SUPPORTING INFORMATION

Fabrication of luminescent chemosensor for selective detection of Al³⁺ used as an adjuvant in pharmaceutical drugs

Shrabani Saha, Shrodha Mondal and Prithidipa Sahoo^*

**Corresponding author. E-mail:prithidipa@hotmail.com.*

Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, W.B., India.

1. NMR Studies:

¹H NMR of NAN in DMSO-d₆:

Fig. S1. ¹H NMR of NAN in DMSO-d₆ (400 MHz).

¹³C NMR of NAN in DMSO-d₆:

Fig. S2. ¹³C NMR of **NAN** in DMSO-d₆ (100 MHz).

2. Materials and Instruments

2-hydroxynaphthaldehyde, 1,8-naphthalic anhydride, methanol, DMSO and all the reagents were purchased from Sigma-Aldrich Pvt.Ltd. Unless otherwise mentioned, materials were obtained from commercial suppliers and were used without further purification. Solvents were dried according to standard procedures. Elix Millipore water was used throughout all experiments. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz instrument. For NMR spectra, DMSO-d₆ is used as solvent using TMS as an internal standard. Chemical shifts are expressed in δ ppm units and ¹H–¹H and ¹H–C coupling constants in Hz. The following abbreviations are used to describe spinmultiplicities in ¹H NMR spectra: s = singlet; d = doublet; t = triplet; m = multiplet.The mass spectrum (HRMS) was carried out using a micromass Q-TOF MicroTM instrument by using Acetonitrile as a solvent. Fluorescence spectra were recorded on a Fluorescence spectrophotometer Hitachi 7100. UV spectra were recorded on a Hitachi U-2910 spectrophotometer. Elemental analysis of NAN was carried out on CHNS/O analyzer.

3. UV-vis and fluorescence titration. A stock solution of NAN (1 μ M) was prepared in water-dimethylsulphoxide (1:1, v/v). Al³⁺ solution of concentration 10 μ M was prepared in Millipore water. All experiments were carried out in aqueous medium at neutral pH. During the titration, each time a 1 μ M solution of NAN was filled in a quartz optical cell of 1 cm optical path length and Al³⁺ stock solution was added into the quartz optical cell gradually by using a micropipette. Spectral data were recorded at 1 min after the addition of Al³⁺.

Fig. S3. UV–vis absorption spectra of NAN (1 μ M) upon gradual addition of Al³⁺ up to 1 μ M in H₂O:DMSO (1:1, v/v) at pH 7.0 (10 mM phosphate buffer) [inset: naked eye colour change of NAN upon interaction with Al³⁺]

4. Evaluation of the association constants for the formation of NAN-Al³⁺ complex:

By Fluorescence Method:

Binding constant of the chemosensor **NAN** was calculated through emission method by using the following equation:

$$1/(I - I_0) = 1/K(I_{max} - I_0)[G] + 1/(I_{max} - I_0)$$
(ii)

Where I₀, I_{max}, and I represent the emission intensity of free **NAN**, the maximum emission intensity observed in the presence of added Al³⁺at 445 nm (λ_{ex} = 340 nm), the emission intensity at a certain concentration of the Al³⁺ respectively and [G] is the concentration of the guest Al³⁺.

Binding constant calculation graph (Fluorescence method):

Fig. S4. Linear regression analysis for the calculation of association constant value by fluorescence titration method

The association const. (K_a) of NAN for sensing Al^{3+} was determined from the equation:

 $K_a = intercept/slope$. From the linear fit graph, we get intercept = 0.06348, slope = 1.52861×10^{-8} . Thus, we get, $K_a = (0.06348) / (1.52861 \times 10^{-8}) = 4.15 \times 10^6 \text{ M}^{-1}$.

5. Calculation of limit of detection (LOD) of NAN with Al³⁺:

The detection limit of the chemosensor **NAN** for Al^{3+} was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without Al^{3+} was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of NAN for sensing Al^{3+} was determined from the following equation.

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Fig. S5. Linear fit curve of NAN at 445 nm with respect to Al^{3+} concentration. Standard deviations are represented by error bar (n=3).

For NAN with Al³⁺:

From the linear fit graph, we get, slope = 1.52566×10^8 , and SD value is 1.69116Thus, using the above formula we get, the Limit of Detection = 3.3254×10^{-8} M, i.e 33 nM. Therefore, **NAN** can detect Al³⁺ up to this very lower concentration by fluorescence technique. 6. Job's plot for determining the stoichiometry of binding by fluorescence method:

Fig. S6. Job's plot of **NAN** (1µM) with Al³⁺ (1µM) in DMSO-H₂O (1:1, v/v), at neutral pH =7.0 (10 mM phosphate buffer), by fluorescence method (λ_{ex} .=340 nm), which indicate 1:1 stoichiometry for **NAN** with Al³⁺ ion. Standard deviations are represented by error bar (n=3).

7. Selectivity studies

Fig. S7. Photograph of colorimetric changes (upper panel) and fluorescence responses (lower panel) of NAN (1 μ M) to various bio-relevant cations [From left to right: 1) Only NAN, NAN with 2) Al³⁺ 3) Sn²⁺, 4) Zn²⁺, 5) Cu²⁺, 6) Hg²⁺, 7) Cd²⁺, 8) Mg²⁺, 9) Pb²⁺, 10) Fe²⁺, 11) Fe³⁺, 12)

Ni²⁺, 13) Co²⁺, 14) Mn²⁺, 15) Ca²⁺, 16) Cr²⁺, 17) Na⁺ and 18) K⁺ in H₂O–DMSO (1:1 v/v, pH 7.0, 10 mM phosphate buffer) solution].

Fig. S8. Histogram representing competitive fluorescence spectra of NAN with different bio relevant cations at 445 nm (λ_{ex} = 340 nm) in DMSO-H₂O (1:1, v/v), at neutral pH.[From left to right: 1) Only NAN, NAN with 2) Al³⁺, 3) Al³⁺+ Sn²⁺ 4) Al³⁺+ Zn²⁺, 5) Al³⁺+ Cu²⁺, 6) Al³⁺+ Hg²⁺, 7) Al³⁺+ Cd²⁺, 8) Al³⁺+ Mg²⁺, 9) Al³⁺+ Pb²⁺, 10) Al³⁺+ Fe²⁺, 11) Al³⁺+ Fe³⁺, 12) Al³⁺+ Ni²⁺, 13) Al³⁺+Co²⁺, 14) Al³⁺+ Mn²⁺, 15) Al³⁺+ Ca²⁺, 16) Al³⁺+ Cr²⁺, 17) Al³⁺+ Na⁺ and 18) Al³⁺+K⁺].

8. pH titration

Fig. S9. Fluorescence responses of probe NAN (yellow) and NAN-Al³⁺ complex (purple) in different pH conditions in H₂O-DMSO (1:1, v/v) (λ_{ex} = 340 nm).

9. ¹H NMR titration studies

Fig. S10. ¹H NMR titration [400MHz] of NAN in DMSO-d₆ at 25⁰C and the corresponding changes after the addition of 1 equiv. of Al^{3+} from (i) only NAN, (ii) NAN + 0.5 equiv. of Al^{3+} (iii) NAN + 1.0 equiv. of Al^{3+} .

¹³C NMR titration studies

Fig. S11. ¹³C NMR titration [100 MHz] of NAN in DMSO-d₆ at 25^oC and the corresponding changes after the addition of 1 equiv. of Al^{3+} from (i) only NAN, (ii) NAN + 1 equiv. of Al^{3+} .

10.Table S1 Details of the geometry optimization in Gaussian 09 program.

Details	NAN	NAN-	
		Al ³⁺ complex	
Calculation method	B3LYP	B3LYP	
Basis set	6-311G(d, p)	6-311G (d, p) /LANL2DZ	
E(CAM-B3LYP) (a.u.)	-1299.0787	-1657.9893	
Charge, Multiplicity	0, 1	+2, 1	
Solvent (CPCM)	Water	Water	

11. Energy minimized structures of NAN and NAN-Al³⁺ complex

Fig. S12. Energy minimized structures of NAN and NAN-Al³⁺complex from B3LYP level.

12. TDDFT calculations

Fig. S13. DFT optimized charge densities and the HOMO-LUMO energy gap of NAN and NAN-Al³⁺ complex.

13.Table S2. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-311G(d,p)/LANL2DZ based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	fb	Composition ^c (%)	
NAN	$S_0 \rightarrow S_2$	3.6245eV 342.07 nm	0.5260	$H \rightarrow L+1 (59\%)$	
	$S_0 \rightarrow S_7$	4.1398eV 299.50 nm	0.1032	$H-1 \rightarrow L+1 (64\%)$	
NAN- Al ³⁺ complex	$S_0 \rightarrow S_2$	3.1674 eV 391.43 nm	0.2880	$\mathrm{H} \rightarrow \mathrm{L}{+1} \; (67\%)$	
	$S_0 \rightarrow S_3$	3.3448 eV 370.68 nm	0.2454	H-1 \rightarrow L (68%)	

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength.^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

14. Table S3. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	Е _{номо} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	∆E(eV)	∆E(kcal/mol)
NAN	-0.21954	-0.06973	0.14981	4.08	94.08
NAN-Al ³⁺ complex	-0.25749	-0.12306	0.13443	3.65	84.17

Sample Name	Conc.	Amount of	Conc.	Avg	HPLC
	of NAN	sample	of Al ³⁺	conc.	Method
	(µM)	solution	(µM)	of Al ³⁺	(µM)
		taken (µl)		(µM)	
	1	200	0.21		
	1	200	0.20	0.22	
Bplex Forte	1	200	0.22	0.22	0.20
	1	200	0.23		
	1	200	0.25	0.05	
Enteroquinol	1	200	0.24	0.25	0.26
	1	200	0.35		
Dolokind	1	200	0.36	0.25	
	1	200	0.34	0.35	0.33
	1	200	0.36		
Deplatt CV	1	200	0.37	0.37	0.38
	1	200	0.38		
	1	200	0.56		
Diagene	1	200	0.57	0.56	0.53
	1	200	0.58		
	1	200	0.65		
Disprin	1	200	0.63		
	1	200	0.64	0.64	0.63
	1	200	0.81		
Aspirin	1	200	0.82	0.81	0.80
	1	200	0.81		
	1	200	0.89		
Telma	1	200	0.90		0.07
	1	200	0.90	0.89	0.87

15. Table S4 Determination of Al³⁺ in different drug samples under UV-lamp and by standard HPLC method