8, 11.8. HRMS (ESI) calculated for $C_{20}H_{18}N_2Na$ O₄S [M+Na]⁺ is 405.0885, found 405.0886.

3-Ethyl-5-(3-hydroxy-1-methyl-2-oxoindolin-3-yl)-thiazolidine-2,4-dione (2cb)¹⁹

Using the general procedure (GP-1), methyl protected isatin 1b (100 mg, 0.62 mmol) and ethyl

protected thiazolidinedione **3a** (90 mg, 0.62 mmol) were stirred in water for 12 h to afford **2cb** (180.3 mg, 95%) as a white solid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.55 (d, *J* = 8.5 Hz, 1H), 7.36 (t, *J* = 8.3 Hz, 1H), 7.08 (s, 1H), 7.03 – 7.01 (m, 2H), 5.08 (s, 1H), 3.29 – 3.15 (m, 2H), 3.14 (s, 3H), 0.47 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.4, 171.0, 169.7, 144.0, 130.6, 126.2, 123.9, 122.3, 108.8,

74.4, 57.5, 35.8, 26.2, 11.8. HRMS (ESI) calcd for $C_{14}H_{14}KN_2O_4S$ [M+K]⁺ 345.0306, found 345.0327.

3-Ethyl-5-(1-ethyl-3-hydroxy-2-oxoindolin-3-yl)thiazolidine-2,4-dione (2cc)¹⁹

Using the general procedure (**GP-1**), ethyl protected isatin **1d** (107.6 mg, 0.62 mmol) and ethyl protected thiazolidinedione **3a** (90 mg, 0.62 mmol) were stirred in water for 12 h to afford **2cc** (190.3 mg, 96%) as a white solid. NMR of major diastereomer: ¹H NMR (500 MHz, DMSO-d₆) δ 7.54 (d, *J* = 8.3 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.07 (s, 1H), 7.05 (d, *J* = 7.8 Hz, 1H), 6.99 (t, *J* = 7.2 Hz, 1H), 5.08 (s, 1H), 3.64 – 3.76 (m, 2H), 3.19 – 3.16 (m,

2H), 1.19 (t, J = 7.2 Hz, 3H), 0.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ 174.0, 171.0, 169.6, 143.0, 130.5, 126.4, 124.1, 122.1, 108.9, 74.2, 57.4, 35.8, 34.3, 12.0, 11.7. HRMS (ESI) calcd for C₁₅H₂₀N₂O₄S [M+NH₄]⁺ 338.1169, found 338.1185.

3.0 Solvent optimization for reversible exchange reaction

entry	Solvent	temp.	time	Conversion (2aa : 2ab) ^a
		(°C)	(h)	
1	H ₂ O (pH=7)	25	12	87:13
2	50% i-PrOH	25	12	34:66
3	20% i-PrOH	25	12	51:49
4	10% i-PrOH	25	12	54:46
5	5% i-PrOH	25	24	15:85
6	20% t-BuOH	25	12	67:33
7	10% EtOH	25	36	56:44
8	3% DMSO	25	12	100:0

		P	1	
I Shie NZ Noivent o	ntimization i	for reversible	evenance	reaction
Lable Da. Dolvent u	pumbation		CACHAIIge	raction

4.0 Optimization of exchange reaction condition in aqueous media

A solution of oxindolyl-thiazolidinedione isatin **1a** (50 mg, 0.21 mmol, 1 equiv) and **2aa** (dr = 98:2, 77.36 mg, 0.21 mmol, 1 equiv) in a mixture of acetate buffer at pH 4 (5 mL, 0.1 M) was

stirred at room temperature for 48 h. The pH was raised to 8 by adding a saturated solution of NaHCO₃ and the reaction mixture was extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over Na₂SO₄, followed by filtered and concentrated. The residue was purified by column chromatography (20:80 EtOAc-Hexane) followed by analysis (Table 1). The distribution ratio at equilibrium was determined by HPLC.

For the reverse reaction, a solution of oxindolyl-thiazolidinedione methyl protected isatin **1b** (34 mg, 0.21 mmol, 1 equiv) and **2ab** (dr = 96:4, 93.34 mg, 0.21 mmol, 1 equiv) in a mixture of acetate buffer at pH 6 (5 mL, 0.1 M) was stirred at room temperature for 48 h (Table 2). Equilibrium distribution ratio was analyzed by HPLC.

5.0 Reversible exchange reactions at optimised condition

5.1 General procedure for the oxindolyl-thiazolidinedione and isatin library exchange (GP-2)

A solution of isatin $1R^3$ (0.21 mmol, 1 equiv) and oxindolyl-thiazolidinedione $2R^1R^2$ (0.21 mmol, 1 equiv) in acetate buffer of pH 6 (5 mL, 0.1 M) was stirred at room temperature for 24 h (Scheme 3). After 24 h, the crude mixture was extracted with ethyl acetate (3 × 10 mL). Equilibrium distribution ratio was analyzed by HPLC.

5.2 Exchange between oxindolyl-thiazolidinedione and thiazolidinedione (GP-3)

A solution of oxindolyl-thiazolidinedione **2aa** (dr = 98:2, 84.6 mg, 0.23 mmol, 1 equiv), *N*-ethyl thiazolidinedione **3a** (33.4 mg, 0.23 mmol, 1 equiv) in acetate buffer of pH 6 (5 mL, 0.1 M) was stirred at room temperature for 24 h (Scheme 4a). After 24 h, the crude mixture was extracted with ethyl acetate (3×10 mL). Equilibrium distribution ratio was analyzed by HPLC.

5.3 Procedure for the cross-exchange reaction

A mixture of oxindolyl-thiazolidinedione **2aa** (dr = 98:2, 50 mg, 0.136 mmol, 1 equiv), oxindolyl-thiazolidinedione **2bb** (dr = 98:2, 50 mg, 0.136 mmol, 1 equiv) in acetate buffer solution (25 mL, 0.1 M) adjusted to pH 6 was stirred at room temperature for 24 h (Scheme 4b). Then, the reaction mixture was extracted with ethyl acetate ($3 \times 15 \text{ mL}$). The equilibrium distribution ratio of crude mixture was calculated using HPLC.

5.4 Exchange between oxindolyl-thiazolidinedione and aromatic aldehydes

A mixture of oxindolyl-thiazolidinedione **2aa** (dr = 98:2, 50 mg, 0.136 mmol, 1 equiv), aromatic aldehydes **6** (1 equiv) in acetate buffer solution (25 mL, 0.1 M) adjusted to pH 6 was stirred at room temperature for 24 h (Scheme 4c). Then, the reaction mixture was extracted with ethyl acetate (3 × 15 mL). The residue was purified by chromatography (30% EtOAc-Hexane) and analyzed by ¹H NMR.

6.0 Synthesis of bi-indolinedione derivatives (GP-4)

A mixture of isatin derivative **1** (1.0 equiv) and oxindole derivative **6** (1.0 equiv) was stirred on isopropanol (2 mL) in 10 mol% Et₃N at room temperature for 30 min. Petrolium ether was added to the crude mixture to obtain the 3-hydroxybiindolinedione derivatives **7** (Scheme S1). The crude product was purified by washing the solid with petroleum ether–isopropyl alcohol (1:1) (3 \times 2 mL) and characterized by ¹H and ¹³C NMR.

Scheme S1. Synthesis of 3-hydroxybiindolinedione derivatives.

3-Hydroxy-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione (7aa)

Using the general procedure (**GP-2**), a mixture of methyl protected isatin **1b** (100 mg, 0.62 mmol) and methyl protected oxindole **6a** (91.2 mg, 0.62 mmol) afforded compound **7aa** (dr = 98:2, 130 mg, 68%) as an off-white solid. NMR of *anti* diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 16.1, 7.8 Hz, 2H), 7.21 (dd, J = 15.2, 7.6 Hz, 2H), 6.83 – 6.77 (m, 2H), 6.74 (t, J = 7.6 Hz, 1H), 6.04 (d, J = 10.6 Hz, 2H), 3.95 (s,

1H), 3.25 (s, 3H), 2.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 175.0, 145.1, 130.9, 129.2, 128.0, 124.6, 124.2, 123.6, 123.0, 122.5, 108.7, 49.8, 26.5, 25.9. HRMS (ESI) calculated for C₁₈H₁₆N₂NaO₃ [M+Na]⁺ is 331.1059, found 331.1059.

1'-Benzyl-3-hydroxy-1-methyl-[3,3'-biindoline]-2,2'-dione (7da)

Using the general procedure (**GP-2**), a mixture of methyl protected isatin **1b** (100 mg, 0.62 mmol) and benzyl protected oxindole **6d** (138.4 mg, 0.62 mmol) provided compound **7da** (dr = 95:5, 147.9 mg, 62%) as an off-white solid. NMR of major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.27 (s, 1H), 7.25 – 7.21 (m, 3H), 7.15 (d, J = 8.0 Hz, 2H), 7.10 (dd, J = 10.4, 7.7 Hz,

2H), 6.83 - 6.77 (m, 2H), 6.63 (q, J = 7.6 Hz, 1H), 6.43 (d, J = 5.8 Hz, 1H), 4.98 (d, J = 12.6 Hz, 1H), 4.81 (d, J = 12.4 Hz, 1H), 4.12 (s, 1H), 3.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 175.0, 144.4, 144.0, 135.2, 130.6, 128.9, 128.7, 127.5, 127.4, 127.2, 124.6, 124.3, 123.2, 123.2, 122.4, 109.5, 108.5, 50.3, 43.9, 26.0. HRMS (ESI) calculated for C₂₄H₂₀N₂NaO₃ [M+Na]⁺ is 407.4170, found 407.4138.

1,1'-Diethyl-3-hydroxy-[3,3'-biindoline]-2,2'-dione (7bb)

Using the general procedure (**GP-2**), a mixture of ethyl protected isatin **1d** (108.6 mg, 0.62 mmol) and ethyl protected oxindole **6b** (100 mg, 0.62 mmol) provided compound **7bb** (dr = 96:4, 133.5 mg, 64%) as a black solid. NMR of major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.4 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 6.1 Hz, 3H), 7.09 (s, 2H), 6.99 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 4.87 (s, 1H), 4.69 –

4.58 (m, 2H), 3.83 (dd, J = 14.2, 7.2 Hz, 1H), 3.67 (dd, J = 14.2, 7.1 Hz, 1H), 1.30 – 1.25 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 170.4, 143.4, 134.7, 131.4, 128.6, 124.8, 123.6, 109.2, 45.4, 35.3, 12.4. HRMS (ESI) calculated for C₂₀H₂₀N₂NaO₃ [M+Na]⁺ is 359.1372, found 359.1374.

6.1 Exchange between oxindole and oxindolyl-thiazolidinedione (GP-5)

A mixture of oxindolyl-thiazolidinedione **2** (0.23 mmol, 1 equiv) and *N*-substituted oxindole **6** (0.23 mmol, 1 equiv) in acetate buffer of pH 6 (25 mL, 0.1 M) was stirred at room temperature for 24 h (Scheme 5). After 24 h, reaction mixture was extracted with ethyl acetate (3×10 mL) and the equilibrium distribution ratio of crude mixture was calculated using HPLC.

7.0 Potential Dynamic Combinatorial Library

Scheme S2. Potential Dynamic Combinatorial Library.

8.0 HPLC data:

The Compounds are identified by running pure compounds in HPLC using CHIRALCEL OD column (0.46cm ID × 25 cm) using an isocratic system isopropanol/*n*-Hexanes (10:90), wavelength (λ) = 200 nm.

Figure S2. HPLC of compound 2ab

Figure S3. HPLC of compound 2ba

Figure S4. HPLC of compound 2bb

Figure S5. HPLC of compound 2bc

Figure S6. HPLC of compound 2cb

Figure S7. HPLC of compound 2cc

Exchange reaction between oxindoly	yl-thiazolidinedione ((2aa) with isatin ((1a))
------------------------------------	------------------------	------	-----------------	------	---

Figure S8. HPLC of crude reaction mixture at 24 h, pH 6. [2aa: $R_t = 16.827$ min, 1a: $R_t = 20.885$ min, 2ab: $R_t = 15.275$ min, 1b: $R_t = 23.969$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2aa) with isatin (1c)

Figure S9. HPLC of crude reaction mixture at 24 h, pH 6. [2aa: $R_t = 16.827$ min, 1c: $R_t = 23.035$ min, 2ac: $R_t = 19.246$ min, 1b: $R_t = 23.938$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2ca) with isatin (1c)

Figure S10. HPLC of crude reaction mixture at 24 h, pH 6. [2ca: $R_t = 16.275$ min, 1c: $R_t = 23.035$ min, 2cc: $R_t = 13.624$ min, 1a: $R_t = 20.885$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2bd) with isatin (1b)

Figure S11. HPLC of crude reaction mixture at 24 h, pH 6. [2bd: $R_t = 19.030$ min, 1b: $R_t = 23.890$ min, 2bb: $R_t = 11.372$ min, 1d: $R_t = 25.938$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2cb) with isatin (1c)

Figure S12. HPLC of crude reaction mixture at 24 h, pH 6. [2cb: $R_t = 15.061$ min, 1b: $R_t = 23.890$ min, 2cc: $R_t = 13.624$ min, 1c: $R_t = 20.035$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2bc) with isatin (1b)

Figure S13. HPLC of crude reaction mixture at 24 h, pH 6. [2bc: $R_t = 14.135$ min, 1b: $R_t = 23.890$ min, 2bb: $R_t = 11.624$ min, 1c: $R_t = 20.035$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2ad) with isatin (1b)

Figure S14. HPLC of crude reaction mixture at 24 h, pH 6. [2ad: $R_t = 17.246$ min, 1b: $R_t = 23.938$ min, 2ab: $R_t = 15.275$ min, 1d: $R_t = 25.938$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2ad) with isatin (1a)

Figure S15. HPLC of crude reaction mixture at 24 h, pH 6. [2ad: $R_t = 17.246$ min, 1a: $R_t = 20.885$ min, 2aa: $R_t = 16.827$ min, 1d: $R_t = 25.938$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2aa) with thiazolidinedione (3a)

Figure S16. HPLC of crude reaction mixture at 24 h, pH 6. [2aa: $R_t = 16.826$ min, 3a: $R_t = 10.061$ min, 2cb: $R_t = 15.066$ min, 3b: $R_t = 12.026$ min]

Cross exchange reaction between oxindolyl-thiazolidinediones (2aa and 2ba)

Figure S17. HPLC of crude reaction mixture at 24 h, pH 6. [2aa: $R_t = 16.827$ min, 2ba: $R_t = 10.733$ min, 2bb: $R_t = 11.726$ min, 2ab: $R_t = 15.275$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2bb) with oxindole (6a)

Figure S18. HPLC of crude reaction mixture at 24 h, pH 6. [2bb: $R_t = 11.735$ min, 6a: $R_t = 20.061$ min, 7aa: $R_t = 14.011$ min, 3d: $R_t = 24.035$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2bb) with oxindole (6d)

Figure S19. HPLC of crude reaction mixture at 24 h, pH 6. [2bb: $R_t = 11.726$ min, 6d: $R_t = 15.075$ min, 7da: $R_t = 17.575$ min, 3d: $R_t = 24.035$ min]

Exchange reaction between oxindolyl-thiazolidinedione (2bc) with oxindole (6b)

Figure S20. HPLC of crude reaction mixture at 24 h, pH 6. [2bc: $R_t = 14.135$ min, 6b: $R_t = 17.678$ min, 7bb: $R_t = 21.002$ min, 3d: $R_t = 24.061$ min]

9.0 X-Ray Crystallography of 2ab and 7aa.

Crystallization of compounds **2ab** and **7aa** were carried out using vapor diffusion method. A solution of the compound was prepared in chloroform in a small glass vial and it was then placed in a larger container containing hexane and the outer vessel wall was sealed. Over time hexane evaporated and diffused over the gas phase in chloroform leading to oversaturation and finally crystallization. The crystals were then analyzed.

Intensity data was collected on a Bruker's Kappa Apex II CCD Duo diffractometer with graphite mono chromated $M_{0K\alpha}$ radiation (0.71073 Å) at the temperature of 296 K. Scaling and multi-scan absorption correction were employed using SADABS. The structure was solved by direct methods and all the non-hydrogen atoms were refined an isotopically while the hydrogen atoms fixed in the predetermined positions by Shelxs-97 and Shelxl-97 packages respectively.

Identification code	2ab
Empirical formula	$C_{25}H_{20}N_2O_4S$
Formula weight	444.49
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.7003(9)
b/Å	10.7468(7)
c/Å	16.0028(11)
α/°	90
β/°	105.880(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2100.8(2)
Z	4
$\rho_{calc}g/cm^3$	1.405

Table S3: Crystal data and structure refinement for 2ab.

μ/mm^{-1}	0.191
F(000)	928.0
Crystal size/mm ³	$.20 \times .18 \times .16$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	4.622 to 49.99
Index manage	$-15 \le h \le 15, -12 \le k \le 12, -19 \le l \le$
Index ranges	19
Reflections collected	18977
Independent reflections	$3670 [R_{int} = 0.0686, R_{sigma} =$
independent reflections	0.0447]
Data/restraints/parameters	3670/0/290
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0351, wR_2 = 0.0892$
Final R indexes [all data]	$R_1 = 0.0409, wR_2 = 0.0958$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.28

Table S4: Bond Lengths for 2ab.

Atom	Atom	Length/Å
S001	C00F	1.7640(17)
S001	C00H	1.8133(16)
O002	C008	1.2088(19)
O003	C00E	1.4129(18)
O004	C00A	1.2271(19)
N006	C008	1.373(2)
N006	C00F	1.388(2)
N006	C00G	1.477(2)
N007	C00A	1.351(2)
N007	C009	1.418(2)
N007	C00I	1.465(2)

Atom	Atom	Length/Å
COOC	COOL	1.388(2)
COOC	C00D	1.391(2)
COOC	C00I	1.516(2)
C00D	C00P	1.385(2)
C00G	C00J	1.507(2)
C00J	COOR	1.389(2)
C00J	C00U	1.391(2)
C00K	C000	1.395(2)
C00L	COON	1.394(2)
C00M	C00Q	1.395(2)
COON	COOS	1.380(3)

C008	C00H	1.517(2)	C00O	C00Q	1.384(2)
C009	C00K	1.381(2)	C00P	COOS	1.389(3)
C009	C00B	1.393(2)	C00R	C00W	1.389(3)
C00A	C00E	1.554(2)	C00T	C00U	1.382(2)
C00B	C00M	1.388(2)	C00T	C00V	1.388(3)
C00B	C00E	1.510(2)	C00V	C00W	1.381(3)

Table S5: Bond Angles for 2ab.

Atom	Atom	Atom	Angle/°
C00F	S001	C00H	92.69(7)
C008	N006	C00F	117.01(13)
C008	N006	C00G	121.78(13)
C00F	N006	C00G	121.21(13)
C00A	N007	C009	110.96(13)
C00A	N007	C00I	124.76(13)
C009	N007	C00I	124.28(13)
O002	C008	N006	124.12(14)
O002	C008	C00H	123.53(14)
N006	C008	C00H	112.35(13)
C00K	C009	C00B	122.41(15)
C00K	C009	N007	127.56(15)
C00B	C009	N007	110.00(13)
O004	C00A	N007	125.90(15)
O004	C00A	C00E	125.41(14)
N007	C00A	C00E	108.63(12)
C00M	C00B	C009	119.72(14)
C00M	C00B	C00E	131.62(14)
C009	C00B	C00E	108.62(13)

Atom	Atom	Atom	Angle/°
C00B	C00E	C00A	109.68(12)
C00H	C00E	C00A	124.45(15)
O005	C00F	N006	124.54(13)
O005	C00F	S001	111.01(12)
N006	C00F	S001	111.00(13)
N006	C00G	C00J	112.51(12)
C008	C00H	C00E	106.71(11)
C008	C00H	S001	111.23(10)
C00E	C00H	S001	111.86(13)
N007	C00I	C00C	118.96(16)
C00R	C00J	C00U	121.02(15)
C00R	C00J	C00G	117.28(15)
C00U	C00J	C00G	120.32(16)
C009	C00K	C000	117.28(15)
C00C	C00L	C00N	120.32(16)
C00B	C00M	C00Q	118.48(15)
COOS	C00N	C00L	120.24(16)
C00Q	C000	C00K	121.16(15)
C00D	C00P	COOS	120.00(16)

C00L	C00C	C00D	119.02(15)	C000	C00Q	C00M	120.93(16)
C00L	C00C	C00I	121.48(14)	C00J	C00R	C00W	120.64(17)
C00D	C00C	C00I	119.50(14)	C00N	COOS	C00P	119.73(15)
C00P	C00D	C00C	120.66(15)	C00U	C00T	C00V	120.16(17)
O003	C00E	C00B	110.60(12)	C00T	C00U	C00J	120.49(16)
O003	C00E	C00H	109.16(12)	C00W	C00V	C00T	119.85(17)
C00B	C00E	C00H	115.29(13)	C00V	C00W	C00R	119.89(17)
0003	C00E	C00A	110.10(12)				

Figure S21. The ORTEP diagram of *anti-2ab* showing 50% probability thermal ellipsoid. (CCDC 2170211)

Table S6: Crystal data and structure refinement for 7aa.

Identification code7aaEmpirical formulaC18H16N2O3

Formula weight	308.33				
Temperature/K	111(2)				
Crystal system	monoclinic				
Space group	$P2_1/c$				
a/Å	11.9951(3)				
b/Å	8.5493(2)				
c/Å	15.5588(4)				
$\alpha / ^{\circ}$	90				
β/°	109.0350(10)				
$\gamma/^{\circ}$	90				
Volume/Å ³	1508.30(7)				
Z	4				
$\rho_{calc}g/cm^3$	1.358				
μ/mm^{-1}	0.094				
F(000)	648.0				
Crystal size/mm ³	$.20 \times .16 \times .14$				
Radiation	MoKa ($\lambda = 0.71073$)				
2Θ range for data collection/°	7.056 to 50				
Index renges	$\textbf{-14} \leq h \leq \textbf{14}, \textbf{-10} \leq k \leq \textbf{10}, \textbf{-17} \leq \textbf{l} \leq$				
index ranges	18				
Reflections collected	12703				
To demondent as floot's as	2637 [$R_{int} = 0.0359$, $R_{sigma} =$				
independent reflections	0.0275]				
Data/restraints/parameters	2637/0/211				
Goodness-of-fit on F ²	1.057				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0372, wR_2 = 0.0881$				
al R indexes [all data] $R_1 = 0.0447, wR_2 = 0.0947$					
Largest diff. peak/hole / e Å ⁻³	0.30/-0.20				

Table S7: Bond Lengths for 7aa.

Atom	Atom	Length/Å
01	C00F	1.4126(18)
O002	C007	1.2152(18)
O003	C00D	1.2240(18)
N004	C007	1.364(2)
N004	C008	1.4074(19)
N004	COON	1.454(2)
N005	C00D	1.357(2)
N005	C00B	1.4108(19)
N005	C00M	1.454(2)
C006	C00C	1.381(2)
C006	C00B	1.394(2)
C006	C00F	1.509(2)
C007	C009	1.532(2)

Atom	Atom	Length/Å
C008	C00H	1.385(2)
C008	C00A	1.393(2)
C009	C00A	1.508(2)
C009	C00F	1.550(2)
C00A	C00E	1.391(2)
C00B	C00K	1.381(2)
COOC	C00I	1.393(2)
C00D	C00F	1.549(2)
C00E	C00L	1.398(2)
C00G	C00H	1.377(2)
C00G	C00L	1.391(2)
COOI	C00J	1.391(2)
C00J	C00K	1.395(2)

Table S8: Bond Angles for 7aa.

Atom	Atom	Atom	Angle/°
C007	N004	C008	111.43(12)
C007	N004	C00N	123.17(13)
C008	N004	C00N	125.37(13)
C00D	N005	C00B	110.96(12)
C00D	N005	C00M	124.07(13)
C00B	N005	C00M	124.94(13)
C00C	C006	C00B	119.80(14)
C00C	C006	C00F	131.56(14)

Atom	Atom	Atom	Angle/°
C00K	C00B	C006	122.45(14)
C00K	C00B	N005	127.54(14)
C006	C00B	N005	110.01(13)
C006	C00C	C00I	118.84(14)
O003	C00D	N005	125.12(14)
O003	C00D	C00F	126.23(14)
N005	C00D	C00F	108.54(12)
C00A	C00E	C00L	118.08(15)

C00B	C006	C00F	108.64(13)	01	C00F	C006	110.10(12)
O002	C007	N004	125.94(14)	01	C00F	C00D	109.54(12)
O002	C007	C009	126.28(14)	C006	C00F	C00D	101.84(12)
N004	C007	C009	107.74(12)	01	C00F	C009	110.73(12)
C00H	C008	C00A	121.94(14)	C006	C00F	C009	114.37(12)
C00H	C008	N004	128.30(14)	C00D	C00F	C009	109.87(12)
C00A	C008	N004	109.76(13)	C00H	C00G	COOL	121.31(15)
C00A	C009	C007	102.90(12)	C00G	C00H	C008	117.80(15)
C00A	C009	C00F	114.34(12)	C00J	C00I	C00C	120.53(15)
C007	C009	C00F	110.13(12)	C00I	C00J	C00K	121.22(14)
C00E	C00A	C008	120.03(14)	C00B	C00K	C00J	117.16(15)
C00E	C00A	C009	131.82(14)	C00G	C00L	C00E	120.82(15)
C008	C00A	C009	108.14(13)				

Figure S22. The ORTEP diagram of *anti*-7aa showing 50% probability thermal ellipsoid (CCDC 2170212).

10.0 NMR data:

¹H and ¹³C of 2ab:

¹H and ¹³C of 2ac:

¹H and ¹³C of 2ba:

¹H NMR of crude reaction mixture at 24 h, pH 6 (Scheme 2)

Mass spectrum of crude reaction mixture at 24 h, pH 6 (Scheme 2)

S36