Supporting Information

Direct methylthiolation of C-, S-, and P- nucleophiles with

Sodium S-Methyl Thiosulfate

Fanmin Liu*a

^a Division of Specialty Chemicals, Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China. Fax: +86-0570-8017322; Tel: +86-0570-8017322.

* Corresponding Author E-mail: liufm@zju.edu.cn

1. General Information	
2. Screening Reaction	S3
3. General procedure	
4. NMR Spectra	S21

1 General Information

All chemical reagents are obtained from commercial suppliers and used without further purification. All known compounds are identified by appropriate technique such as ¹H NMR, ¹³C NMR and compared with previously reported data. All unknown compounds are characterized by ¹H NMR, ¹³C NMR and HRMS. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. Mass spectra are taken on a Finnigan TSQ Quantum-MS instrument in the electrospray ionization (ESI) mode. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on a 500 MHz Bruker DRX 500 and tetramethylsilane (TMS) was used as a reference. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.26) and chemical shifts are reported in ppm. Some impurity peak in proton spectrum was water δ 1.59 and hexane δ 1.26. GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J-413: 30 m × 320 μ m × 0.25 μ m, carrier gas: H₂, FID detection. GC-MS data was recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). High resolution mass spectral data were acquired on Waters Micromass GCT Premier Spectrometer (electrospray ionization: EI) and Waters Q-Tof microTM (electrospray ionization: ESI).

2 Screening Reaction

Table S1.	Optimization	of	conditions	for	reaction	of	1,3-diketone	with	sodium	<i>S</i> -
methyl sult	fothioate a									

СН	l₃SSO₃Na ₊ 1	Ph Ph F	catalys solvent,	st, base ★ temp, time	Ph 5	Ph SCH ₃
Entry	Catalyse	Base	Solvent	Temp	Time (h)	Yield ^b
1	CuSO ₄ (0.2 equiv)		DMF	80	10	23
2	CuSO ₄		DMF	80	10	53
4	CuI		DMF	80	10	33
5	$Cu(OAc)_2$		DMF	80	10	14
6	CuSO ₄	Cs_2CO_3	DMF	80	10	42
7	CuSO ₄	KF	DMF	80	10	35
8	CuSO ₄	NaH	DMF	80	10	47
9	CuSO ₄		DMSO	80	10	51
10	CuSO ₄		THF	80	10	32
11	CuSO ₄		DMF	50	10	59
12	CuSO ₄		DMF	30	10	48
13	CuSO ₄		DMF	110	10	52
14	CuSO ₄		DMF	50	12	65
15	CuSO ₄		DMF	50	24	74(70 ^c)

^{*a*} Unless otherwise specified, the reaction was carried out in the presence of β -ketoester (0.4 mmol, 1.0 equiv), sodium *S*-methyl sulfothioate **1** (99 mg, 0.6 mmol, 1.5 equiv), catalyst (0.2 mmol, 0.5 equiv), base (0.4 mmol, 1.0 equiv) and solvent (4 mL), air. ^{*b*} GC yield. ^{*c*} isolated yield.

3 General procedure

Tabulated ¹H and ¹³C NMR data and copies of ¹H and ¹³C spectra are given for all products. For solid products, melting point ranges are given. For new compounds, HRMS data is provided. The following compounds have previously been reported in the literature: **3a**¹, **3b**¹, **3c**¹, **3e**¹, **3f**¹, **3g**², **3h**³, **3l**¹, **3m**⁴, **3n**⁵, **6a**⁶, **6b**⁷, **6d**⁷, **6e**⁸, **6g**⁹, **6h**¹⁰, **6j**⁹, **6n**⁶, **6o**¹¹, **7a**¹², **7b**¹³.

3.1 General procedures for Sodium S-methyl sulfothioate

$$CH_{3}I + Na_{2}S_{2}O_{3} \xrightarrow{MeOH/H_{2}O} CH_{3}SSO_{3}Na$$

$$0 \ ^{o}C-rt, \ 12 \ h$$
1

A 250 mL flask was charged with iodomethane (2.5 mL, 40.0 mmol, 1.0 equiv), sodium thiosulfate pentahydrate (11.9 g, 48.0 mmol, 1.2 equiv), water (50.0 mL) and MeOH (10 mL) for 12 h at 0 °C to rt. The reaction mixture then concentrated on a rotovap at a bath temperature of 40-45 °C to remove the MeOH and water. The resultant solid was treated with MeOH (50 mL), heated to 50 °C (most solid dissolves), and filtered through a medium stone frit filter. This removes excess sodium thiosulfate and sodium iodide. The filtrate was concentrated to a white solid. Trituration of this solid with hexanes, filtration, and drying under vacuum at 50 °C gave 1 (5.75 g, 90.8 wt.% purity by assay, 87% yield) as a white solid.

3.2 General procedures for methylthiolation of alkynes

$$\begin{array}{cccc} CH_3SSO_3Na & + & R & \hline & CuSO_4 (0.2 \text{ equiv}) \\ \hline & DMF, 80 \ ^{\circ}C, 10 \text{ h, air} & \mathbf{3} \end{array}$$

A flask was charged with alkynes (0.4 mmol, 1.0 equiv), sodium S-methyl sulfothioate **1** (99 mg, 0.6 mmol, 1.5 equiv), CuSO₄ (12.8 mg, 0.08 mmol, 0.2 equiv) and DMF (4 mL). The reaction mixture was stirred at 80 °C in air for 10 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (20 mL) and H₂O (20 mL), and extracted several times with EtOAc (3 *15 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuum and the residue was purified by column chromatography (silica gel, Petroleum ether/ Ethyl acetate) to afford the methylthiolated alkene **3**.

Methyl(phenylethynyl)sulfane. **3a**¹, Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (83%, 49.1 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.43 – 7.39 (m, 2H), 7.31 – 7.28 (m, 3H), 2.48 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 131.70, 128.51, 128.29, 123.64, 92.10, 81.14, 19.66.

Methyl(p-tolylethynyl)sulfane. **3b**¹, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (86%, 55.7 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.34 – 7.28 (m, 2H), 7.10 (d, J = 7.8 Hz, 2H), 2.47 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 138.52, 131.75, 129.28, 120.55, 92.15, 80.11, 21.71, 19.70.

H₃CO

Chemical Formula: C₁₀H₁₀OS Exact Mass: 178.0452

((4-Methoxyphenyl)ethynyl)(methyl)sulfane. 3c1, Purification by column

chromatography on silica gel (pertroleum ether/Ethyl acetate=20:1) afforded a light

yellow oil (88%, 62.6 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.33 (m, 2H), 6.85 – 6.79 (m, 2H), 3.81 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 159.85, 133.63, 115.74, 114.16, 91.86, 79.19, 55.53, 19.76.

Chemical Formula: C₁₄H₁₈S Exact Mass: 218.1129

Methyl((4-pentylphenyl)ethynyl)sulfane. **3d**, Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (83%, 72.4 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.33 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H), 2.46 (s, 3H), 1.60 (q, J = 7.6 Hz, 2H), 1.30 (dtt, J = 17.9, 8.6, 5.1 Hz, 4H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 143.58 , 131.77 , 128.63 , 120.72 , 92.20 , 80.10 , 36.08 , 31.66 , 31.14 , 22.75 , 19.72 , 14.25 . HRMS (EI) Calcd. for C₁₄H₁₈S 218.1129, found 218.1135.

Chemical Formula: C₉H₇CIS Exact Mass: 181.9957

((4-Chlorophenyl)ethynyl)(methyl)sulfane. **3e**¹, Purification by column chromatography on silica gel (pertroleum ether) afforded a light yellow oil (75%, 54.6 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.35 – 7.31 (m, 2H), 7.28 – 7.26 (m, 2H), 2.48 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 134.27, 132.87, 128.86, 122.15, 91.00, 82.45, 19.58.

((4-Bromophenyl)ethynyl)(methyl)sulfane. 3f¹, Purification by column

chromatography on silica gel (pertroleum ether) afforded a yellow oil (74%, 66.9 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.42 (d, J = 8.5 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 2.48 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 133.04 , 131.78 , 122.62 , 122.43, 91.09, 82.70, 19.56.

Methyl((4-(trifluoromethyl)phenyl)ethynyl)sulfane. $3g^2$, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (81%, 70.0 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.54 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 131.47, 129.87, 129.61, 129.35, 127.45, 125.46, 125.27, 123.09, 91.08, 84.70, 19.54; ¹⁹F NMR (470 MHz, Chloroform-d) δ -62.72.

Methyl((4-nitrophenyl)ethynyl)sulfane. **3h**³, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a red solid (63%, 48.6 mg). Mp: 71-75 °C. ¹H NMR (500 MHz, Chloroform-d) δ 8.25 (d, J = 8.9 Hz, 2H), 8.05 (d, J = 8.8 Hz, 2H), 2.61 (s, 3H).; ¹³C NMR (126 MHz, Chloroform-d) δ 150.60, 141.60, 129.54, 124.10, 93.10, 79.96, 27.23.

Chemical Formula: C10H7NS Exact Mass: 173.0299

NC

 O_2N

4-((Methylthio)ethynyl)benzonitrile. 3i, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow solid (70%, 48.5 mg). Mp: 74-79 °C. ¹H NMR (500 MHz, Chloroform-d) δ 8.05 (d, J = 8.7 Hz, 2H), 7.82 – 7.73 (m, 2H), 2.65 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 140.17, 132.77, 128.95, 118.17, 116.69, 95.38, 81.82, 27.01. HRMS (EI) Calcd. for C₁₀H₇NS 173.0299, found 173.0303.

1-(4-((methylthio)ethynyl)phenyl)ethan-1-one. **3***i*, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=3:1, v/v) afforded a yellow solid (68%, 51.7 mg). Mp: 71-74 °C. ¹H NMR (500 MHz, Chloroform-d) δ 7.91 – 7.85 (m, 2H), 7.48 – 7.42 (m, 2H), 2.59 (s, 3H), 2.51 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 197.23, 135.81, 131.00, 128.32, 128.26, 91.58, 85.55, 26.57, 19.38. HRMS (EI) Calcd. for C₁₁H₁₀OS 190.0452, found 190.0457.

Chemical Formula: C₉H₇FS Exact Mass: 166.0252

((3-Fluorophenyl)ethynyl)(methyl)sulfane. **3k**, Purification by column chromatography on silica gel (pertroleum ether) afforded a light yellow oil (72%, 47.8 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.24 (dd, J = 8.0, 5.8 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.09 (ddd, J = 9.5, 2.6, 1.4 Hz, 1H), 7.03 – 6.96 (m, 1H), 2.48 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 162.58 (d, J = 246.5 Hz), 130.07, 127.39, 125.49, 118.28 (d, J = 22.7 Hz), 115.56 (d, J = 21.0 Hz), 90.97, 82.68, 19.55 ; ¹⁹F NMR (470 MHz, Chloroform-d) δ -112.99. HRMS (EI) Calcd. for C₉H₇FS 166.0252, found 166.0247.

CH₃ SCH₃

Chemical Formula: C₁₀H₁₀S Exact Mass: 162.0503

Methyl(*o*-tolylethynyl)sulfane. **31**, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (74%, 47.9 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.25 – 7.15 (m, 3H), 7.10 (d, J = 7.6 Hz, 1H), 2.47 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 138.19 , 132.27 , 129.21 , 128.76 , 128.40 , 123.42 , 92.27 , 80.67 , 21.44 , 19.68 . HRMS (EI) Calcd. for C₁₀H₁₀S 162.0503, found 162.0510.

Chemical Formula: C₁₂H₁₀S₂ Exact Mass: 218.0224

1,3-Bis((methylthio)ethynyl)benzene. **3m**⁴, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow oil (65%, 56.7 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.43 (m, 1H), 7.32 – 7.29 (m, 2H), 7.22 (m, 1H), 2.47 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d) δ 134.17 , 130.86 , 128.45 , 123.79 , 91.20 , 81.96 , 19.49 .

Chemical Formula: C₁₄H₁₂OS Exact Mass: 228.0609

((6-Methoxynaphthalen-2-yl)ethynyl)(methyl)sulfane. **3n**¹, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow solid (70%, 63.8 mg). Mp: 94-97 °C. ¹H NMR (500 MHz, Chloroform-d) δ 7.86 (s, 1H), 7.65 (dd, J = 12.5, 8.7 Hz, 2H), 7.43 (dd, J = 8.5, 1.7 Hz, 1H), 7.14 (dd, J = 9.0, 2.5 Hz, 1H), 7.09 (d, J = 2.6 Hz, 1H), 3.91 (s, 3H), 2.50 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 158.52, 134.26, 131.51, 129.51, 129.25, 128.66, 126.98, 119.62, 118.51, 106.02, 92.58, 80.52, 55.59, 19.77.

Chemical Formula: C₇H₆S₂ Exact Mass: 153.9911

2-((Methylthio)ethynyl)thiophene. **30**⁵, Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (62%, 38.2mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.26 – 7.24 (m, 1H), 7.21 (dd, J = 3.6, 1.2 Hz, 1H), 6.96 (dd, J = 5.2, 3.7 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 133.18, 127.99, 127.16, 123.82, 85.60, 84.84, 19.76.

Methyl(3-phenoxyprop-1-yn-1-yl)sulfane. **3p**, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (87%, 61.9 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.33 – 7.27 (m, 2H), 7.01 – 6.92 (m, 3H), 4.78 (s, 2H), 2.38 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 157.90, 129.68, 121.63, 115.16, 88.30, 80.30, 57.05, 19.21. HRMS (EI) Calcd. for C₁₀H₁₀OS 178.0452, found 178.0446.

3.3 General procedures for methylthiolation of 1,3-diketones

A flask was charged with 1,3-diketones (0.4 mmol, 1.0 equiv), sodium S-methyl sulfothioate 1 (99 mg, 0.6 mmol, 1.5 equiv), CuSO₄ (32 mg, 0.2 mmol, 0.5 equiv) and DMF (4 mL). The reaction mixture was stirred at 50 °C in air for 24 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (20 mL) and H₂O (20 mL), and extracted several times with EtOAc (3 *15 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuum and the residue was purified by column chromatography (silica gel, Petroleum ether/ Ethyl acetate) to afford the methylthiolated product **5**.

2-Fluoro-2-(methylthio)-1,3-diphenylpropane-1,3-dione. **5a**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=5:1, v/v) afforded a colorless oil (60%, 69.1 mg). ¹H NMR (500 MHz, Chloroform-d) δ 8.05 (d, J = 7.7 Hz, 4H), 7.56 – 7.50 (m, 2H), 7.39 (t, J = 7.9 Hz, 4H), 2.15 (d, J = 1.9 Hz, 3H); ¹³C

NMR (126 MHz, Chloroform-*d*) δ 189.46, 134.58, 133.41, 130.31, 130.13, 128.92, 29.96; ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -130.65 . HRMS (EI) Calcd. for C₁₆H₁₃FO₂S 288.0620, found 288.0627.

Chemical Formula: C₁₄H₁₆O₂S Exact Mass: 248.0871

2-Benzoyl-2-(methylthio)cyclohexan-1-one. **5b**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=5:1, v/v) afforded a light yellow oil (32%, 31.6 mg). ¹H NMR (500 MHz, Chloroform-d) δ 8.05 – 7.98 (m, 2H), 7.55 – 7.48 (m, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 3.05 (dd, *J* = 13.3, 2.9 Hz, 1H), 2.60 – 2.51 (m, 1H), 2.12 (td, *J* = 12.8, 5.8 Hz, 1H), 2.05 – 2.00 (m, 1H), 1.91 (s, 3H), 1.86 – 1.72 (m, 4H); ¹³C NMR (126 MHz, Chloroform-d) δ 207.34, 191.21, 133.29, 129.71, 128.98, 128.75, 128.31, 42.76, 37.85, 28.58, 23.07, 11.40. HRMS (EI) Calcd. for C₁₄H₁₆O₂S 248.0871, found 248.0869.

2-(methylthio)-1,3-diphenylpropane-1,3-dione. **5c**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow oil (10%, 10.8 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.99 (d, J = 7.7 Hz, 4H), 7.56 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 7.8 Hz, 4H), 5.75 (s, 1H), 2.21 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 191.67, 135.41, 133.99, 129.33, 129.10, 58.10, 29.96.

Methyl 2-(methylthio)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate. **5d**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=3:1, v/v) afforded a yellow oil (75%, 70.8 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.87 – 7.80 (m, 1H), 7.64 (m, 1.2 Hz, 1H), 7.50 – 7.40 (m, 2H), 3.90 (d, J = 17.8 Hz, 1H), 3.81 (s, 3H), 3.16 (d, J = 17.7 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 196.42, 170.00, 150.59, 135.61, 134.10, 128.47, 126.37, 125.78, 58.21, 53.52, 40.22, 13.84. HRMS (EI) Calcd. for C₁₂H₁₂O₃S 236.0507, found 236.0504.

3.4 General procedures for methylthiolation of thiols

$$CH_3SSO_3Na + RSH \xrightarrow{DMF} RS-SCH_3$$
1
6

A flask was charged with thiol (0.4 mmol, 1.0 equiv), sodium S-methyl sulfothioate (99 mg, 0.6 mmol, 1.5 equiv) and DMF (4 mL). The reaction mixture was stirred at 80 °C for 10 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (20 mL) and H₂O (20 mL), and and extracted several times with EtOAc (3 *15 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, Petroleum ether/ Ethyl acetate) to afford the methylthiolated thiol **6**.

SSCH₃ Chemical Formula: C₈H₁₀S₂ Exact Mass: 170.0224

1-Methyl-2-(p-tolyl)disulfane . **6a**¹¹, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (81%, 55.1 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.43 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 2.43 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 137.52 , 133.74 , 130.05 , 128.93 , 23.15 , 21.28 .

H₃C

^tBu

Chemical Formula: C₈H₁₀OS₂ Exact Mass: 186.0173

1-(4-Methoxyphenyl)-2-methyldisulfane. **6b**¹², Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (76%, 56.5 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.51 – 7.45 (m, 2H), 6.90 – 6.84 (m, 2H), 3.81 (s, 3H), 2.44 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 159.99, 132.34, 128.11, 114.96, 55.65, 23.12.

SSCH₃ Chemical Formula: C₁₁H₁₆S₂ Exact Mass: 212.0693

(1-(4-(tert-Butyl)phenyl)-2-methyldisulfane. **6c**, Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (78%, 66.1 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.46 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 2.44 (s, 3H), 1.31 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d) δ 150.68 , 133.78 , 128.41 , 126.36 , 34.79 , 31.53 , 23.26 . HRMS (EI) Calcd. for C₁₁H₁₆S₂ 212.0693, found 212.0694.

SSCH₃ Chemical Formula: C₇H₇ClS₂ Exact Mass: 189.9678

1-(4-Chlorophenyl)-2-methyldisulfane. **6d**¹², Purification by column chromatography on silica gel (pertroleum ether) afforded a light yellow oil (82%, 62.3 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.46 (dd, J = 8.6, 0.9 Hz, 2H), 7.30 (dd, J = 8.7, 1.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 135.78, 133.16, 129.39,

129.25, 23.09.

Chemical Formula: C₇H₇BrS₂ Exact Mass: 233.9173

1-(4-Bromophenyl)-2-methyldisulfane. **6e**¹³, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (79%, 73.9 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 136.48, 132.31, 129.40, 121.02, 23.08.

Chemical Formula: C₇H₇ClS₂ Exact Mass: 189.9678

 $\label{eq:2.2} \begin{array}{l} \mbox{1-(2-Clorophenyl)-2-methyldisulfane. 6f, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (78%, 59.3 mg). <math display="inline">^1\mbox{H}$ NMR (500 MHz, Chloroform-d) δ 7.78 (dd, J = 8.0, 1.4 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 2.44 (s, 3H); $^{13}\mbox{C}$ NMR (126 MHz, Chloroform-d) δ 135.72 , 132.27 , 130.03 , 127.60 , 127.55 , 127.28 , 22.80 . HRMS (EI) Calcd. for C7H7ClS2 189.9678, found 189.9680.

CH₃

Chemical Formula: C₈H₁₀S₂ Exact Mass: 170.0224

 $\label{eq:2.1} \begin{array}{l} \mbox{1-Methyl-2-(o-tolyl)disulfane. } 6g^{14}, \mbox{Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (83%, 56.4 mg). 1H NMR (500 MHz, Chloroform-d) $$\delta$ 7.72 - 7.67 (m, 1H), 7.24 - 7.19 (m, 1H), 7.19 - 7.13 (m, 2H), 2.41 (s, 3H), 2.40 (s, 3H); 13C NMR (126 MHz, Chloroform-d) $$\delta$ 137.49 , 135.53 , 130.72 , 128.20 , 127.27 , 126.78 , 22.87 , 20.17 . \\ \end{array}$

SSCH₃ Chemical Formula: C₉H₁₀O₂S₂ Exact Mass: 214.0122

Methyl 2-(methyldisulfanyl)benzoate. **6h**¹⁵, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow oil (87%, 74.5 mg). ¹H NMR (500 MHz, Chloroform-d) δ 8.19 – 8.11 (m, 1H), 8.03 (dd, J = 7.7, 1.5 Hz, 1H), 7.62 – 7.53 (m, 1H), 7.24 (t, J = 7.6 Hz, 1H), 3.93 (s, 3H), 2.39 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 166.99, 141.49, 133.09, 131.75, 127.19, 125.35, 125.29, 52.45, 22.22.

H₃CO SSCH₃ Chemical Formula: C₈H₁₀OS₂ Exact Mass: 186.0173

 $\label{eq:1-(3-Methoxyphenyl)-2-methyldisulfane. 6i, Purification by column chromatography on silica gel (pertroleum ether) afforded a light yellow oil (84%, 62.5 mg). <math display="inline">^{1}\text{H}$ NMR (500 MHz, Chloroform-d) δ 7.23 (d, J = 7.9 Hz, 1H), 7.13 – 7.06 (m, 2H), 6.77 (ddd, J = 8.2, 2.4, 1.0 Hz, 1H), 3.82 (s, 3H), 2.44 (s, 3H); ^{13}C NMR (126 MHz, Chloroform-d) 160.38 , 138.47 , 130.10 , 119.81 , 112.89 , 112.75 , 55.57 , 23.19 . HRMS (EI) Calcd. for C $_8H_{10}OS_2$ 186.0173, found 186.0179.

1-Methyl-2-(m-tolyl)disulfane. **6j**¹⁴, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (74%, 62.9 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.34 (d, J = 7.3 Hz, 2H), 7.22 (td, J = 7.3, 1.5 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 139.20, 136.94, 129.12, 128.50, 128.07, 125.05, 23.23, 21.63.

SSCH₃ Chemical Formula: C₁₁H₁₀S₂ Exact Mass: 206.0224

 $\label{eq:1-Methyl-2-(naphthalen-2-yl)disulfane. 6k, Purification by column chromatography on silica gel (pertroleum ether) afforded a light yellow oil (77%, 63.4 mg). <math display="inline">^1H$ NMR (500 MHz, Chloroform-d) δ 7.99 (d, J = 1.8 Hz, 1H), 7.80 (t, J = 9.3 Hz, 3H), 7.61 (dd, J = 8.7, 1.9 Hz, 1H), 7.53 – 7.42 (m, 2H), 2.48 (s, 3H); ^{13}C NMR (126 MHz, Chloroform-d) δ 134.37 , 133.79 , 132.63 , 129.13 , 128.03 , 127.59 , 126.96 , 126.44 , 126.31 , 126.04 , 23.12 . HRMS (EI) Calcd. for $C_{11}H_{10}S_2$ 206.0224, found 206.0226.

Chemical Formula: C₈H₇NS₃ Exact Mass: 212.9741

2-(Methyldisulfanyl)benzo[d]thiazole. **61**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow oil (80%, 68.2 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.88 (d, J = 8.2 Hz, 1H), 7.84 – 7.79 (m, 1H), 7.47 – 7.40 (m, 1H), 7.37 – 7.31 (m, 1H), 2.68 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 172.54, 155.43, 136.11, 126.50, 124.84, 122.44, 121.41, 23.77. HRMS (EI) Calcd. for C₈H₇NS₃ 212.9741, found 212.9745.

Chemical Formula: C₈H₇NOS₂ Exact Mass: 196.9969

2-(Methyldisulfanyl)benzo[d]oxazole. **6m**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a light yellow oil (83%, 65.4 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.71 – 7.68 (m, 1H), 7.52 – 7.48 (m, 1H), 7.34 – 7.29 (m, 2H), 2.72 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 163.65 , 152.74 , 142.14 , 125.00 , 124.87 , 119.63 , 110.53 , 23.85 . HRMS (EI) Calcd. for C₈H₇NOS₂ 196.9969, found 196.9973.

SSCH₃

Chemical Formula: C₈H₁₀S₂ Exact Mass: 170.0224

1-Benzyl-2-methyldisulfane. **6n**¹¹, Purification by column chromatography on silica gel (pertroleum ether) afforded a colorless oil (76%, 51.7 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.28 (d, J = 6.0 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.22 – 7.18 (m, 1H), 3.84 (s, 2H), 2.04 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 137.78, 129.55, 128.76, 127.63, 43.26, 23.25.

Methyl(phenylselanyl)sulfane. **60¹⁰**, Purification by column chromatography on silica gel (pertroleum ether) afforded a yellow oil (65%, 53.0 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.70 – 7.64 (m, 2H), 7.40 – 7.35 (m, 2H), 7.33 (dd, J = 8.1, 1.9 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 131.78 , 130.36 , 129.47 , 127.71 , 29.95 .

3.5 General procedures for methylthiolation of H-phosphineoxides

A flask was charged with *H*-phosphineoxides (0.4 mmol, 1.0 equiv), sodium S-methyl sulfothioate 1 (99 mg, 0.6 mmol, 1.5 equiv) and DMF (4 mL). The reaction mixture was stirred at 80 °C or 30 °C for 10-24 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (20 mL) and H₂O (20 mL), and extracted several times with EtOAc (3 *15 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuum and the residue was purified by column chromatography (silica gel, Petroleum ether/ Ethyl acetate) to afford the methylthiolated *H*-phosphineoxide 7.

S-Methyl diphenylphosphinothioate. $7a^{12}$, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=30:1, v/v) afforded a colorless oil (85%, 84.3 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.93 – 7.82 (m, 4H), 7.61 – 7.41 (m, 6H), 2.24 (d, J = 12.1 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 133.38, 132.57, 131.73 (d, J = 10.6 Hz), 128.94 (d, J = 13.2 Hz), 10.82.

Ph
$$^{O}_{Ph}^{U}_{Ph}^{O}_{Ph}$$
 Chemical Formula: C₁₃H₁₃O₃PS
SCH₃ Exact Mass: 280.0323

S-Methyl *O*,*O*-diphenyl phosphorothioate. **7b**¹³, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a yellow oil (73%, 81.8 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.38 (dd, J = 8.6, 7.2 Hz, 4H), 7.34 – 7.27 (m, 4H), 7.23 (td, J = 7.3, 1.2 Hz, 2H), 2.38 (d, J = 16.2 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 150.51, 130.11, 125.89, 120.85, 13.26.

 $\begin{array}{c} O \\ Bn & O \\ SCH_3 \end{array} \qquad \begin{array}{c} O \\ Chemical Formula: C_{15}H_{17}O_3PS \\ Exact Mass: 308.0636 \end{array}$

O,O-Dibenzyl *S*-methyl phosphorothioate. **7c**, Purification by column chromatography on silica gel (pertroleum ether/Ethyl acetate=10:1, v/v) afforded a

light yellow oil (76%, 93.6 mg). ¹H NMR (500 MHz, Chloroform-d) δ 7.43 – 7.28 (m, 10H), 5.21 – 5.05 (m, 4H), 2.19 (d, J = 15.3 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 135.73 , 135.67 , 128.82 , 128.29 , 69.11 (d, J = 5.7 Hz), 12.54 . HRMS (EI) Calcd. for C₁₅H1₇O₃PS 308.0636, found 308.0644.

3.6 General procedures for gram-Scale Synthesis

A 50 mL flask was charged with phenyl-acetylene 2a (1.04 g, 10.0 mmol, 1.0 equiv), sodium S-methyl sulfothioate 1 (2.3 g, 15.0 mmol, 1.5 equiv), CuSO₄ (32 mg, 2.0 mmol, 0.2 equiv) and DMF (20 mL). The reaction mixture was stirred at 80 °C in air for 10 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (80 mL) and H₂O (20 mL), and extracted several times with EtOAc (3 *50 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuum and the residue was purified by column chromatography (silica gel, Petroleum ether) to afford the methylthiolated alkene **3a** as light yellow oil (1.02g, 69%).

3.7 General procedures for methylthiolation of erlotinib

A flask was charged with erlotinib (162.0 mg, 0.4 mmol, 1.0 equiv), sodium S-methyl sulfothioate 1 (99 mg, 0.6 mmol, 1.5 equiv), CuSO₄ (12.8 mg, 0.08 mmol, 0.2 equiv) and DMF (4 mL). The reaction mixture was stirred at 80 °C in air for 10 h. After completion of the reaction as monitored by TLC, the mixture was cooled to room temperature, poured into EtOAc (20 mL) and H₂O (20 mL), and extracted several times with EtOAc (3 *15 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuum and the residue was purified by column chromatography (silica gel, Petroleum ether/ Ethyl acetate =1:50, v/v) to afford the methylthiolated erlotinib **9**.

6,7-Bis(2-methoxyethoxy)-*N*-(3-((methylthio)ethynyl)phenyl)quinazolin-4-amine. **9**, a white solid (93%, 163.3 mg). Mp: 113-115 °C. ¹H NMR (500 MHz, Chloroform-d) δ 8.63 (s, 1H), 7.77 (s, 1H), 7.73 (s, 1H), 7.67 (dd, J = 8.1, 2.1 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.25 (s, 1H), 7.20 – 7.11 (m, 2H), 4.20 (dt, J = 11.6, 4.5 Hz, 4H), 3.79 (q, J = 5.1 Hz, 4H), 3.43 (s, 6H), 2.48 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 156.58, 154.61, 153.79, 148.91, 147.64, 139.04, 129.13, 127.30, 124.60, 124.27, 121.85, 109.41, 108.79, 102.71, 91.86, 81.54, 71.11, 70.60, 69.21, 68.42, 59.48, 59.41, 19.59. HRMS (EI) Calcd. for C₂₃H₂₅N₃O₄S 439.1566, found 439.1561.

- Su, Q.; Zhao, Z.-J.; Xu, F.; Lou, P.-C.; Zhang, K.; Xie, D.-X.; Shi, L.; Cai, Q.-Y.; Peng, Z.-H.; An, D.-L. *Eur. J. Org. Chem.* 2013, 2013, 1551.
- [2] Melzig, L.; Metzger, A.; Knochel, P. Chem. Eur. J. 2011, 17, 2948.
- [3] M, L.; Nielsen, M. F.; Hammerich, O. Acta Chemica Scandinavica 1995, 49, 503.
- [4] L'Abbe, G.; Haelterman, B.; Dehaen, W. J. Chem. Soc., Perkin Transactions 1 1994, 2203.
- [5] Raap, R.; Micetich, R. G. Can. J. Chem. 1968, 46, 1057.
- [6] Harpp, D. N.; Smith, R. A. J. Org. Chem. 1979, 44, 4140.
- [7] Tsutsumi, N.; Itoh, T.; Ohsawa, A. Chem. Pharm. Bull. 2000, 48, 1524.
- [8] Somasundaram, N.; Pitchumani, K.; Srinivasan, C. J. Chem. Soc., Chem. Commun. 1994, 1473.
- [9] Armitage, D. A.; Clark, M. J.; Tso, C. C. J. Chem. Soc., Perkin Transactions 1 1972, 680.
- [10] Baerlocher, F. J.; Baerlocher, M. O.; Langler, R. F.; MacQuarrie, S. L.; Marchand, M. E. Australian J. Chem. 2000, 53, 1.
- [11] Detty, M. R. J. Org. Chem. 1979, 44, 4528.
- [12] Morimoto, T.; Nezu, Y.; Achiwa, K.; Sekiya, M. J. Chem. Soc., Chem. Commun. 1985, 1584.
- [13] Xia, M.; Cheng, J. Tetrahedron Lett. 2016, 57, 4702.

4. NMR Spectra

S33

