Ligand-Free Ullmann-Type Arylation of Oxazolidinones by Diaryliodonium

Salts

Ekaterina V. Podrezova^{*a*}, Alina A. Okhina^{*b,c*}, Artem D. Rogachev^{*b,c*}, Sergey V. Baykov^{*a,d*}, Andreas Kirschning^{*e*}, Mekhman S. Yusubov^{*a*}, Natalia S. Soldatova^{**a*} and Pavel S. Postnikov^{**a,f*}

- ^{*a*} Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia; E-mail: <u>postnikov@tpu.ru</u>, <u>soldatovans@tpu.ru</u>
- ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia;
- ^c Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia;
- ^d Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia;
- ^e Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
- ^f Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic

Table of Contents

General information	S2
General procedure for the preparation of amino alcohol (GP1)	S3
General procedure for the preparation of oxazolidin-2-ones (GP2)	S5
Preparation of diaryliodonium salts	S7
Preparation of N-aryl oxazolidinones	S14
Chiral HPLC analysis of 1aa, 1aa', and 1aa''	S23
X-ray structure determinations	S24
Table S1. Crystal data and structure refinement.	S25
References	S26
NMR spectra of 2	S28
NMR spectra of 3	S34

General information

All reagents and solvents were obtained from commercial sources and used without further purification from freshly opened containers. Amino alcohols **S1a**, **S1b**, **S1c** were obtained from commercial sources, while other amino alcohols was prepared from amino acids (see General procedure **GP1**). Anhydrous solvents were dried and distilled by standard techniques before use. Reactions were monitored with TLC (eluent hexane : EtOAc 3:1). The NMR spectra were recorded on a Bruker Avance 400 at ambient temperature; the residual solvent signal was used as the internal standard. ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra were recorded at 100 MHz, and ¹⁹F NMR spectra were recorded at 376 MHz. Chemical shifts are reported in parts per million (ppm).

Chiral HPLC analyses were performed using Maestro (Interlab, Russia) chromatograph equipped with a high-pressure quaternary gradient pump, autosampler, column thermostat and UV detector with diode array. Separation of enantiomers was achieved on a Lux Cellulose-1 column ($4.6 \times 250 \text{ mm}$, 5 µm, Phenomenex, USA) equipped with a pre-column with the same sorbent and thermostatted at 30°C. The elution was carried out in isocratic mode using a mixture of hexane – isopropanol (80:20, v/v); flow rate was 1.5 mL/min.

A sample weighing of 1.3-1.5 mg was dissolved in 1 ml of the mobile phase and analyzed; the injection volume was 5 μ l. The detection was done at the wavelengths of 210, 240, 265 and 280 nm, and the full UV spectrum in the range of 210-400 nm was recorded every 2 s. The chromatograph was controlled, data collected and processed using Clarity 8.2 software (DataApex, Prague, Czech Republic).

HRMS analysis was performed on a Bruker maXis spectrometer equipped with an electrospray ion source or on a Thermo Scientific DFS (Double Focusing System) with electron ionization (70 eV). The Bruker maXis spectrometer was operated in positive ion mode using an m/z range 50–1200. The nebulizer gas flow was 1.0 bar, and the drying gas flow was 4.0 L/min.

General procedure for the preparation of amino alcohol (GP1)

The preparation of amino alcohols was performed according to previous reported methods.¹ A Schlenk flask, fitted with a magnetic stir bar and a reflux condenser, was charged with a suspension of lithium aluminum hydride (2.0 equiv.) in 50 mL of tetrahydrofuran (THF). The mixture was cooled (5–10°C, ice bath) and amino acid (1 equiv.) was added portionwise and reaction was stirred for 1 hour at cooling. Then reaction mixture was warmed to room temperature and then refluxed overnight. The resulting mixture was cooled to 5–10°C on ice bath and treated with aqueous solution of NaOH (2M, 10 mL). The solution was extracted with boiling THF (50 mL), after that organic layers was concentrated in vacuo. Residue was diluted with DCM (50 mL), washed with brine (10 mL) and dried over Na₂SO₄, filtered and concentrated in vacuo to afford amino alcohol **S1**, which was used for the next step without further purification.

i-Pr NH₂ **D-Valinol** ((*R*)-2-amino-3-methylbutan-1-ol, S1a').² The reaction of D-valine (14 mmol, 1.64 g) according to general procedure **GP1** afforded 0.90 g (63%) of **S1a'** isolated as the colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 3.36 (dd, J = 10.4, 4.4 Hz, 2H), 3.13 (dd, J = 10.4, 7.6 Hz, 1H), 2.40 (dt, J = 7.2, 5.1 Hz, 1H), 1.61 – 1.50 (m, 1H), 0.84 (d, J = 7.2 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H).

i-Pr NH₂ **D,L-Valinol (2-amino-3-methylbutan-1-ol, S1a'').**³ The reaction of D,L-valine (21.3 mmol, 2.5 g) according to general procedure **GP1** afforded 1.17 g (11.4 mmol, 54%) of **S1a''** isolated as the colorless oil. ¹H NMR (400 MHz, DMSO- d_6) δ 3.35 (dd, J = 10.4, 4.8 Hz, 2H), 3.13 (dd, J = 10.4, 7.6 Hz, 1H), 2.40 (dt, J = 7.6, 5.1 Hz, 1H), 1.60 – 1.48 (m, 1H), 0.84 (d, J = 7.2 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H).

s-Bu_{11,} NH₂ L-Leucinol ((S)-2-amino-4-methylpentan-1-ol, S1c).⁴ The reaction of L-Leucine (5 mmol, 0.655 g) according to general procedure GP1 afforded 0.333 g (2.82 S1c mmol, 56%) of S1c isolated as the colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.56 (dd, J = 8.8, 4.0 Hz, 1H), 3.22 (dd, J = 10.4, 8.0 Hz, 1H), 2.98 – 2.80 (m, 1H), 2.01 – 1.53 (m, 4H), 1.23 – 1.13 (m, 2H), 0.92 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H).

Ph NH₂ D-Phenylglycinol ((*R*)-2-amino-2-phenylethan-1-ol, S1e).⁵ The reaction of L-phenylglycine (5 mmol, 0.755 g) according to general procedure GP1 afforded 0.576 g (84%) of S1e isolated as the yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 6.93

(m, 3H), 3.95 (dd, *J* = 8.4, 4.4 Hz, 1H), 3.65 (dd, *J* = 10.8, 4.4 Hz, 1H), 3.46 (dd, *J* = 10.8, 8.4 Hz, 1H), 2.19 – 1.89 (m, 3H).

General procedure for the preparation of oxazolidin-2-ones (GP2)

An amino alcohol (3 mmol, 1 equiv.) was dissolved in water (3 mL) in a round bottomed flask. Then, NaHCO₃ (5 mmol, 0.420 g, 1.67 equiv.) was added to reaction flask with subsequent followed by addition of CH₂Cl₂ (10 mL). The resulting biphasic mixture was vigorously stirred at room temperature before drop wise addition of ethyl chloroformate (3.15 mmol, 0.342 g, 0.3 mL, 1.05 equiv.) . The resulting mixture was stirred at room temperature for 2 hours. After, reaction mixture was concentrated in vacuo and residue was suspended in acetone. Anhydrous MgSO₄ was added to suspension and mixture was filtered and concentrated in vacuo. The crude carbamate was dissolved in acetonitrile and Cs₂CO₃ (5.0 mmol, 1.625 g, 1.67 equiv.) was added. The reaction mixture was stirred at 90 °C for 4 hours. Then solvent was removed under reduced pressure and product was purified by silica gel column chromatography (eluent hexane : EtOAc, EtOAc $0\rightarrow$ 50%) or recrystallization (hexane:EtOAc 2:1) to give the desired product.

i-Pr/, N (*S*)-4-isopropyl-oxazolidin-2-one (1a).⁶ The reaction of L-valinol (3 mmol, 0.309 g) according to general procedure **GP2** afforded 0.290 g (75 %) of 1a isolated as the colorless crystalline solid; mp 71–73 °C (lit 72.3 °C).⁶ Product was purified by recrystallization. ¹H NMR (400 MHz, CDCl₃) δ 6.90 (brs, 1H), 4.43 (t, *J* = 8.8 Hz, 1H), 4.08 (dd, *J* = 8.8, 6.4 Hz, 1H), 3.62 – 3.57 (m, 1H), 1.73 – 1.68 (m, 1H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H).

i-Pr H (R)-4-isopropyl-oxazolidin-2-one (1a').⁷ The reaction of D-valinol (3 mmol, 0.309 g) according to general procedure GP2 afforded 0.271 g (70 %) of 1a' isolated as the colorless crystalline solid; mp 70–72 °C (lit 67–70 °C).⁷. Product was purified by recrystallization. ¹H NMR (400 MHz, CDCl₃) δ 6.10 (brs, 1H), 4.45 (t, J = 8.6Hz, 1H), 4.11 (dd, J = 8.6, 6.2 Hz, 1H), 3.64 – 3.56 (m, 1H), 1.79 – 1.67 (m, 1H), 0.96 (d, J = 6.8Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H).

i-Pr *H i*-Pr *i*-Pr *i*-N *i*-O *i*-N *i*-Sopropyl-oxazolidin-2-one (1a).⁸ The reaction of DL-valinol (3 mmol, 0.309 g) according to general procedure GP2 afforded 0.263 g (68 %) of 1a" isolated as the colorless crystalline solid; mp 71–73 °C (lit 71–72 °C).⁸ Product was purified by recrystallization. ¹H NMR (400 MHz, CDCl₃) δ 6.03 (brs, 1H), 4.45 (t, *J* = 8.6 Hz, 1H), 4.11 (dd, *J* = 8.2, 6.0 Hz, 1H), 3.66 – 3.57 (m, 1H), 1.81 – 1.66 (m, 1H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). Me (S)-4-methyloxazolidin-2-one (1b).⁹ The reaction of L-alaninol (3 mmol, 0.225 g) according to general procedure GP2 afforded 0.222 g (73 %) of 1b isolated as the colorless crystalline solid; mp 44–45 °C (lit 45.9 °C).⁹ Product was purified by silica gel column chromatography. ¹H NMR (400 MHz, CDCl₃) δ 4.49 (t, J = 8.0 Hz, 1H), 4.03 – 3.92 (m, 2H), 1.29 (d, J = 6.0 Hz, 3H).

t-Bu, $\stackrel{\mathsf{N}}{\underset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}{{\bullet}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\bullet}{\overset{\mathsf{O}}{{\bullet}}{\overset{\mathsf{O}}{{}}{\overset{\mathsf{O}}{{}}{\overset{\mathsf{O}}{{}}{{}}{\overset{$

Ph (R)-4-phenyloxazolidin-2-one (1e). The reaction of D-phenylglycinol (S1e, 3 mmol, 0.411 g) according to general procedure GP2 afforded 0.332 g (69 %) of 1e isolated as colorless crystalline solid; mp 127–128 °C (lit 124–126 °C).¹² Product was purified by silica gel column chromatography. ¹H NMR (400 MHz, DMSO- d_6) δ 7.40 – 7.13 (m, 5H), 4.90 (dd, J = 8.8, 6.4 Hz, 1H), 4.62 (d, J = 8.8 Hz, 1H), 3.93 (dd, J = 8.8, 6.4 Hz, 1H).

Preparation of diaryliodonium salts

Preparation of diaryliodonium salts 2b–c (GP3). Sulfuric acid (2 mL) was added to a stirred mixture of iodine (2.5 mmol, 635 mg), Oxone (10 mmol, 6.17 g) and arene (1.5 mL) in acetonitrile (10 mL). The reaction mixture was stirred overnight and a solution of triflic acid (10 mmol, 0.88 mL) in water (10 mL) was added. Reaction mixture was extracted with DCM (3×20 mL) and combined organic phase was dried over Na₂SO₄. The solvent was removed under reduced pressure and iodonium salt was isolated by precipitation fromm hexane (18 mL) and Et₂O (2 mL) mixture. The product was filtered off, washed with hexane (3×5 mL) and dried in vacuo.

Preparation of diaryliodonium salts 2d–e (GP4) is based on the previously reported procedure.¹³ Sulfuric acid (2 mL) was added to a stirred mixture of iodoarene (5 mmol), Oxone (5 mmol, 3.08 g) and arene (2 mL) in acetonitrile (10 mL). The reaction mixture was stirred overnight and a solution triflic acid (10 mmol, 0.88 mL) in water (10 mL) was added. The diaryliodonium salt was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were dried with Na_2SO_4 and the solvent was removed under the reduced pressure. A mixture of hexane (18 mL) and Et₂O (2 mL) was added to the residue. The product was filtered off, washed with hexane (3 × 10 mL) and dried in vacuo.

Preparation of diaryliodonium salts 2h–20 (GP5) was performed following to the previously reported procedure.¹⁴ Oxone (1.234 g, 2 mmol) and iodoarene (2 mmol) were added to mixture of DCM and TFA (3 mL, 1:1 v/v). The reaction mixture was stirred up to 1 hour at ambient temperature. Reaction was monitored by TLC (eluent Hexane : EtOAc 10:1 v/v), whereupon the solvent was evaporated to dryness at 40 °C, and solid residue was suspended in DCM (25 mL) and stirred for 30 min. The suspension was filtered off and an inorganic residue was washed with 25 mL of DCM. The solvent was removed to 3–5 mL residue in a flask and trifluoroethanol (TFE) (1.5 mL) and 1,3,5-trimethoxybenzene (2.1 mmol, 353 mg) were added to the mixture. After, the stirring was continued for 30 min at ambient temperature. The solvent was evaporated at 40 °C and cold Et₂O (10 mL) was added to the residue. Product was filtered off and washed with cold Et₂O (3×5 mL). The product was dried *in vacuo* (10 mbar) at ambient temperature.

Diphenyliodonium trifluoromethanesulfonate (2a).^{15,16} Preparation of **2a** is based on the previously reported procedure.¹⁵ Iodobenzene (4.08 g, 20 mmol),

2a benzene (3 mL, 34 mmol) and *m*CPBA (77%, 5.0 g, 22 mmol) dissolved in DCM (50ml) at 0–5°C. Then TfOH (3.54 mL, 40 mmol) was added dropwise and reaction mixture was refluxed for 30 min. The resulted solution was concentrated in vacuo followed by addition of cold Et₂O (20 mL). Obtained precipitate was filtered off and washed with cold Et₂O (3×10 mL)

and dried in the air at RT. Product **2a** was isolates in 66% yield (5.634 g) as the colorless crystalline solid; mp 176–177 °C (lit 169–173 °C).¹⁶ ¹H NMR (400 MHz, DMSO- d_6) δ : 8.24 (dd, J = 8.4, 0.8 Hz, 4H), 7.67 (t, J = 7.4 Hz, 2H), 7.53 (t, J = 7.8 Hz, 4H).

Diphenyliodonium tetrafluoroborate (2a-BF₄).^{17,18} Preparation of **2a-BF**₄ based on the previously reported procedures.¹⁷ BF₃·Et₂O (74 µL, 3 mmol) was added to solution of bis(trifluoroacetoxy)iodo]benzene (1.075 g, 2.5 mmol) in DCM (10 ml) t 0–5°C and stirred for 30 min. Phenylboronic acid (336 mg, 2.75 mmol) was added to reaction mixture and solution was stirred overnight at RT. The resulted solution was concentrated in vacuo followed by addition of cold Et₂O (10 mL). Obtained precipitate was filtered off and washed with cold Et₂O (3×5 mL) and dried in the air at RT. Product **2a-BF**₄ was isolated in 65% yield (600 mg) as colorless crystalline solid; mp 118–120 °C (lit 133–135 °C).¹⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 4H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.8 Hz, 4H).

Diphenyliodonium bromide (2a-Br). Preparation of **2a-Br** based on the previously reported procedure. Solution of KBr (595 mg, 5 mmol) in water (5 mL) was added to solution of diphenyliodonium triflate (430 mg, 1 mmol) in

2a-Br (430 mg, 1 mmol) in MeOH (5 mL) and stirred for 15 min. Obtained precipitate was filtered off and washed with water (3×5 mL) and dried in the air at RT. Product **2a-Br** was isolated in 95% yield (343 mg) as colorless crystalline solid. ¹H NMR (400 MHz, DMSO- d_6) δ 8.19 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H).

Br

Bis(2,5-dimethylphenyl)iodonium trifluoromethanesulfonate (2b).¹⁶ The reaction of *p*-xylene (12.2 mmol, 1.5 mL), iodine (2.5 mmol, 635 mg), Oxone (5 mmol, 3.08 g), and sulfuric acid (2 mL) accordingly to described procedure **GP3** afforded 1.360 g (56%) of **2b** isolated as the colorless crystalline solid; mp 175–177 °C (lit 168–169 °C).¹⁶ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (s, 2H),

7.44 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.55 (s, 6H), 2.30 (s, 6H).

Dimesityliodonium trifluoromethanesulfonate (2c).¹⁶ The reaction of mesitylene (10.8 mmol, 1.5 mL), iodine (2.5 mmol, 635 mg), Oxone (5 mmol, 3.08 g), and sulfuric acid (2 mL) accordingly to described procedure **GP3** afforded 2.163 g (84%) of **2c** isolated as the colorless crystalline solid; mp 189–191 °C (lit 183–186 °C).¹⁶

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.19 (s, 2H), 2.46 (s, 12H), 2.29 (s, 6H).

TfO

2e

Br

Bis(4-chlorophenyl)iodonium trifluoromethanesulfonate (2d).¹⁶ The reaction of 1-chloro-4-iodobenzene (5 mmol, 1.193 g), chlorobenzene (2 mL), Oxone (5 mmol, 3.08 g), and sulfuric acid (2

mL) accordingly to described procedure **GP4** afforded 1.933 g (77%) of **2d** isolated as the colorless crystalline solid; mp 183–185 °C (lit 183–187 °C).¹⁶ ¹H NMR (400 MHz, DMSO- d_6) δ 8.25 (d, J = 8.8 Hz, 4H), 7.62 (d, J = 8.8 Hz, 1H).

Bis(4-bromophenyl)iodonium trifluoromethanesulfonate (2e).¹⁶ The reaction of 1-bromo-4-iodobenzene (5 mmol, 1.415 g), bromobenzene (2 mL), Oxone (5 mmol, 3.08 g), and sulfuric acid (2

mL) accordingly to described procedure **GP4** afforded 1.930 g (66%) of **2e** isolated as the colorless crystalline solid; mp 181–184 °C (lit 183–188 °C).¹⁶ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.17 (d, *J* = 8.8 Hz, 4H), 7.75 (d, *J* = 8.8 Hz, 4H).

Bis(3-(trifluoromethyl)phenyl)iodonium

trifluoromethanesulfonate (2d).¹⁹ Preparation of **2d** is based on the previously reported procedure.²⁰ Iodine (2.84 mmol, 0.72g) and

NaIO₄ (4.3 mmol, 0.92 g) were added to the conc. sulfuric acid (10 mL) and stirred at 75°C for 1h. Reaction mixture was cooled with water bath and benzotrifluoride (26 mmol, 3.8 mL) was added dropwise and obtained mixture was stirred overnight at ambient temperature. Next, ice was added to the reaction mixture and after completion of ice melting, aqueous solution of TfOH (20 mmol, 1.77 mL) was added. Resulted mixture was extracted with DCM (3× 20 mL) and combined organic phase was dried over Na₂SO₄. The mixture of hexane (18 mL) and Et₂O (2 mL) was added to the residue. The product was filtered off and washed with hexane (3 × 10 mL). Product **2f** was dried under vacuo and isolated in 57% yield (3.243 g) as colorless crystalline solid; mp 95–102 °C (lit 90–91 °C).¹⁹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.81 (s, 2H), 8.60 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 7.6 Hz, 2H), 7.79 (t, *J* = 8.0 Hz, 2H).

Bis(4-methoxyphenyl)iodonium trifluoromethanesulfonate

(2g). Preparation of 2d is based on the previously reported procedures.^{20,21} Iodine (5.7 mmol, 1.45 g) was added to mixture of anisole (20 mmol, 2.2 mL), *m*-CPBA (77%, 14.3 mmol, 3.2 g), p-

TsOH·H₂O (19.4 mmol, 3.8 g) in DCM (50 mL). Solution was stirred overnight at room temperature. Then solvent was removed under reduced pressure, residue was precipitated by

addition of Et₂O, filtered and washed with Et₂O (3×15 mL). Obtained iodonium tosylate was dried in the air at room temperature for 4 h and dissolved in DCM (50 mL). The resulted solution was washed with cooled aqueous solution of NaOTf (100 mL) prepared by mixing solutions of NaOH (100 mmol, 4 g in 50 mL of H₂O) and TfOH (100 mmol, 8.8 mL in 50 mL of H₂O). Organic layer was dried over MgSO₄ and solvent was removed under reduced pressure. The product was precipitated by Et₂O, filtered, washed with cold Et₂O (3×15 mL) and dried in the air at room temperature. Product **2g** was isolated in 66% yield (3.79 g, 7.7 mmol) as the colorless crystalline solid; mp 116–125°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (d, *J* = 9.2 Hz, 4H), 7.06 (d, *J* = 8.8 Hz, 4H), 3.79 (s, 6H).

 $\begin{array}{c} \mathsf{CF_3COO}_{} \\ \texttt{CF_3COO}_{} \\ \texttt{Za'} \end{array} \qquad \begin{array}{c} \mathsf{Phenyl(thiophen-2-yl)iodonium trifluoroacetate (2a').^{22} \ Compound \ 2a'} \\ was prepared according previously reported procedure. The thiophene (2.1 mmol, 88 \ \mu\text{L}) was added to solution of bis(trifluoroacetoxy)iodobenzene (2 mmol, 860 mg) in DCM (5 mL) and reaction mixture was stirred at room \\ \end{array}$

temperature for 30 min. Then solvent was removed in vacuo and Et₂O (15 mL) was added to residue. Product was filtered and dried at room temperature; mp 147–148 °C (lit 152–154 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 8.25 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 4.0 Hz, 1H), 7.96 (d, J = 4.8 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.21 – 7.13 (m, 1H).

Phenyl(2,4,6-trimethoxyphenyl)iodonium tosylate (2a^{''})²³ was prepared according to the previously reported procedure.²³ mCBPA
(77%, 2.6 mmol, 588 mg) was added to mixture of iodobenzene (2.5 mmol, 510 mg) and p-TsOH·H₂O (2.62 mmol, 499 mg) in MeCN (5

mL) and reaction mixture was heated at 77 °C for 30 min. Next, 1,3,5-trimethoxybenzene (2.62 mmol, 441 mg) was added and reaction mixture was heated at 77 °C for 5 min. The resulted solution was concentrated in vacuo followed by addition of cold Et₂O (10 mL). Obtained precipitate was filtered off and washed with cold Et₂O (3×5 mL) and dried in the air at ambient temperature. Product **2aa**" was isolated in 75% yield (1.02 g) as the colorless crystalline solid; mp 174–176 °C (lit decomp. 167 °C).²³ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (m, 4H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.46 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H), 2.28 (s, 3H).

reported procedure. The trimethoxybenzene (10.1 mmol, 1.7 g) was added to solution of bis(trifluoroacetoxy)iodobenzene (10 mmol, 4.3 g) in DCM (50 mL) and reaction mixture was stirred at room temperature for 30 min. Then solvent was removed in vacuo and Et₂O (50 mL) was added to residue. Product was filtered and dried at room temperature. Product **2a**^{**} was isolated in 83% yield (4.0 g) as the colorless crystalline solid; mp 158–164 °C (lit 153–155 °C).²² ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 6.46 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H).

(3-(Trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (2f').²² The reaction of 3-iodobenzotriluoride (5 mmol, 1.36 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure **GP5** afforded 1.44 g (52%) of 2f' isolated as

the colorless crystalline solid; mp 157–158 °C (lit 158–160 °C).^{25 1}H NMR (400 MHz, DMSO- d_6) δ 8.33 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 6.48 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H).

p-Tolyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2h).^{22,24} The reaction of 1-iodo-4-methylbenzene (5 mmol, 1.09 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded GP5 1.40 g (58%) of 2h isolated as the

2h procedure afforded GP5 1.40 g (58%) of 2h isolated as the colorless crystalline solid; mp 164–166 °C (lit 163–165 °C).²⁴ ¹H NMR (400 MHz, DMSO- d_6) δ 7.79 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.45 (s, 2H), 3.94 (s, 6H), 3.86 (s, 3H), 2.32 (s, 3H).

m-Tolyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2i).²⁶ The reaction of 1-iodo-3-methylbenzene (5 mmol, 1.09 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded **GP5** 1.60 g (65 %) of **2i** isolated as the colorless crystalline

solid; mp 172–173 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.16 (s, 2H), 3.88 (s, 6H), 3.86 (s, 3H), 2.33 (s, 3H).

o-Tolyl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2j).²⁶ The reaction of 1-iodo-2-methylbenzene (5 mmol, 1.09 g), and 1,3,5trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded **GP5** 1.77 g (71 %) of **2j** isolated as the colorless crystalline solid; mp 168–169 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.28 – 7.17 (m, 1H), 6.44 (s, 2H), 3.95 (s, 6H), 3.85 (s, 3H), 2.59 (s, 3H).

(2,6-Dimethylphenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (2k). The reaction of 2-iodo-1,3-dimethylbenzene (5 mmol, 1.16 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded **GP5** 1.55 g (61 %) of **2k** isolated as the colorless crystalline solid; mp 150–151 °C. ¹H NMR (400 MHz,

DMSO-*d*₆) δ 7.40 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 2H), 6.45 (s, 2H), 3.89 (s, 6H), 3.85 (s, 3H), 2.60 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.9, 159.6, 157.67 (q, *J* = 30 Hz), 142.0, 132.1, 128.6, 125.4, 117.4 (q, *J* = 299 Hz), 92.2, 84.2, 57.0, 56.2, 25.9.

(4-Fluorophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (21). The reaction of 1-fluoro-4-iodobenzene (5 mmol, 1.11 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded GP5 1.31 g (52 %) of 21 isolated

as the colorless crystalline solid; mp 157–160 °C (lit 165–169 °C).²⁴ ¹H NMR (400 MHz, DMSO d_6) δ 7.97 (dd, J = 8.8, 5.2 Hz, 2H), 7.33 (t, J = 8.8 Hz, 2H), 6.46 (s, 2H), 3.94 (s, 6H), 3.86 (s, 3H).

(2-Fluorophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (2m). The reaction of 1-fluoro-2-iodobenzene (5 mmol, 1.11 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded GP5 1.71 g (68 %) of 2m isolated as

2k the colorless crystalline solid; mp 180–181 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (t, *J* = 6.6 Hz, 1H), 7.71 – 7.61 (m, 1H), 7.51 (t, *J* = 8.4 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 6.44 (s, 2H), 3.93 (s, 6H), 3.85 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.1, 159.38, 159.37 (d, *J* = 249.7 Hz), 157.76 (q, *J* = 30 Hz), 137.2, 134.92 (d, *J* = 8 Hz), 127.25 (d, *J* = 3 Hz), 117.37 (q, *J* = 299 Hz), 116.65 (d, *J* = 22 Hz), 103.69 (d, *J* = 24 Hz), 92.0, 87.6, 57.3, 56.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –73.43, –97.90 (dt, *J* = 8.3, 5.8 Hz).

(3-Bromophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (2n). The reaction of 1-bromo-3-iodobenzene (5 mmol, 1.42 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure afforded GP5 1.99 g (71 %) of 2n isolated as

the colorless crystalline solid; mp 147–153 °C (lit. 148–152 °C).²⁵ ¹H NMR (400 MHz, DMSO- d_6) δ 8.15 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 6.48 (s, 2H), 3.95 (s, 9H), 3.87 (s, 4H).

(4-Nitrophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (20).^{24,27} The reaction of 1-iodo-4-nitrobenzene (5 mmol, 1.25 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure **GP5** afforded 2.01 g (76%) of **20** as

the beige crystalline solid; mp 152–154 °C (lit 159–161 °C).²⁵ ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H), 6.49 (s, 2H), 3.94 (s, 6H), 3.88 (s, 3H).

(4-Cyanophenyl)(2,4,6-trimethoxyphenyl)iodonium

trifluoroacetate (2p).²⁴ The reaction of 4-iodobenzonitrile (5 mmol, 1.15 g), and 1,3,5-trimethoxybenzene (5.1 mmol, 2.80 g) accordingly to procedure GP5 afforded 2.06 g (81%) of 2p as

isolated as the colorless crystalline solid; mp 174–176 °C (lit 175–176 °C).²⁵ ¹H NMR (400 MHz, DMSO- d_6) δ 8.07 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 6.49 (s, 2H), 3.93 (s, 6H), 3.88 (s, 3H).

Preparation of N-aryl oxazolidinones

General procedure for the preparation of N-aryl oxazolidinones (GP6)

A screw cap vial was charged with mixture of oxazolidinone (**1a-e**, 0.5 mmol), symmetrical diaryliodonium salt (0.75 mmol) and CuI (10 mol%, 9.5 mg) and flashed with argon. Then the solution of triethylamine (0.75 mmol, 104 μ L) in toluene (5 ml) was added to mixture under argon atmosphere. Resulted mixture was heated at 80 °C for 24 hours. Solvent was removed under reduced pressure and product was purified by silica gel column chromatography (eluent hexane : EtOAc, EtOAc 0 \rightarrow 50%).

General procedure for the preparation of N-aryl oxazolidinones (GP7)

A screw cap vial was charged with mixture of oxazolidinone (**1a-e**, 0.5 mmol), aryl(2,4,6-trimethoxyphenyl)iodonium salt (0.75 mmol) and CuI (10 mol%, 9.5 mg) and flashed with argon. Then the solution of triethylamine (0.75 mmol, 104 μ L) in toluene (5 ml) was added to mixture under argon atmosphere. Resulted mixture was heated at 60 °C for 24 hours. Solvent was removed under reduced pressure and product was purified by silica gel column chromatography (eluent hexane : EtOAc, EtOAc 0 \rightarrow 50%).

(S)-4-isopropyl-3-phenyloxazolidin-2-one (3aa).^{28,29} The reaction of (S)-4isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), diphenyliodonium triflate (2a, 0.75 mmol, 323 mg) according to general procedure GP6 afforded 97 mg (94%) of 3aa isolated as the colorless crystalline solid; mp 88–89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.2

Hz, 1H), 4.48 - 4.36 (m, 2H), 4.29 - 4.18 (m, 1H), 2.19 - 2.05 (m, 1H), 0.90 (d, J = 7.2 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 136.8, 129.3, 125.4, 122.4, 62.6, 60.6, 27.7, 17.8, 14.3. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₂H₁₆NO₂⁺: 206.1176, found 206.1179.

(*R*)-4-isopropyl-3-phenyloxazolidin-2-one (3aa'). The reaction of (*R*)-4-isopropyl-oxazolidin-2-one (1a', 0.5 mmol, 65 mg), diphenyliodonium triflate (0.75 mmol, 323 mg) according to general procedure GP6 afforded 92 mg (90%) of 3aa' isolated as the colorless crystalline solid; mp 86–87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.19 (t, *J* = 7.4

Hz, 1H), 4.49 - 4.36 (m, 2H), 4.30 - 4.19 (m, 1H), 2.21 - 2.04 (m, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 136.8, 129.3, 125.5, 122.4, 62.6,

60.6, 27.7, 17.9, 14.3. HRMS (ESI): m/z calcd. for $[M+H]^+ C_{12}H_{16}NO_2^+$: 206.1176, found 206.1172.

4-isopropyl-3-phenyloxazolidin-2-one (3aa).^{28,29} The reaction of 4-isopropyloxazolidin-2-one (**1a**, 0.5 mmol, 65 mg), diphenyliodonium triflate (0.75 mmol, 323 mg) according to general procedure **GP6** afforded 98 mg (96%) of **3aa** isolated as the colorless crystalline solid; mp mp 55–56 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.19 (t, *J* = 7.2 Hz,

1H), 4.49 - 4.36 (m, 2H), 4.31 - 4.19 (m, 1H), 2.20 - 2.05 (m, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 136.8, 129.3, 125.4, 122.4, 62.6, 60.6, 27.6, 17.8, 14.3. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₂H₁₆NO₂⁺: 206.1176, found 206.1172.

S)-3-(2,5-dimethylphenyl)-4-isopropyloxazolidin-2-one (3ab). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), bis(2,5-dimethylphenyl)iodonium trifluoromethanesulfonate (2b, 0.75 mmol, 365 mg) according to general procedure GP6 afforded 89 mg (76%) of 3ab isolated as the colorless crystalline solid; mp 89–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15

(d, J = 7.6 Hz, 1H), 7.10 – 6.98 (m, 2H), 4.45 (t, J = 8.8 Hz, 1H), 4.31 – 4.09 (m, 2H), 2.32 (s, 3H), 2.27 (s, 3H), 1.96 – 1.81 (m, 1H), 0.95 (d, J = 6.4 Hz, 3H), 0.84 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 136.6, 135.0, 132.8, 131.5, 129.0, 63.8, 62.5, 28.8, 21.0, 18.4, 17.9, 15.2. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₄H₂₀NO₂⁺: 234.1489, found 234.1489.

(S)-4-isopropyl-3-mesityloxazolidin-2-one (3ac). The reaction of (S)-4isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), dimesityliodonium trifluoromethanesulfonate (2c, 0.75 mmol, 386 mg) according to general procedure GP6 afforded 38 mg (31%) of 3ac isolated as the colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 1H)*, 6.90 (s, 1H)*, 4.50 (t, J = 8.6 Hz, 1H), 4.25 (dd, J = 9.0, 6.6 Hz, 1H), 3.99 – 3.89 (m, 1H), 2.29 (s, 3H),

2.27 (s, 3H), 2.23 (s, 3H), 1.90 – 1.78 (m, 1H), 0.96 (d, J = 6.4 Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 138.2, 137.8, 135.4, 131.8, 132.0, 129.91, 129.85, , 65.5, 63.1, 30.8, 21.0, 19.6, 18.9, 18.5, 17.0. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₅H₂₂NO₂⁺: 248.1645, found 248.1645.

*The multiplicity related to sterically hindrance of both mesityl group and substituents of oxazolidinones that lead to magnetic inequivalence of H-atoms of mesityl group. Similar phenomenon was observed in ¹H spectrum of 5-isopropyl-1-mesitylpyrrolidin-2-one.³¹

(S)-3-(4-chlorophenyl)-4-isopropyloxazolidin-2-one (3ad). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), bis(4chlorophenyl)iodonium trifluoromethanesulfonate (2d, 0.75 mmol, 374 mg) according to general procedure GP6 afforded 106 mg (88%) of 3ad isolated as the colorless crystalline solid; mp 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 9.2 Hz, 2H), 4.47 – 4.34 (m, 2H), 4.30 – 4.18 (m,

1H), 2.19 - 2.04 (m, 1H), 0.91 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 135.5, 130.7, 129.4, 123.4, 62.6, 60.5, 27.6, 17.8, 14.3. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₂H₁₅ClNO₂⁺: 240.0786, found 240.0789.

(S)-3-(4-Bromophenyl)-4-isopropyloxazolidin-2-one (3ae). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), bis(4-bromophenyl)iodonium trifluoromethanesulfonate (2e, 0.75 mmol, 441 mg) according to general procedure GP6 afforded 125 mg (87%) of 3ae isolated as the colorless crystalline solid; mp 99–100 °C (lit 80 °C).³⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H), 4.46 – 4.35 (m, 2H),

4.29 - 4.19 (m, 1H), 2.19 - 2.05 (m, 1H), 0.91 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 136.0, 132.4, 123.6, 118.4, 62.6, 60.4, 27.6, 17.8, 14.3. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₂H₁₅BrNO₂⁺: 284.0281, found 284.0280.

3aq

(S)-4-isopropyl-3-(3-(trifluoromethyl)phenyl)oxazolidin-2-one (3af). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), bis(3-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate (2f, 0.75 mmol, 425 mg) according to general procedure GP6 afforded 99 mg (72%) of 3af isolated as the oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.70

(d, J = 8.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 4.53 – 4.39 (m, 2H), 4.27 (dd, J = 8.1, 3.8 Hz, 1H), 2.13 (pd, J = 6.9, 3.3 Hz, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 137.6, 131.2 (q, J = 32 Hz), 129.9, 125.0, 123.8 (q, J = 4 Hz), 118.3 (q, J = 4 Hz), 121.82, 62.7, 60.3, 27.6, 17.8, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ –62.66. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₄F₃NNaO₂⁺: 296.0869, found 296.0867.

according to general procedure **GP6** afforded 80 mg (68%) of **3ag** isolated as the oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.41 (t, J = 8.6 Hz, 1H), 4.35 - 4.29 (m, 1H), 4.21 (dd, J = 8.4, 4.8 Hz, 1H), 3.80 (s, 3H), 0.88 (d, J = 7.2 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 156.7, 129.7, 124.8, 114.6, 62.8, 61.4, 55.6, 27.9, 17.9, 14.5.HRMS (EI): m/z calcd. for [M]⁺ C₁₃H₁₇NO₃⁺: 235.1203, found 235.1206.

(S)-4-isopropyl-3-(p-tolyl)oxazolidin-2-one (3ah). The reaction of (S)-4-Me isopropyl-oxazolidin-2-one (**1**a, 3ah

0.5 mmol, 65 mg), *p*-tolyl(2,4,6trimethoxyphenyl)iodonium trifluoroacetate (2h, 0.75 mmol, 373 mg) according to general procedure GP7 afforded 52 mg (47%) of **3ah** isolated as the colorless crystalline solid; mp 103–104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.46 – 4.33 (m, 2H), 4.28 – 4.16 (m, 1H), 2.34

(s, 3H), 2.16 - 2.02 (m, 1H), 0.89 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 135.4, 134.2, 129.9, 122.6, 62.6, 60.9, 27.7, 21.1, 17.9, 14.4. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₇NNaO₂⁺: 242.1151, found 242.1151.

(S)-4-isopropyl-3-(m-tolyl)oxazolidin-2-one (3ai). The reaction of (S)-4isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), *m*-tolyl(2,4,6trimethoxyphenyl)iodonium trifluoroacetate (2i, 0.75 mmol, 373 mg) according to general procedure GP7 afforded 68 mg (62%) of **3ai** isolated as colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.21

(d, J = 8.4 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 4.47 - 4.37 (m, 2H), 4.30 - 4.19 (m, 1H), 2.38 (s, 10.16 Hz), 4.30 - 4.19 (m, 10.16 Hz), 4.30 + 4.19 (m, 10.16 Hz), 4.30 + 4.19 (m, 10.16 Hz), 4.10 + 4.103H), 2.20 - 2.04 (m, 1H), 0.91 (d, J = 7.2 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 156.2, 139.3, 136.7, 129.1, 126.4, 123.3, 119.5, 62.6, 60.8, 27.7, 21.7, 17.9, 14.3. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₇NNaO₂⁺: 242.1151, found 242.1151.

(S)-4-isopropyl-3-(o-tolyl)oxazolidin-2-one (3aj). The reaction of (S)-4isopropyl-oxazolidin-2-one (**1**a, 0.5 mmol, 65 mg *o*-tolyl(2,4,6trimethoxyphenyl)iodonium trifluoroacetate (2j, 0.75 mmol, 373 mg) according to general procedure GP7 afforded 41 mg (37%) of 3aj isolated as colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.10 (m, 4H), 4.40

(t, J = 8.6 Hz, 1H), 4.24 - 4.05 (m, 2H), 2.26 (s, 3H), 1.90 - 1.73 (m, 1H), 0.88 (d, J = 6.8 Hz, 1.00 Hz)3H), 0.77 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 136.2, 135.2, 131.8, 128.1, 126.9, 63.9, 62.5, 28.9, 18.4, 18.3, 15.3. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₇NNaO₂⁺: 242.1151, found 242.1150.

(S)-3-(4-fluorophenyl)-4-isopropyloxazolidin-2-one (3al). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), (4-fluorophenyl)(2,4,6trimethoxyphenyl)iodonium trifluoroacetate (2l, 0.75 mmol, 377 mg) according to general procedure GP7 afforded 71 mg (63%) of 3al isolated as the colorless crystalline solid; mp 82–83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.36 (m, 2H), 7.08 (t, *J* = 8.6 Hz, 2H), 4.47 – 4.32 (m, 2H), 4.23 (dd, *J* = 8.0, 4.4 Hz, 1H),

2.13 – 2.00 (m, 1H), 0.90 (d, J = 7.2 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 160.2 (d, J = 244 Hz), 156.3, 132.8 (d, J = 3 Hz), 124.5 (d, J = 8.2 Hz), 116.2 (d, J = 23 Hz), 62.7, 61.0, 27.8, 17.8, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ –116.39. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₂H₁₄FNNaO₂⁺: 246.0901, found 246.0900.

(S)-3-(2-fluorophenyl)-4-isopropyloxazolidin-2-one (3am). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), (2-fluorophenyl)(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2m, 0.75 mmol, 377 mg) according to general procedure GP7 afforded 20 mg (18%) of 3am isolated as the colorless

oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, J = 7.6 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.24 – 7.10 (m, 2H), 4.48 (t, J = 8.6 Hz, 1H), 4.45 – 4.36 (m, 1H), 4.25 (dd, J = 8.4, 5.2 Hz, 1H), 1.92 – 1.79 (m, 1H), 0.880 (d, J = 6.8, 3H), 0.877 (d, J = 6.8, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.53 (d, J = 249 Hz), 156.7, 128.8, 128.72 (d, J = 6 Hz), 124.9 (d, J = 4 Hz), 124.3 (d, J = 11 Hz), 116.8 (d, J = 20 Hz), 63.8, 61.4 (d, J = 5 Hz), 28.9, 17.7, 14.8. ¹⁹F NMR (376 MHz, CDCl₃) δ –119.99. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₂H₁₄FNNaO₂⁺: 246.0901, found 246.0896.

(S)-3-(3-bromophenyl)-4-isopropyloxazolidin-2-one (3an).³¹ The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), (3bromophenyl)(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2n, 0.75 mmol, 422 mg) according to general procedure GP7 afforded 60 mg (42%) of 3an isolated as the colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.65

(s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 4.46 – 4.35 (m, 2H), 4.30 – 4.19 (m, 1H), 2.21 – 2.05 (m, 1H), 0.92 (d, J = 7.2 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 138.2, 130.6, 128.3, 124.8, 122.9, 120.5, 62.6, 60.4,

27.6, 17.9, 14.3. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₂H₁₄BrNNaO₂⁺: 306.0100, found 306.0091.

(S)-4-isopropyl-3-(4-nitrophenyl)oxazolidin-2-one (3ao). The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), (4-nitrophenyl)(2,4,6trimethoxyphenyl)iodonium trifluoroacetate (2o, 0.75 mmol, 396 mg) according to general procedure GP7 afforded 82 mg (65%) of 3ao isolated as the pale yellow crystalline solid; mp 116 – 118 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 9.2

Hz, 2H), 7.72 (d, J = 9.2 Hz, 2H), 4.56 – 4.47 (m, 1H), 4.46 (t, J = 8.8 Hz, 1H), 4.32 (dd, J = 8.6, 3.8 Hz, 1H), 2.32 – 2.19 (m, 1H), 0.98 (d, J = 7.2 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 143.9, 142.9, 125.1, 120.2, 62.6, 60.0, 27.6, 17.9, 14.2. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₂H₁₄N₂NaO₄⁺: 273.0846, found 273.0846.

(S)-4-(4-isopropyl-2-oxooxazolidin-3-yl)benzonitrile (3ap).³² The reaction of (S)-4-isopropyl-oxazolidin-2-one (1a, 0.5 mmol, 65 mg), (4-cyanophenyl)(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate (2p, 0.75 mmol, 297 mg) according to general procedure GP7 afforded 95 mg (82%) of 3ap isolated as the colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 4H), 4.52 – 4.41 (m, 2H), 4.30 (dd, J = 8.1, 3.2 Hz, 1H), 2.28 – 2.15 (m, 1H), 0.95 (d, J = 7.2 Hz, 3H),

0.84 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 141.1, 133.4, 120.8, 118.7, 107.9, 62.5, 59.9, 27.6, 17.9, 14.2. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₄N₂NaO₂⁺: 253.0947, 253.0947.

(S)-4-methyl-3-phenyloxazolidin-2-one (3ba).²⁸ The reaction of (S)-4methyloxazolidin-2-one (1b, 0.5 mmol, 51 mg), diphenyliodonium triflate (2a, 0.75 mmol, 323 mg) according to general procedure GP6 afforded 81 mg (92%) of 3ba isolated as the pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35

(m, 4H), 7.19 (t, J = 6.8 Hz, 1H), 4.63 – 4.47 (m, 2H), 4.03 (dd, J = 7.6, 5.2 Hz,

1H), 1.33 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 136.6, 129.3, 125.4, 122.1, 68.8, 52.5, 18.6. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₀H₁₂NO₂⁺: 178.0863, found 178.0862.

(S)-3-(4-chlorophenyl)-4-methyloxazolidin-2-one (3bd).³³ The reaction of (S)-4-methyloxazolidin-2-one (1b, 0.5 mmol, 51 mg), bis(4-chlorophenyl)iodonium trifluoromethanesulfonate (2d, 0.75 mmol, 374 mg) according to general procedure GP6 afforded 100 mg (94%) of 3bd isolated as the colorless crystalline solid; mp 116–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 4H), 4.58 (t, *J* = 8.2 Hz, 1H), 4.56 – 4.45 (m, 1H), 4.03 (dd, *J* = 8.4, 5.6 Hz, 1H), 1.34 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 135.3, 130.6, 129.4, 123.0, 68.8, 52.3, 18.5. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₀H₁₁ClNO₂⁺: 212.0473, found 212.0473.

OMe (S)-3-(4-methoxyphenyl)-4-methyloxazolidin-2-one (3bg).

The reaction of (*S*)-4-methyloxazolidin-2-one (**1b**, 0.5 mmol, 51 mg), bis(4-methoxyphenyl)iodonium trifluoromethanesulfonate (**2g**, 0.75 mmol, 367 mg) according to general procedure **GP6** afforded 66 mg (64%) of **3bg** isolated as the brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 9.2 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 4.57 (t, *J* = 8.4 Hz, 1H), 4.45 – 4.36 (m, 1H), 4.00 (t, *J*

= 8.2, 6.6 Hz, 1H), 3.81 (s, 3H), 1.29 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 156.4, 129.3, 124.9, 114.6, 68.9, 55.6, 53.3, 18.7. HRMS (EI): m/z calcd. for [M]⁺ C₁₁H₁₃NO₃⁺: 207.0890, found 207.0887.

s-Bu,, N O 3ca (S)-4-((R)-sec-butyl)-3-phenyloxazolidin-2-one (3ca). The reaction of (S)-4sec-butyloxazolidin-2-one (1c, 0.5 mmol, 72 mg), diphenyliodonium triflate (2a, 0.75 mmol, 323 mg) according to general procedure GP6 afforded 72 mg (65%) of 3ca isolated as colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.28 (m, 4H), 7.23 – 7.14 (m, 1H), 4.56 (t, J = 8.4 Hz, 1H), 4.50 – 4.39 (m, 1H), 4.13

(dd, J = 8.4, 5.6 Hz, 1H), 1.73 - 1.54 (m, 2H), 1.52 - 1.41 (m, 1H), 0.95 (d, J = 6.0 Hz, 3H), 0.92 (d, J = 6.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 155.9, 136.9, 129.3, 125.3, 122.1, 67.8, 55.2, 41.3, 24.8, 23.7, 21.8. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₇NNaO₂⁺: 242.1151, found 242.1148.

(S)-3-(4-bromophenyl)-4-((R)-sec-butyl)oxazolidin-2-one (3ce). The reaction of (S)-4-sec-butyloxazolidin-2-one (1c, 0.5 mmol, 72 mg), bis(4bromophenyl)iodonium trifluoromethanesulfonate (2e, 0.75 mmol, 441 mg) according to general procedure GP6 afforded 102 mg (68%) of 3ce isolated as colorless crystalline solid; mp 46–47 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H), 4.56 (t, J = 8.2 Hz, 1H), 4.46

-4.34 (m, 1H), 4.13 (dd, J = 8.4, 5.2 Hz, 1H), 1.70 -1.54 (m, 2H), 1.52 -1.40 (m, 1H), 0.95 (d, J = 6.0 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 136.1, 132.4, 123.3, 118.3, 67.7, 55.0, 41.1, 24.8, 23.7, 21.8. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₃H₁₆BrNNaO₂⁺: 320.0257, found 320.0252.

(S)-4-((R)-sec-butyl)-3-(3-(trifluoromethyl)phenyl)oxazolidin-2-one

(3cf). The reaction of *(S)*-4-sec-butyloxazolidin-2-one (1c, 0.5 mmol, 72 mg), bis(3-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate (2f, 0.75 mmol, 425 mg) according to general procedure GP6 afforded 94 mg (65%) of 3cf isolated as colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ

7.69 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 4.58 (t, J = 8.2 Hz, 1H), 4.53 – 4.43 (m, 1H), 4.16 (dd, J = 8.2, 5.0 Hz, 1H), 1.72 – 1.57 (m, 2H), 1.56 – 1.44 (m, 1H), 0.97 (d, J = 6.0 Hz, 3H), 0.93 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 137.6, 131.75 (q, J = 32 Hz), 124.4, 123.9 (d, J = 271 Hz), 121.57 (q, J = 4 Hz), 117.77 (q, J = 4 Hz), 67.8, 54.9, 41.1, 24.9, 23.7, 21.8. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₄H₁₇F₃NO₂⁺: 288.1206, found 288.1209.

(S)-4-(*tert*-butyl)-3-phenyloxazolidin-2-one (3da). The reaction of (S)-4-*tert*butyloxazolidin-2-one (1d, 0.5 mmol, 72 mg), diphenyliodonium triflate (2a, 0.75 mmol, 323 mg) according to general procedure GP6 afforded 105 mg (95%) of 3da isolated as the colorless crystalline solid; mp 144–146 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 4H), 7.21 (t, *J* = 7.0 Hz, 1H), 4.44 (t, *J* = 9.0 Hz,

1H), 4.32 (dd, J = 9.2, 4.0 Hz, 1H), 4.24 (dd, J = 8.8, 4.0 Hz, 1H), 0.83 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 139.0, 129.2, 126.2, 124.5, 65.3, 64.5, 36.0, 26.0. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₃H₁₈NO₂⁺: 220.1332, found 220.1332.

(S)-4-(*tert*-butyl)-3-mesityloxazolidin-2-one (3dc). The reaction of (S)-4-*tert*butyloxazolidin-2-one (1d, 0.5 mmol, 72 mg), dimesityliodonium trifluoromethanesulfonate (2c, 0.75 mmol, 386 mg) according to general procedure GP6 afforded 34 mg (26%) of 3dc isolated as the pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (s, 1H)*, 6.86 (s, 1H)*, 4.48 (t, *J* = 9.0 Hz, 1H), 4.31 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.98 (dd, *J* = 9.2, 5.6 Hz, 1H), 2.37 (s, 3H),

2.26 (s, 6H), 0.85 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 137.7, 137.2, 134.1, 133.8, 130.3, 130.0, 129.7, 125.9, 66.1, 65.0, 34.9, 25.7, 21.0, 19.4, 19.1. HRMS (ESI): m/z calcd. for [M+H]⁺ C₁₆H₂₄NO₂⁺: 262.1802, found 262.1803.

*The multiplicity related to sterically hindrance of both mesityl group and substituents of oxazolidinones that lead to magnetic inequivalence of H-atoms of mesityl group. Similar phenomenon was observed in ¹H spectrum of 5-isopropyl-1-mesitylpyrrolidin-2-one.³¹

(*R*)-3,4-diphenyloxazolidin-2-one (3ea).²⁸ The reaction of (*R*)-4-phenyloxazolidin-2-one (1e, 0.5 mmol, 72 mg), diphenyliodonium triflate (2a, 0.75 mmol, 323 mg) according to general procedure GP6 afforded 76 mg (63%) of 3ea isolated as the colorless crystalline solid; mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.24 (m, 9H), 7.09 (t, *J* = 7.4 Hz, 1H), 5.42 (dd, *J* = 8.4, 6.0 (t. *L* = 0.9 Hz, 1H) = 4.22 (t. *L* = 0.4 (t. 0 Hz, 1H) = 13C NME (100 MHz, CDCl) δ

Hz, 1H), 4.81 (t, J = 8.8 Hz, 1H), 4.23 (t, J = 8.4, 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 138.4, 137.2, 129.5, 129.04, 128.96, 126.4, 124.8, 121.0, 69.9, 60.8. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₅H₁₃NNaO₂⁺: 262.0838, found 262.0840.

(*R*)-3-(2,5-dimethylphenyl)-4-phenyloxazolidin-2-one (3eb). The reaction of (*R*)-4-phenyloxazolidin-2-one (1e, 0.5 mmol, 72 mg), bis(2,5-dimethylphenyl)iodonium trifluoromethanesulfonate (2b, 0.75 mmol, 365 mg) according to general procedure GP6 afforded 90 mg (67%) of 3eb isolated as the colorless oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 4H), 7.05

3eb the coloriess only liquid. ¹H NMR (400 MHz, CDCl₃) 8 7.40 – 7.27 (m, 4H), 7.05 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.77 (s, 1H), 5.21 (t, J = 8.0 Hz, 1H), 4.82 (t, J = 8.8 Hz, 1H), 4.41 (t, J = 8.8, 7.6 Hz, 1H), 2.24 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) 8 156.6, 137.7, 136.4, 134.5, 132.9, 131.2, 129.2, 129.2, 128.9, 127.5, 70.2, 62.9, 20.9, 17.9. HRMS (ESI): m/z calcd. for [M+Na]⁺ C₁₇H₁₇NNaO₂⁺: 290.1151, found 290.1147.

Chiral HPLC analysis of 1aa, 1aa', and 1aa''

Figure S1. HPLC chromatograms at 240 nm of **3aa''** (racemic mixture), **3aa'** (D-enantiomer or *R*-enantiomer), and **3aa** (L-enantiomer or *S*-enantiomer).

The peak with retention time of 7.4 min corresponds to an enantiomer having a stronger interaction with the chiral sorbent, which causes its broadening and lower intensity if compared to the peak of enantiomer eluting at 5.7 min. Nevertheless, both peaks have the same area values, which confirms the racemic nature of the reaction product. Chromatograms of individual enantiomers exhibit by only one signal corresponding the one of the two peaks of racemic mixture, which prove the chiral selectivity of reaction.

X-ray structure determinations

Single crystal XRD were measured on SuperNova, Single source at offset/far, HyPix3000 diffractometer (for **3bd** and **3da**) using CuK α ($\lambda = 1.5418$ Å) radiation; Xcalibur, Eos diffractometer (for **3ah**) using Mo K α ($\lambda = 0.71073$ Å) radiation. Suitable single crystals of compounds **3** were fixed on micro mounts and measured at 100(2) K. Using Olex2,³⁴ the structure was solved with the ShelXT³⁵ structure solution program using Intrinsic Phasing and refined with the ShelXL³⁶ refinement package using Least Squares minimization. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCDC numbers 2218690–2218692) and can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Identification code	3bd	3da	3ah
CCDC number	2218692	2218691	2218690
Empirical formula	$C_{10}H_{10}CINO_2$	C ₁₃ H ₁₇ NO ₂	C ₁₃ H ₁₇ NO ₂
Formula weight	211.64	219.27	219.27
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group	P2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
a/Å	5.53040(10)	6.2495(2)	6.5182(2)
b/Å	8.5314(2)	12.5730(3)	12.3029(5)
c/Å	10.1412(2)	15.1106(5)	14.3881(4)
α/°	90	90	90
β/°	93.371(2)	90	90
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	477.655(17)	1187.31(6)	1153.82(7)
Ζ	2	4	4
$\rho_{calc}g/cm^3$	1.472	1.227	1.262
µ/mm ⁻¹	3.319	0.661	0.085
F(000)	220.0	472.0	472.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.09$	0.11 imes 0.11 imes 0.07	$0.17 \times 0.15 \times 0.1$
Radiation	Cu Ka (λ = 1.54184)	Cu Ka (λ = 1.54184)	Mo Kα (λ = 0.71073)
2 [©] range for data collection/°	8.734 to 129.734	9.15 to 129.97	5.662 to 51.978
	$-5 \le h \le 6,$	$-6 \le h \le 7,$	$-7 \le h \le 8$,
Index ranges	$-10 \le k \le 10$,	$-14 \le k \le 14,$	$-11 \le k \le 15,$
	$-11 \le 1 \le 11$	$-17 \le l \le 17$	$-17 \le l \le 17$
Reflections collected	3560	6810	4051
	1613	1980	2128
Independent reflections	$[R_{int} = 0.0112, 0.0151]$	$[R_{int} = 0.0553, 0.0522]$	$[R_{int} = 0.0317,$
Data / maturinta / manager at any	$R_{sigma} = 0.0151$	$K_{sigma} = 0.0525$	$R_{sigma} = 0.0440$
Data/restraints/parameters C_{aa} drage of fit or E^2	1013/1/128	1980/0/148	2128/0/148
Goodness-oi-iit on F^2	1.054 D 0.0107	1.082 D 0.0405	1.048 D 0.02((
Final R indexes $[1 \ge 2\sigma]$	$R_1 = 0.0197,$ $mR_2 = 0.0521$	$R_1 = 0.0405,$ $mR_2 = 0.0944$	$R_1 = 0.0300,$ $wR_2 = 0.0850$
	$R_2 = 0.0321$ $R_1 = 0.0100$	$R_1 = 0.0468$	$R_1 = 0.0403$
Final R indexes [all data]	$wR_2 = 0.0523$	$wR_2 = 0.0969$	$wR_2 = 0.0879$
Largest diff. peak/hole / e Å ⁻³	0.12/-0.21	0.15/-0.17	0.18/-0.20
Flack parameter	-0.014(7)	0.2(2)	1.0(10)

Table S1. Crystal data and structure refinement.

References

- R. R. Mittapalli, S. J. J. Guesné, R. J. Parker, W. T. Klooster, S. J. Coles, J. Skidmore and A. P. Dobbs, *Org. Lett.*, 2019, 21, 350–355.
- 2 D. A. Quagliato, P. M. Andrae and E. M. Matelan, J. Org. Chem., 2000, 65, 5037–5042.
- 3 Z. Y. Chang and R. M. Coates, J. Org. Chem., 1990, 55, 3464–3474.
- 4 Y. Ma, B. Xu, Y. Fang, Z. Yang, J. Cui, L. Zhang and L. Zhang, *Molecules*, 2011, 16, 7551–7564.
- 5 P. R. Sultane, T. B. Mete and R. G. Bhat, Org. Biomol. Chem., 2014, 12, 261–264.
- 6 A. Klüppel, A. Gille, C. E. Karayel and M. Hiersemann, Org. Lett., 2019, 21, 2421–2425.
- 7 D. Benoit, E. Coulbeck, J. Eames and M. Motevalli, *Tetrahedron: Asymmetry*, 2008, **19**, 1068–1077.
- 8 H. Song, Z. Han and C. Zhang, *Chem. A Eur. J.*, 2019, **25**, 10907–10912.
- 9 H. Allali, B. Tabti, C. Alexandre and F. Huet, *Tetrahedron: Asymmetry*, 2004, **15**, 1331–1333.
- 10 S. K. Manna and G. Panda, *RSC Adv.*, 2013, **3**, 18332.
- 11 C. Spino, M.-C. Tremblay and C. Gobdout, Org. Lett., 2004, 6, 2801–2804.
- 12 C. J. MacNevin, R. L. Moore and D. C. Liotta, J. Org. Chem., 2008, 73, 1264–1269.
- 13 N. Soldatova, P. Postnikov, O. Kukurina, V. V. V. Zhdankin, A. Yoshimura, T. Wirth and M. S. Yusubov, *Beilstein J. Org. Chem.*, 2018, 14, 849–855.
- 14 N. S. Soldatova, P. S. Postnikov, V. V. Suslonov, T. Y. Kissler, D. M. Ivanov, M. S. Yusubov, B. Galmés, A. Frontera and V. Y. Kukushkin, *Org. Chem. Front.*, 2020, 7, 2230–2242.
- 15 M. Bielawski and B. Olofsson, *Chem. Commun.*, 2007, 2521–2523.
- 16 G. Laudadio, H. P. L. Gemoets, V. Hessel and T. Noël, J. Org. Chem., 2017, 82, 11735– 11741.
- M. Ochiai, M. Toyonari, T. Nagaoka, D.-W. Chen and M. Kida, *Tetrahedron Lett.*, 1997, 38, 6709–6712.
- 18 X. Marset, G. Guillena and D. J. Ramón, *Chem. A Eur. J.*, 2017, 23, 10522–10526.
- 19 M. Kuriyama, N. Hamaguchi and O. Onomura, *Chem. A Eur. J.*, 2012, **18**, 1591–1594.
- 20 N. Miralles, R. M. Romero, E. Fernández and K. Muñiz, *Chem. Commun.*, 2015, **51**, 14068–14071.
- 21 G. Kervefors, L. Kersting and B. Olofsson, *Chem. A Eur. J.*, 2021, **27**, 5790–5795.
- 22 N. S. Soldatova, P. S. Postnikov, M. S. Yusubov and T. Wirth, *European J. Org. Chem.*, 2019, **2019**, 2081–2088.
- 23 T. L. Seidl, S. K. Sundalam, B. McCullough and D. R. Stuart, *J. Org. Chem.*, 2016, **81**, 1998–2009.
- 24 V. Carreras, A. H. Sandtorv and D. R. Stuart, J. Org. Chem., 2017, 82, 1279–1284.

- 25 N. S. Soldatova, A. V. Semenov, K. K. Geyl, S. V. Baykov, A. A. Shetnev, A. S. Konstantinova, M. M. Korsakov, M. S. Yusubov and P. S. Postnikov, *Adv. Synth. Catal.*, 2021, 363, 3566–3576.
- 26 S. Roshandel, M. J. Lunn, G. Rasul, D. S. Muthiah Ravinson, S. C. Suri and G. K. S. Prakash, *Org. Lett.*, 2019, 21, 6255–6258.
- 27 A. H. Sandtorv and D. R. Stuart, Angew. Chemie Int. Ed., 2016, 55, 15812–15815.
- 28 W. Mahy, P. K. Plucinski and C. G. Frost, Org. Lett., 2014, 16, 5020–5023.
- 29 J. A. Leitch, P. B. Wilson, C. L. McMullin, M. F. Mahon, Y. Bhonoah, I. H. Williams and C. G. Frost, ACS Catal., 2016, 6, 5520–5529.
- 30 S. M. Kelly, C. Han, L. Tung and F. Gosselin, Org. Lett., 2017, 19, 3021–3024.
- 31 D. C. Miller, G. J. Choi, H. S. Orbe and R. R. Knowles, *J. Am. Chem. Soc.*, 2015, **137**, 13492–13495.
- 32 B. Mallesham, B. M. Rajesh, P. R. Reddy, D. Srinivas and S. Trehan, *Org. Lett.*, 2003, **5**, 963–965.
- 33 L. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu and H.-C. Xu, *Angew. Chemie Int. Ed.*, 2016, **55**, 2226–2229.
- 34 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 35 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 36 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.

NMR spectra of 2

S51

S75

