Supporting Information

Trifluoromethylated thermally activated delayed fluorescence molecule as a versatile photocatalyst for electron-transfer- and energy-transfer-driven reactions

Tatsuya Morofuji^{1,*}, Takuma Kurokawa,¹ Youhei Chitose,^{2,3} Chihaya Adachi,^{2,4} Naokazu Kano^{1,*}

¹ Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

² Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan

³ Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan

⁴ International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395, Japan

*tatsuya.morofuji@gakushuin.ac.jp

*naokazu.kano@gakushuin.ac.jp

1.	General	S2
2.	Synthesis of 4[Cz(CF ₃) ₂ IPN]	S3-S4
3.	DPV analysis of 4[Cz(CF3)2IPN]	S4
4.	Phosphorescence spectrum of 4[Cz(CF ₃) ₂ IPN]	S5
5.	Procedure of the decarboxylative alkylation	S6
6.	Procedure of the Giese-type reaction using silicate 3	S6
7.	Procedure of the Minisci-type reaction using silicate 3	S6-S7
8.	Procedure of the generation and alkylation of α -carbamyl radical	S7
9.	Procedure of the dearomative photocycloaddition	S7-S10
10.	NMR spectra	S11-S38

1. General

Pd₂(dba)₃•CHCl₃, ±BINAP, toluene, 3-amino-4-chlorobenzotrifluoride, NaO'Bu, 3-bromobenzotrifluoride, BuOMe, K₂CO₃, N,N-dimethylacetamide, Pd(OAc)₂, tri-tert-butylphosphonium tetrafluoroborate, THF, NaH, tetrafluoroisophthalonitrile, cyclohexanecarboxylic acid, diethyl 2-ethlylidenemalonate, K₂HPO₄, dimethylformamide, benzyl methacrylate, benzalmalononitrile, trans-4-octene, cis-cyclooctene, and cyclododecene were commercially available. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Cyclohexylsilicate 3, ¹ *N-tert*-butoxycarbonyl-*N*-methylaniline, ² lepidinium triflate,³ 4-isopropylquinolinium triflate,³ 4-methoxyquinolinium triflate,³ and 2-methylquinolinium triflate³ were synthesized according to the literature. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). Preparative gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-918 equipped with JAIGEL-1H and 2H using CHCl₃ as an eluent. Photoreactions were carried out in a Schlenk tube (30 mL) with photoirradiation using blue LED (Kessil, A 160WE TUNA Blue) and a cooling fan was used to avoid heating the reaction mixture. All NMR spectra were measured on Resonance ECZ 400S (JEOL, 400 MHz for ¹H, 100 MHz for ¹³C) or AVANCE III HD Nano Bay (Bruker Co., 400 MHz for ¹H, 100 MHz for ¹³C) at 22 °C using CDCl₃ as a solvent unless otherwise noted. Tetramethylsilane (TMS) ($\delta = 0$), CHCl₃ (δ = 7.26), or acetone (δ = 2.05) served as an internal standard for ¹H NMR spectra, and CDCl₃ (δ = 77.16) was used as an internal standard for ¹³C NMR spectra. Hexafluorobenzene ($\delta = -164.9$) was used as an external standard for ¹⁹F NMR. All HRMS were measured on Micro-TOF (Bruker, TOF, ESI). Ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectra of 4[Cz(CF₃)₂IPN] were recorded on a Perkin-Elmer Lambda 950 PKA spectrophotometer and JASCO FP-8600 Photoluminescence spectrometer, respectively.

¹ G. Ikarashi, T. Morofuji, N. Kano, *Chem. Commun.*, 2020, **56**, 10006–10009.

² R. Bisht, M. E. Hoque, B. Chattopadhyay, Angew. Chem. Int. Ed., 2018, 57, 15762–15766.

³ T. Morofuji, S. Nagai, Y. Chitose, M. Abe, N. Kano, Org. Lett., 2021, 23, 6257–6261.

2. Synthesis of 4[Cz(CF₃)₂IPN]

2-Chloro-5-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]aniline (S1) was synthesized according to the literature.⁴ A 100 mL flask equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the flask to 23 °C, it was purged with argon gas. $Pd_2(dba)_3$ •CHCl₃ (0.23 g, 0.22 mmol), ±BINAP (0.42 g, 0.67 mmol), toluene (22 mL), 3-amino-4-chlorobenzotrifluoride (5.0 g, 22 mmol), NaO'Bu (3.1 g, 32 mmol), and 3-bromobenzotrifluoride (5.2 g, 26 mmol) were added to the flask. The resulting mixture was stirred at 95 °C for 18 hours. After the reaction, the crude mixture was diluted with 'BuOMe (100 mL) and was passed through a celite plug. The filtrate was dried under vacuum to produce a crude material. The crude material was purified by flash chromatography (hexane/EtOAc = 100/0 to 95/5) to obtain the desired product 2-chloro-5-(trifluoromethyl)-*N*-[3-(trifluoromethyl)phenyl]aniline (S1) as colorless oil (5.9 g, 79%).

2,7-Bis(trifluoromethyl)-9*H*-carbazole (S2) was synthesized by modified procedure of the literature.⁴ N,Ndimethylacetamide was used instead of toluene as solvent. A 40 mL pressure tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. K₂CO₃ (2.4 g, 18 mmol), N,N-dimethylacetamide (20 mL), Pd(OAc)₂ (66 mg, 0.30 mmol), tri-terttetrafluoroborate 2-chloro-5-(trifluoromethyl)-N-[3butylphosphonium (0.17)0.59 mmol), and g, (trifluoromethyl)phenyl]aniline (1.8 g, 5.2 mmol) were added to the tube, which was then sealed with a Teflon cap. The tube was heated to 145 °C under magnetic stirring for 48 h. The reaction mixture was cooled to room temperature, and the tube was opened to air. The reaction was quenched by HCl aq. (2.0 M, 20 mL). The organic phase was extracted with EtOAc (30 mL × 3) and dried over Na₂SO₄. The resulting organic solution was dried under vacuum to produce a crude material. The crude material was purified by flash chromatography (hexane/EtOAc = 100/0 to 95/10) to obtain the desired product 2,7-bis(trifluoromethyl)-9H-carbazole (S2) as white solid (1.6 g, 100%).

2,7-bis(trifluoromethyl)-9H-carbazole (S2)⁴

¹H NMR (400 MHz, CDCl₃): δ 8.37 (s, 1H), 8.18 (d, J = 8.0 Hz, 2H), 7.75 (s, 2H), 7.54 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.5, 129.1 (q, J = 27.8 Hz), 125.0, 124.7 (q, J = 270.6 Hz), 121.5, 117.0 (q, J = 3.8 Hz), 108.5 (q, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –61.14 (s, 6F).

⁴ M. Gantenbein, M. Hellstern, L. Le Pleux, M. Neuburger, M. Mayor, Chem. Mat., 2015, 27, 1772-1779.

A 50 mL two-necked flask equipped with a magnetic stirring bar and two septum was dried under vacuum with heating. After cooling the flask to 23 °C, it was purged with argon gas. 2,7-bis(trifluoromethyl)-9*H*-carbazole (1.0 g, 3.3 mmol), THF (35 mL), and NaH (50% in oil, 2.0 g, 4.1 mmol) were added to the flask. The resulting mixture was stirred at 23 °C for 1 hour. Tetrafluoroisophthalonitrile (0.13 g, 0.65 mmol) was added to the flask. The resulting mixture was stirred at 23 °C for 18 hours. The reaction was quenched by water (200 mL). After precipitation, the precipitate was collected with filtration and washed with water (30 mL × 3) and Et₂O (30 mL × 3). The obtained solid was dried under vacuum to produce **4**[Cz(CF₃)₂]IPN as yellow solid (0.56 g, 77%).

$4[Cz(CF_3)_2]IPN^5$

¹H NMR (400 MHz, acetone-*d*₆): δ 8.79 (d, *J* = 7.6 Hz, 2H), 8.32 (d, *J* = 8.0 Hz, 4H), 8.04 (s, 2H), 7.99-7.85 (m, 10H), 7.60 (d, *J* = 8.4 Hz, 4H), 7.32 (d, *J* = 8.0 Hz, 2H); ¹⁹F NMR (376 MHz, acetone-*d*₆): δ –61.6 (s, 6F), –62.0 (s, 6F), –62.0 (s, 12F).

3. DPV analysis of 4[Cz(CF₃)₂IPN]

The reduction potential of $4[Cz(CF_3)_2IPN]$ was determined by differential pulse voltammetry (DPV) analysis (Figure S1). Substrate concentration was 1 mM, and 50 mM solution of Bu₄NBF₄ in CH₂Cl₂ was used for solvent. A glassy carbon working electrode, a platinum counter electrode, an Ag/AgNO₃ reference electrode were used. The redox potential was measured with respect to the [FeCp₂]/[FeCp₂]⁺ couple, which was converted to saturated calomel electrode (SCE) by adding 0.630 V.⁶

⁵ M. Yokoyama, K. Inada, Y. Tsuchiya, H. Nakanotani, C. Adachi, Chem. Commun., 2018, 54, 8261–8264.

⁶ D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev, J. Phys. Chem. A, 2009, 113, 1259–1267.

4. Phosphorescence spectrum of 4[Cz(CF₃)₂IPN]

Ultraviolet–visible (UV-vis) absorption and photoluminescence (PL) spectra of $4[Cz(CF_3)_2IPN]$ were recorded on a Perkin-Elmer Lambda 950 PKA spectrophotometer and JASCO FP-8600 Photoluminescence spectrometer, respectively. For PL measurement, a solution of $4[Cz(CF_3)_2IPN]$ (8.8 µM) was irradiated at 390 nm. Phosphorescence spectrum was recorded at 77K after a 200 ms delay.

Figure S2. UV-vis absorption (298 K), fluorescence (298 K), and phosphorescence (77 K) spectra of 4[Cz(CF₃)₂IPN] in dichloromethane.

5. Procedure of the decarboxylative alkylation

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Cyclohexanecarboxylic acid (27 mg, 0.21 mmol), diethyl 2-ethlylidenemalonate (37 mg, 0.20 mmol), $4[Cz(CF_3)_2IPN]$ (11 mg, 0.010 mmol), K₂HPO₄ (42 mg, 0.24 mmol), and dimethylformamide (1 mL) were added to the tube. The reaction mixture was stirred under argon bubbling for 15 min. Photoirradiation using blue LED was carried out at 23 °C with stirring for 24 hours. After the photoirradiation, NaHCO₃ *aq. sat.* (10 mL) was added. The organic phase was extracted with Et₂O (30 mL × 3), washed with water (30 mL × 2), and dried over Na₂SO₄. The solvent was evaporated to give a crude material. The crude material was purified by flash chromatography (hexane/EtOAc = 100/0 to 70/30) to obtain diethyl 2-(1-cyclohexylethyl)malonate (2) as colorless oil (38 mg, 70%).

diethyl 2-(1-cyclohexylethyl)malonate (2)⁷

¹H NMR (400 MHz, CDCl₃): δ 4.26-4.13 (m, 4H), 3.39 (d, J = 8.8 Hz, 1H), 2.22-2.13 (m, 1H), 1.78-1.71 (m, 2H), 1.68-1.57 (m, 3H), 1.30-1.04 (m, 11H), 0.98-0.88 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 169.2, 61.3, 61.2, 55.9, 40.4, 38.7, 31.6, 27.5, 26.8, 26.7, 26.6, 14.2, 13.0 (One peak is missing due to overlapping.).

6. Procedure of the Giese-type reaction using silicate 3

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Cyclohexylsilicate **3** (0.18 g, 0.24 mmol), benzyl methacrylate (35 mg, 0.20 mmol), **4**[Cz(CF₃)₂IPN] (11 mg, 0.010 mmol), and acetone/MeOH (1.5 mL/1.5 mL) were added to the tube, and the reaction mixture was stirred under argon bubbling for 15 min. Photoirradiation using blue LED was carried out at 23 °C with stirring for 24 hours. The solvents were evaporated to give a crude material, which was purified by flash chromatography (hexane/EtOAc = 50/50) and GPC to obtain benzyl 3-cyclohexyl-2-methylpropanoate (**4**) (44 mg, 84%) as colorless oil.

\square	benzyl 3-cyclohexyl-2-methylpropanoate (4) ⁸
	¹ H NMR (400 MHz, CDCl ₃): δ 7.41-7.28 (m, 5H), 5.14 (d, J = 12.4 Hz, 1H), 5.10 (d,
	J = 12.4 Hz, 1H), 2.67-2.55 (m, 1H), 1.78-1.57 (m, 6H), 1.29-1.08 (m, 8H), 0.91-0.78
 OBn	(m, 2H); ¹³ C NMR (100 MHz, CDCl ₃): δ 177.2, 136.4, 128.6, 128.2, 66.1, 41.7, 37.0,
4	35.5, 33.34, 33.31, 26.7, 26.3, 17.7 (Two peaks are missing due to overlapping.).

7. Procedure of the Minisci-type reaction using silicate 3

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Cyclohexylsilicate **3** (0.17 g, 0.24 mmol), lepidinium triflate (59 mg, 0.20 mmol), **4**[Cz(CF₃)₂IPN] (11 mg, 0.010 mmol), and dichloromethane (4 mL) were added to the tube. Photoirradiation using blue LED was carried out at 23 °C with stirring for 24 hours. The reaction was quenched

⁷ L. Chu, C. Ohta, Z. Zuo, D. W. C. Macmillan, J. Am. Chem. Soc., 2014, 136, 10886-10889.

⁸ T. Morofuji, Y. Matsui, M. Ohno, G. Ikarashi, N. Kano, *Chem. Eur. J.*, 2021, **27**, 6713-6718.

by Et_3N (31 mg, 0.30 mmol). The solvents were evaporated to give a crude material, which was purified by flash chromatography (hexane/EtOAc = 100/0 to 70/30) and GPC to obtain 2-cyclohexyl-4-methylquinoline (5) (34 mg, 75%) as colorless oil.

2-cyclohexyl-4-methylquinoline (5)¹

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.67 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.49 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.17 (s, 1H), 2.88 (tt, *J* = 12.2, 3.4 Hz, 1H), 2.69 (s, 3H), 2.04-1.97 (m, 2H), 1.93-1.86 (m, 2H), 1.84-1.75 (m, 1H), 1.68-1.55 (m, 2H), 1.54-1.40 (m, 2H), 1.40-1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 147.6, 144.5, 129.5, 129.1, 127.2, 125.5, 123.7, 120.4, 47.7, 33.0, 26.7, 26.3, 19.0.

8. Procedure of the generation and alkylation of α-carbamyl radical

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. *N-tert*-Butoxycarbonyl-*N*-methylaniline **6** (63 mg, 0.30 mmol), benzalmalononitrile (15 mg, 0.10 mmol), **4**[Cz(CF₃)₂IPN] (6 mg, 0.010 mmol), and CH₂Cl₂ (1 mL) were added to the tube, and the reaction mixture was stirred under argon bubbling for 15 min. Photoirradiation using blue LED was carried out at 23 °C with stirring for 6 hours. The solvent was evaporated to give a crude material. The crude material was purified by flash chromatography (hexane/EtOAc = 100/0 to 80/20) to obtain *N-tert*-butoxycarbonyl-*N*-(3,3-dicyano-2-phenylpropyl)aniline (7) (32 mg, 88%) as a colorless oil.

N-tert-butoxycarbonyl-*N*-(3,3-dicyano-2-phenylpropyl)aniline (7)⁹ ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.36 (m, 3H), 7.35-7.20 (m, 5H), 7.02 (d, *J* = 7.6 Hz), 4.41 (dd, *J* = 14.2 Hz, 8.2 Hz, 1H), 4.15 (d, *J* = 5.6 Hz, 1H), 4.08 (dd, *J* = 14.8 Hz, 6.8 Hz, 1H), 3.52 (q, *J* = 6.9 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 141.4, 134.8, 129.4, 129.33, 129.26, 128.4, 127.0, 112.0, 111.5, 81.7, 51.6, 45.4, 28.3, 27.6 (One peak is missing due to overlapping).

9. Procedure of the dearomative photocycloaddition

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Qunolinium triflate **8** (0.20 mmol), alkene (0.50 mmol), **4**[Cz(CF₃)₂IPN] (0.01 mmol), and CH₂Cl₂ (4 mL) were added to the tube, and the reaction mixture was stirred under argon bubbling for 15 min. Photoirradiation using blue LED was carried out at 23 °C with stirring for 24 hours. After the photoirradiation, Et₃N (0.3 mmol) was added. The solvent was evaporated to give a crude material. The crude material was purified by flash chromatography (hexane/EtOAc = 80/20 to 60/40) to obtain the desired product **9** as a mixture of two diastereomers. Diastereomer ratios were determined by ¹H NMR analysis.

⁹ J. B. McManus, N. P. R. Onuska, D. A. Nicewicz, J. Am. Chem. Soc., 2018, 140, 9056-9060.

compound 9a³

Reaction of lepidinium triflate (8a) (59 mg, 0.20 mmol) and *trans*-4-octene (57 mg, 0.50 mmol) gave compound 9a as a mixture of two diastereomers (47 mg, 92%, dr = 1.5/1, colorless oil).

¹H NMR (400 MHz, CDCl₃, mixture of two diastereomers): δ 8.07 (d, J = 5.6 Hz, 1H), 6.82 (d, J = 5.2 Hz, 1H), 6.62 (dt, J = 6.9, 1.4 Hz, 1H, minor), 6.54 (dt, J = 7.0, 1.6 Hz, 1H, major), 6.42 (t, J = 6.6 Hz, 1H, major), 6.33 (t, J = 6.8 Hz, 1H, minor), 3.98 (d, J = 6.0 Hz, 1H, minor), 3.95 (d, J = 6.4 Hz, 1H, major), 3.91 (d, J = 6.4 Hz, 1H, major), 3.84 (d, J = 6.4 Hz, 1H, minor), 2.32 (s, 3H, minor), 2.30 (s, 3H, major), 1.53-1.12 (m, 8H), 1.05-0.72 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, mixture of two diastereomers): δ 164.5, 162.4, 144.0, 143.7, 141.7, 139.2, 136.8, 135.8, 135.5, 134.4, 132.6, 132.3, 122.2, 122.0, 47.4, 47.2, 46.3, 45.9, 45.6, 45.3, 40.3, 39.6, 38.9, 38.7, 38.2, 37.9, 21.4, 21.3, 21.13, 21.05, 17.9, 17.8, 14.43, 14.40, 14.34, 14.30.

compound 9b³

Reaction of 4-isopropylquinolinium triflate (64 mg, 0.20 mmol) and *trans*-4-octene (56 mg, 0.50 mmol) gave compound **9b** as a mixture of two diastereomers (52 mg, 91%, dr = 2.9/1, colorless oil).

9a

9b

¹H NMR (400 MHz, CDCl₃, mixture of two diastereomers): δ 8.18-8.12 (m, 1H), 6.98 (d, J = 5.6 Hz, 1H), 6.63 (dt, J = 6.2, 1.2 Hz, 1H, minor), 6.56 (dt, J = 7.0, 1.2 Hz, 1H, major), 6.43 (t, J = 6.6 Hz, 1H, major), 6.35 (t, J = 6.6 Hz, 1H, minor), 4.10-3.97 (m, 2H), 3.22 (sept, J = 6.9 Hz, 1H), 1.55-1.14 (m, 13H. A peak of water is overlappling.), 1.04-0.72 (m, 9H); ¹³C NMR (100 MHz, CDCl₃, mixture of two diastereomers): δ 164.2, 161.9, 153.0, 150.4, 143.3, 143.0, 136.4, 135.9, 135.8, 133.4, 132.7, 132.4, 117.3, 117.2, 46.8, 46.7, 45.6, 45.38, 45.36, 39.7, 39.1, 38.9, 38.6, 38.2, 38.0, 29.0, 28.6, 24.0, 22.8, 22.4, 22.3, 21.4, 21.3, 21.1, 21.0, 14.40, 14.36, 14.30, 14.26 (One peak is missing due to overlapping.).

compound 9c³

Reaction of 4-methoxyquinolinium triflate (62 mg, 0.20 mmol) and *trans*-4-octene (57 mg, 0.50 mmol) gave compound **9c** as a mixture of two diastereomers (49 mg, 90%, dr = 1.9/1, colorless oil).

ⁿ Pr,	ς.
MeO	∬_nPr
TT.	
4N	

9c

¹ H NMR (400 MHz, CDCl ₃ , mixture of two diastereomers): δ 8.12 (d, $J = 6.0$ Hz, 1H),
6.62-6.56 (m, 1H + 1H (major)), 6.52 (dt, J = 6.8, 1.2 Hz, 1H, minor), 6.40 (t, J = 6.8
Hz, 1H, minor), 6.33 (t, J = 6.6 Hz, 1H, major), 4.19-4.12 (m, 1H), 3.92-3.80 (m, 4H),
1.52-1.18 (m, 7H), 1.17-0.66 (m, 9H); ¹³ C NMR (100 MHz, CDCl ₃ , mixture of two
diastereomers): δ 166.9, 165.0, 160.9, 158.5, 146.9, 146.6, 135.8, 135.6, 132.7, 125.5,
123.1, 104.0, 103.8, 55.3, 55.2, 47.6, 47.5, 46.5, 46.1, 45.7, 45.6, 39.2, 38.8, 38.4, 38.0,
37.1, 36.5, 21.4, 21.2, 21.1, 21.0, 14.5, 14.41, 14.36 (Two peaks are missing due to

	overlapping).
	compound 9d ³
	Reaction of 2-methylquinolinium triflate (59 mg, 0.20 mmol) and trans-4-octene (57
	mg, 0.50 mmol) gave compound 9d as a mixture of two diastereomers (45 mg, 88%, dr
	= 1.3/1, colorless oil).
ⁿ Pr _~	¹ H NMR (400 MHz, CDCl ₃ , mixture of two diastereomers): δ 7.26-7.20 (m, 1H), 6.83
// ⁿ Pr	(d, J = 7.2 Hz, 1H), 6.62-6.53 (m, 1H), 6.40 (t, J = 6.8 Hz, 1H, major), 6.35 (t, J = 6.6
	Hz, 1H, minor), 3.88 (d, J = 6.0 Hz, 1H, major), 3.80 (d, J = 6.0 Hz, 1H, minor), 3.71
N	(d, J = 6.0 Hz, 1H, minor), 3.64 (d, J = 6.0 Hz, 1H, major), 2.50 (s, 3H, major), 2.49 (s,
9d	3H, minor), 1.51-1.05 (m, 8H), 1.00-0.70 (m, 8H); ¹³ C NMR (100 MHz, CDCl ₃ , mixture
	of two diastereomers): δ 164.7, 162.8, 153.3, 153.0, 135.9, 135.5, 133.0, 132.5, 132.0,
	129.8, 119.6, 119.3, 47.6, 47.3, 47.0, 46.0, 45.5, 45.4, 43.7, 43.4, 39.1, 38.8, 38.3, 38.0,
	24.0, 21.3, 21.2, 21.1, 21.0, 14.5, 14.43, 14.35, 14.33 (Three peaks are missing due to
	overlapping.).
	compound 9e
	Reaction of lepidinium triflate (8a) (59 mg, 0.20 mmol) and <i>cis</i> -cyclooctene (56 mg,
	0.50 mmol) gave compound 9e as a mixture of two diastereomers (48 mg, 94%, dr =
	1.3/1, colorless oil).
	¹ H NMR (400 MHz, CDCl ₃ , mixture of two diastereomers): δ 8.06 (d, J = 5.2 Hz, 1H),
	6.84 (s, 1H), 6.64 (t, J = 6.8 Hz, 1H, minor), 6.55 (t, J = 6.8 Hz, 1H, major), 6.39 (t, J =
- Anna	6.6 Hz, 1H, major), 6.31 (t, J = 6.6 Hz, 1H, minor), 3.88-3.78 (m, 1H + 1H (major)),
	3.75 (d, J = 6.0 Hz, 1H, minor), 2.34 (s, 3H, minor), 2.30 (s, 3H, major), 1.84-1.25 (m,
^L N ⁻	12H), 1.22-1.08 (m, 1H), 0.52-0.40 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃ , mixture of
9e	two diastereomers): δ 164.1, 161.5, 143.2, 143.0, 142.5, 139.5, 137.6, 136.2, 135.9,
	134.4, 131.94, 131.87, 122.4, 122.1, 50.2, 50.0, 43.7, 43.5, 43.1, 43.0, 42.5, 37.0, 36.3,
	35.9, 35.7, 27.2, 27.07, 27.05, 26.95, 24.0, 23.9, 23.8, 23.7, 18.0 (Two peaks are missing
	due to overlappling.); HRMS (ESI, positive) m/z calcd for C ₁₈ H ₂₄ N [M+H] ⁺ : 254.1903,
	found: 254.1904.
	compound 9f ³
	Reaction of lepidinium triflate (8a) (59 mg, 0.20 mmol) and cyclododecene (83 mg, 0.50
	mmol) gave compound 9f as a mixture of two diastereomers (60 mg, 97%, $dr = 3.3/1$,
	colorless oil).
/ human	¹ H NMR (400 MHz, CDCl ₃ , mixture of two diastereomers): δ 8.06 (d, J = 5.2 Hz, 1H),
	6.88-6.79 (m, 1H), 6.62 (t, J = 6.4 Hz, 1H, minor), 6.54 (t, J = 6.8 Hz, 1H, major), 6.43
⁴ N ²	(t, J = 6.6 Hz, 1H, major), 6.35 (t, J = 6.6 Hz, 1H, minor), 3.89 (d, J = 5.6 Hz, 1H), 3.83
9f	(d, J = 6.0 Hz, 1H, major), 3.77 (d, J = 6.0 Hz, 1H, minor), 2.33 (s, 3H, minor), 2.30 (s,
	3H, major), 1.58-1.08 (m, 21H), 0.93-0.75 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃ ,

mixture of two diastereomers): δ 164.8, 162.9, 144.5, 144.2, 141.3, 138.7, 136.9, 136.0,
135.5, 134.5, 133.2, 132.9, 122.2, 121.9, 49.3, 49.2, 45.0, 44.5, 44.3, 43.7, 41.8, 41.4,
35.2, 34.7, 34.2, 34.0, 26.0, 25.9, 25.8, 25.7, 25.6, 25.4, 24.9, 24.7, 17.94, 17.88.

9. NMR spectra

Figure S3. ¹H NMR (400 MHz) spectrum of S1 in CDCl₃.

Figure S4. ¹³C NMR (100 MHz) spectrum of S1 in CDCl₃.

Figure S5. ¹⁹F NMR (376 MHz) spectrum of S1 in CDCl₃.

Figure S6. ¹H NMR (400 MHz) spectrum of S2 in CDCl₃.

Figure S7. ¹³C NMR (100 MHz) spectrum of S2 in CDCl₃.

Figure S8. ¹⁹F NMR (376 MHz) spectrum of S2 in CDCl₃.

4[Cz(CF₃)₂]IPN

Figure S9. ¹H NMR (400 MHz) spectrum of 4[Cz(CF₃)₂]IPN in acetone-*d*₆.

4[Cz(CF₃)₂]IPN

Figure S10. ¹⁹F NMR (376 MHz) spectrum of 4[Cz(CF₃)₂]IPN in acetone-*d*₆.

Figure S11. ¹H NMR (400 MHz) spectrum of 2 in CDCl₃.

Figure S12. ¹³C NMR (100 MHz) spectrum of 2 in CDCl₃.

Figure S13. ¹H NMR (400 MHz) spectrum of 4 in CDCl₃.

Figure S14. ¹³C NMR (100 MHz) spectrum of 4 in CDCl₃.

Figure S15. ¹H NMR (400 MHz) spectrum of 5 in CDCl₃.

Figure S16. ¹³C NMR (100 MHz) spectrum of 5 in CDCl₃.

Figure S17. ¹H NMR (400 MHz) spectrum of 7 in CDCl₃.

Figure S18. ¹³C NMR (100 MHz) spectrum of 7 in CDCl₃.

Figure S19. ¹H NMR (400 MHz) spectrum of 9a in CDCl₃.

Figure S20. ¹³C NMR (100 MHz) spectrum of 9a in CDCl₃.

Figure S21. ¹H NMR (400 MHz) spectrum of 9b in CDCl₃.

Figure S22. ¹³C NMR (100 MHz) spectrum of 9b in CDCl₃.

Figure S23. ¹H NMR (400 MHz) spectrum of 9c in CDCl₃.

Figure S24. ¹³C NMR (100 MHz) spectrum of 9c in CDCl₃.

Figure S25. ¹H NMR (400 MHz) spectrum of 9d in CDCl₃.

Figure S26. ¹³C NMR (100 MHz) spectrum of 9d in CDCl₃.

Figure S27. ¹H NMR (400 MHz) spectrum of 9e in CDCl₃.

Figure S28. ¹³C NMR (100 MHz) spectrum of 9e in CDCl₃.

Figure S29. ¹H NMR (400 MHz) spectrum of 9f in CDCl₃.

Figure S30. ¹³C NMR (100 MHz) spectrum of 9f in CDCl₃.