Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Table of Contents

1. General Information	S2	
2. Experimental Section	S2	
3. Analytical data of compounds		
4. NMR Spectra of Compounds	S13	

General Information

All commercially available reagents were used without further purification. Column chromatography was performed on silica gel (200-300 mesh). Thin-layer chromatography (TLC) was performed on silica gel plates.¹H NMR (500 MHz), ¹³C NMR (126 MHz), and ¹⁹F NMR (471 MHz) spectra were recorded on a JEOL ECZ500R NMR spectrometer. High-resolution mass spectra (HRMS) were recorded on a Bruker Micro TOF ESI mass spectrometer. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) were given in Hertz (Hz). Data were reported as s – singlet, d – doublet, t – triplet, q – quartet, dd – doublet of doublets, m – multiplet, dm – doublet of multiplets.

Experimental Section

Synthesis of β-keto sulfide¹

Take the synthesis of **1a** as an example. To a dry round-bottomed flask was added 10% mmol Cu(OTf)₂ (2 mmol, 72.3 mg), 10 mL DCM, and trans-4-phenyl-3-buten-2one (2 mmol, 292.1 mg). Then, hexane-1-thiol (2 mmol, 236.5 mg) was slowly added to the stirring mixture solution. The mixture was stirred overnight. After the reaction was complete (monitored by TLC), the residual was extracted with ethyl acetate. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated by rotary evaporation. The crude was further purified by silica gel column chromatography to afford **1a**.

Synthesis of Enone

Take the synthesis of **2a** as an example. To a dry glass tube was added 1 mL DMF, 0.2 mmol NBS (1 eq, 35.6 mg), 0.2 mmol **1a** (1 eq, 52.8 mg), and 0.2 mmol K_2CO_3 (1 eq, 27.6 mg). The mixed solution was stirred at 40 °C for two hours. After the reaction was complete (monitored by TLC), the residual was extracted with ethyl acetate. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated by rotary evaporation. The crude was further purified by silica gel column chromatography to afford **2a**.

Characterization data

(E)-4-phenylbut-3-en-2-one (2a)

Prepared according to the general procedure from 4-(hexylthio)-4-phenylbutan-2-one **1a** (52.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a colourless oil (25.9 mg, 88%). ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.57 – 7.53 (m, 2H, Ar-*H*), 7.51 (d, *J* = 16.4 Hz, 1H, ArC*H*=CH), 7.40 (m, 3H, Ar-*H*), 6.72 (m, 1H, CHCO), 2.38 (d, *J* = 0.8 Hz, 3H, COC*H*₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.6, 143.6, 134.5, 130.6, 129.1 (2C), 128.4 (2C), 127.3, 27.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₀O: 147.0804; found: 147.0800.

This data was concordant with literature values.²

(*E*)-4-(p-tolyl)but-3-en-2-one (2b)

Prepared according to the general procedure from 4-(hexylthio)-4-(p-tolyl)butan-2-one **1b** (55.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (23.2 mg, 72%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.48 (d, *J* = 16.3 Hz, 1H, ArC*H*=CH), 7.43 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.19 (d, *J* = 7.9 Hz, 2H, Ar-*H*), 6.66 (d, *J* = 16.3 Hz, 1H, C*H*CO), 2.36 (s, 3H, ArC*H*₃), 2.36 (s, 3H, COC*H*₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.6, 143.6, 141.1, 131.8, 129.8 (2C), 128.4 (2C), 26.4, 27.5, 21.6.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{11}H_{12}O$: 161.0961; found: 161.0959.

This data was concordant with literature values.²

(E)-4-(4-fluorophenyl)but-3-en-2-one (2c)

Prepared according to the general procedure from 4-(4-fluorophenyl)-4-(hexylthio)butan-2-one **1c** (56.43 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (25.4 mg, 77%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.56 – 7.50 (m, 2H, Ar-*H*), 7.47 (d, *J* = 16.3 Hz, 1H, ArC*H*=CH), 7.11 – 7.05 (m, 2H, Ar-*H*), 6.63 (d, *J* = 16.3 Hz, 1H, C*H*CO), 2.36 (s, 3H, ArC*H*₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.3, 164.1 (d, *J* = 251.8 Hz), 142.2, 130.8 (d, *J* = 3.2 Hz), 130.3 (2C, d, *J* = 8.5 Hz), 127.0, 116.3 (2C, d, *J* = 22.1 Hz), 27.7.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ = -113.8.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{10}H_9FO$: 165.0710; found: 165.0703.

This data was concordant with literature values.²

(E)-4-(4-chlorophenyl)but-3-en-2-one (2d)

Prepared according to the general procedure from 4-(4-chlorophenyl)-4-(hexylthio)butan-2-one **1d** (59.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (22.4 mg, 62%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.49 – 7.42 (m, 3H, Ar-*H*, ArC*H*=CH), 7.39 – 7.33 (m, 2H, Ar-*H*), 6.68 (d, *J* = 16.3 Hz, 1H, CHCO), 2.37 (s, 3H, ArC*H*₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.2, 142.0, 136.5, 133.0, 129.5 (2C), 129.4(2C), 127.6, 27.8. HRMS (ESI): *m*/z [M+H]⁺ calcd for C₁₀H₉ClO: 181.0415; found: 181.0415.

This data was concordant with literature values.²

(E)-4-(4-bromophenyl)but-3-en-2-one (2e)

Prepared according to the general procedure from 4-(4-bromophenyl)-4-(hexylthio)butan-2-one 1e (68.4 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (36.0 mg, 80%). ¹**H** NMR (500 MHz, Chloroform-d) δ = 7.52 (d, J = 8.5 Hz, 2H, Ar-H), 7.43 (d, J = 16.3 Hz, 1H, ArCH=CH), 7.41 – 7.37 (m, 2H, Ar-H), 6.69 (d, J = 16.3 Hz, 1H, CHCO), 2.37 (s, 3H, ArCH₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.2, 142.1, 133.5, 132.3 (2C), 129.7 (2C), 127.7, 124.9, 27.8. **HRMS (ESI)**: m/z [M+H]⁺ calcd for C₁₀H₉BrO: 224.9910; found: 224.9899. This data was concordant with literature values.²

(E)-4-(4-(trifluoromethyl)phenyl)but-3-en-2-one (2f)

Prepared according to the general procedure from 4-(hexylthio)-4-(4-(trifluoromethyl)phenyl)butan-2one 1f (66.4 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (26.2 mg, 61%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.69-7.58 (m, 4H, Ar-*H*), 7.52 (d, *J* = 16.3 Hz, 1H, Ar-CH=CH), 6.77 (d, *J* = 16.3 Hz, 1H, CHCO), 2.40 (s, 3H, COCH₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.0, 141.4, 138.0, 132.0 (q, *J* = 32.7 Hz), 129.2, 128.4 (2C), 126.0 (2C, q, J = 3.8 Hz), 123.9 (d, J = 272.1 Hz), 27.9.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ = -62.8.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₉F₃O: 215.0678; found: 215.0672.

This data was concordant with literature values.³

(*E*)-4-(4-ethoxyphenyl)but-3-en-2-one (2g)

Prepared according to the general procedure from 4-(4-ethoxyphenyl)-4-(hexylthio)butan-2-one 1g (61.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a yellow solid (30.9 mg, 81%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.49 – 7.44 (m, 3H, Ar-*H*, ArC*H*=CH), 6.93 – 6.83 (m, 2H, Ar-*H*), 6.59 (d, *J* = 16.2 Hz, 1H, CHCO), 4.05 (q, *J* = 7.0 Hz, 2H, CH₂O), 2.35 (s, 3H, CH₃CH₂), 1.42 (t, *J* = 7.0 Hz, 3H, COCH₃).

 13 C NMR (126 MHz, Chloroform-d) δ = 198.6, 161.1, 143.5, 130.1 (2C), 126.9, 125.0, 115.0 (2C), 63.7, 27.5, 14.8.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{12}H_{14}O_2$: 191.1067; found: 191.1067.

(E)-4-(3-chlorophenyl)but-3-en-2-one (2h)

Prepared according to the general procedure from 4-(3-chlorophenyl)-4-(hexylthio)butan-2-one **1h** (59.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a colourless oil (31.5 mg, 87%).

¹**H** NMR (500 MHz, Chloroform-*d*) δ = 7.5 (t, *J* = 1.9 Hz, 1H, Ar-*H*), 7.5 – 7.4 (m, 2H, Ar-*H*, Ar-CH=CH), 7.4 – 7.3 (m, 2H, Ar-*H*), 6.7 (d, *J* = 16.2 Hz, 1H, CHCO), 2.4 (s, 3H, COCH₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.1, 141.7, 136.4, 135.1, 130.4, 130.3, 128.3, 128.1, 126.5, 27.9.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₉ClO: 181.0415; found: 181.0411.

This data was concordant with literature values.³

(*E*)-4-(o-tolyl)but-3-en-2-one (2i)

Prepared according to the general procedure from 4-(hexylthio)-4-(o-tolyl)butan-2-one **1i** (55.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a colourless oil (29.0 mg, 90%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.8 (d, *J* = 16.1 Hz, 1H, Ar-*CH*=CH), 7.6 (d, *J* = 7.5 Hz, 1H, AR-*H*), 7.3 – 7.3 (m, 1H, AR-*H*), 7.2 (m, 2H, AR-*H*), 6.6 (d, *J* = 16.1 Hz, 1H, CHCO), 2.4 (s, 3H, Ar-CH₃), 2.4 (s, 3H, COCH₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.5, 140.9, 137.9, 133.4, 131.0, 130.3, 128.1, 126.5, 126.5, 27.9, 19.8.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{11}H_{12}O$: 161.0961; found: 161.0962.

(E)-4-(2-chlorophenyl)but-3-en-2-one (2j)

Prepared according to the general procedure from 4-(2-chlorophenyl)-4-(hexylthio)butan-2-one **1j** (59.6 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (34.4 mg, 95%). ¹**H NMR** (500 MHz, Chloroform-*d*) $\delta = 7.9$ (d, J = 16.4 Hz, 1H, Ar-C*H*=CH), 7.64-7.58 (m, 1H, Ar-*H*), 7.4 – 7.4 (m, 1H, Ar-*H*), 7.3 – 7.2 (m, 2H, Ar-*H*), 6.6 (d, J = 16.3 Hz, 1H, C*H*CO), 2.4 (s, 3H, COC*H*₃). ¹³**C NMR** (126 MHz, Chloroform-*d*) $\delta = 198.5$, 139.3, 135.2, 132.7, 131.4, 130.3, 129.7, 127.7, 127.3, 27.3.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{10}H_9$ ClO: 181.0415; found: 181.0412. This data was concordant with literature values.⁴

(E)-4-(thiophen-2-yl)but-3-en-2-one (2k)

Prepared according to the general procedure from 4-(hexylthio)-4-(thiophen-2-yl)butan-2-one **1k** (54.0 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a yellow oil (29.9 mg, 97%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.68-7.58 (m, 1H, Ar-*CH*=CH), 7.44-7.37 (m, 1H, Ar-*H*), 7.33 – 7.26 (m, 1H, Ar-*H*), 7.11-7.02 (m, 1H, Ar-*H*), 6.53 (d, *J* = 15.9 Hz, 1H, CHCO), 2.34 (s, 3H, COC*H*₃). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ = 197.9, 139.9, 135.9, 131.7, 129.1, 128.4, 125.9, 27.8. **HRMS (ESI)**: m/z [M+H]⁺ calcd for C₈H₈OS: 153.0369; found: 153.0357. This data was concordant with literature values.⁴

(E)-4-(naphthalen-2-yl)but-3-en-2-one (2l)

Prepared according to the general procedure from 4-(hexylthio)-4-(naphthalen-2-yl)butan-2-one **11** (62.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (35.6 mg, 91%). **¹H NMR** (500 MHz, Chloroform-*d*) $\delta = 7.97 - 7.91$ (m, 1H, Ar-*H*), 7.87 - 7.80 (m, 3H, Ar-*H*), 7.70 - 7.63 (m, 2H, Ar-*H*), 7.55 - 7.49 (m, 2H, Ar-CH=CH, Ar-H), 6.82 (d, *J* = 16.3 Hz, 1H, CHCO), 2.42 (s, 3H, COCH₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.5, 143.6, 134.4, 133.4, 132.0, 130.5, 128.9, 128.7, 127.9, 127.5, 127.3, 126.9, 123.6, 27.7.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{14}H_{12}O$: 197.0961; found: 197.0959. This data was concordant with literature values.⁵

(E)-hept-3-en-2-one (2m)

Prepared according to the general procedure from 4-(hexylthio)heptan-2-one **1m** (92.0 mg, 0.4 mmol) and NBS (71.2 mg, 0.4 mmol), The product was isolated as a pale yellow liquid (22.0 mg, 49%). ¹**H NMR** (500 MHz, Chloroform-*d*) $\delta = 6.73$ (ddd, J = 16.0, 7.6, 6.3 Hz, 1H), 5.99 (dt, J = 16.0, 1.5 Hz, 1H), 2.17 (d, J = 1.2 Hz, 3H), 2.13 (qd, J = 7.0, 1.5 Hz, 2H), 1.43 (h, J = 7.4 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H).

¹¹³C NMR (126 MHz, Chloroform-*d*) δ = 198.9, 148.5, 131.5, 34.5, 26.8, 21.4, 13.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₇H₁₂O: 113.0961; found: 113.0961. This data was concordant with literature values.⁶

cyclohex-2-en-1-one (2n)

Prepared according to the general procedure from 3-(hexylthio)cyclohexan-1-one **1n** (85.6 mg, 0.4 mmol) and NBS (71.2 mg, 0.4 mmol), The product was isolated as a pale yellow liquid (16.2 mg, 42%). **¹H NMR** (500 MHz, Chloroform-*d*) δ 6.92 (dt, *J* = 10.4, 4.1 Hz, 1H), 5.92 (dt, *J* = 10.2, 2.1 Hz, 1H), 2.37 – 2.30 (t, J = 7.0 Hz, 2H), 2.27 (m,, 2H), 1.93 (p, J = 6.3 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 199.8, 150.9, 129.9, 38.1, 25.7, 22.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₆H₈O: 97.0648; found: 97.0649. This data was concordant with literature values.⁷

(E)-chalcone (2o)

Prepared according to the general procedure from 3-(hexylthio)-1,3-diphenylpropan-1-one **1o** (65.2 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol), The product was isolated as a white solid (36.0 mg, 86%). ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 8.07 - 8.01$ (m, 2H, Ar-C*H*=CH,), 7.83 (d, *J* = 15.7 Hz, 1H, Ar-

H), 7.65 (ddd, *J* = 5.2, 3.1, 1.9 Hz, 2H, Ar-*H*), 7.62 – 7.47 (m, 4H, Ar-*H*), 7.46 – 7.38 (m, 3H, Ar-*H* , C*H*CO).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.7, 145.0, 138.3, 135.0, 132.9, 130.7, 129.1 (2C), 128.7 (2C), 128.6 (2C), 128.6 (2C), 122.2.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂O: 209.0961; found: 209.0958.

This data was concordant with literature values.8

(E)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (2p)

Prepared according to the general procedure from 3-(4-fluorophenyl)-3-(hexylthio)-1-phenylpropan-1one **1p** (68.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (41.8 mg, 92%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.06 – 7.99 (m, 2H, Ar-*H*), 7.78 (d, *J* = 15.7 Hz, 1H, Ar-C*H*=CH), 7.67 – 7.56 (m, 3H, Ar-*H*), 7.54 – 7.44 (m, 3H, Ar-*H*, C*H*CO), 7.15 – 7.06 (m, 2H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.4, 164.2 (d, *J* = 251.8 Hz), 163.2, 143.6, 138.2, 133.0, 131.2, 131.2, 130.5, 130.4, 128.8, 128.6, 121.8, 116.3, 116.2.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ = -108.9.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{15}H_{11}FO$: 227.0867; found: 227.0860.

This data was concordant with literature values.9

(E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (2q)

Prepared according to the general procedure from 3-(4-chlorophenyl)-3-(hexylthio)-1-phenylpropan-1one **1q** (72.0 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (40.8 mg, 84%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.06 – 7.98 (m, 2H, Ar-*H*), 7.75 (d, *J* = 15.7 Hz, 1H, Ar-C*H*=CH), 7.63 – 7.55 (m, 3H, Ar-*H*), 7.54 – 7.48 (m, 3H, Ar-*H*, C*H*CO), 7.42 – 7.36 (m, 2H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.3, 143.4, 138.1, 136.5, 133.5, 133.1, 129.7 (2C), 129.4 (2C), 128.8 (2C), 128.6 (2C), 122.5.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₁ClO: 243.0571; found: 243.0570.

This data was concordant with literature values.8

(E)-1-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (2r)

Prepared according to the general procedure from 3-(hexylthio)-1-phenyl-3-(4-(trifluoromethyl) phenyl) propan-1-one **1r** (78.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (29.9 mg, 54%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.08-7.97 (m, 2H, Ar-*H*), 7.81 (d, *J* = 15.8 Hz, 1H, Ar-C*H*=CH), 7.74 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 7.67 (d, *J* = 8.2 Hz, 2H, Ar-*H*), 7.64 – 7.56 (m, 2H, Ar-*H*, C*H*CO), 7.52 (t, *J* = 7.6 Hz, 2H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.1, 142.8, 138.4, 137.9, 133.3, 132.2 – 131.5 (m), 128.9 (2C), 128.7 (2C), 128.6 (2C), 126.0, 125.0, 124.3, 123.9 (d, *J* = 272.1 Hz).

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ = -62.7.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{16}H_{11}F_3O$: 277.0835; found: 277.0838. This data was concordant with literature values.⁹

(*E*)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (2s)

Prepared according to the general procedure from 1-(4-fluorophenyl)-3-(hexylthio)-3-phenylpropan-1one **1s** (68.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (41.8 mg, 92%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.10 – 8.04 (m, 2H, Ar-*H*), 7.82 (d, *J* = 15.7 Hz, 1H, Ar-C*H*=CH), 7.68 – 7.61 (m, 2H, Ar-*H*), 7.51 (d, *J* = 15.7 Hz, 1H, C*H*CO), 7.46 – 7.39 (m, 3H, Ar-*H*), 7.22 – 7.15 (m, 2H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 188.9, 165.7 (d, *J* = 254.6 Hz), 145.2, 134.9, 134.6, 131.2 (2C, d, *J* = 9.2 Hz), 130.8, 129.1 (2C), 128.6 (2C), 121.6, 115.9, 115.8.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ = -105.4.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₁FO: 227.0867; found: 227.0869.

This data was concordant with literature values.8

(*E*)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (2t)

Prepared according to the general procedure from 1-(4-chlorophenyl)-3-(hexylthio)-3-phenylpropan-1one **1t** (72.0 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (39.4 mg, 81%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.99 – 7.94 (m, 2H, Ar-*H*), 7.82 (d, *J* = 15.6 Hz, 1H, Ar-C*H*=CH), 7.68 – 7.61 (m, 2H, Ar-*H*), 7.53 – 7.46 (m, 3H, Ar-*H*, C*H*CO), 7.45 – 7.40 (m, 3H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 189.3, 145.5, 139.3, 136.6, 134.8, 130.0, 130.0 (2C), 129.1 (2C), 129.1 (2C), 128.6 (2C), 121.5.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₁ClO: 243.0571; found: 243.0572.

This data was concordant with literature values.8

(E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (2u)

Prepared according to the general procedure from 3-(hexylthio)-1-(4-methoxyphenyl)-3-phenylpropan-1-one **1u** (71.2 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a white solid (39.2 mg, 82%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.06 – 7.97 (m, 2H, Ar-*H*), 7.79 (d, *J* = 15.6 Hz, 1H, Ar-C*H*=CH), 7.62 – 7.55 (m, 3H, Ar-*H*), 7.53 – 7.48 (m, 2H, Ar-*H*), 7.42 (d, *J* = 15.7 Hz, 1H, C*H*CO), 7.00 – 6.86 (m, 2H, Ar-*H*), 3.85 (s, 3H, OC*H*₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.7, 161.8, 144.8, 138.6, 132.7, 130.4 (2C), 128.7 (2C), 128.5 (2C), 127.7, 119.9, 114.5 (2C), 55.5.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{16}H_{14}O_2$: 239.1067; found: 239.1073. This data was concordant with literature values.⁸

(E)-1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one (2v)

Prepared according to the general procedure from 3-(hexylthio)-1-phenyl-3-(thiophen-2-yl)propan-1-one **1v** (66.4 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a brown solid (42.1 mg, 98%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 8.04 – 7.98 (m, 2H, Ar-*H*), 7.98-7.91 (m, 1H, Ar-*CH*=CH), 7.62 – 7.55 (m, 1H, Ar-*H*), 7.54 – 7.46 (m, 2H, Ar-*H*), 7.44-7.39 (m, 1H, COC*H*), 7.38 – 7.30 (m, 2H, Ar-*H*), 7.12-7.06 (m, 1H, Ar-*H*).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 190.0, 140.5, 138.2, 137.3, 132.9, 132.2, 128.9, 128.7 (2C), 128.5 (2C), 128.5, 120.8.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{13}H_{10}OS$: 215.0525; found: 215.0515.

This data was concordant with literature values.8

(1E,4E)-1,5-di-p-tolylpenta-1,4-dien-3-one (4a)

Prepared according to the general procedure from (E)-5-(hexylthio)-1,5-di-p-tolylpent-1-en-3-one **3a** (76.0 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a yellow solid (45.8 mg, 88%).

¹**H** NMR (500 MHz, Chloroform-*d*) δ = 7.72 (d, *J* = 15.9 Hz, 2H, Ar-C*H*=CH), 7.52 (d, *J* = 8.1 Hz, 4H, Ar-*H*), 7.22 (d, *J* = 7.9 Hz, 4H, Ar-*H*), 7.05 (d, *J* = 15.9 Hz, 2H, Ar-C*H*=CH), 2.39 (s, 6H, ArC*H*₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ = 189.2, 143.3 (2C), 141.1 (2C), 132.2 (2C), 129.8 (4C), 128.5 (4C), 124.7 (2C), 21.6 (2C).

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₈O: 263.1430; found: 263.1435.

(1E,4E)-1,5-di(thiophen-2-yl)penta-1,4-dien-3-one (4b)

Prepared according to the general procedure from (E)-5-(hexylthio)-1,5-di(thiophen-2-yl)pent-1-en-3one **3b** (72.8 mg, 0.2 mmol) and NBS (35.6 mg, 0.2 mmol). The product was isolated as a yellow solid (45.9 mg, 93%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.90-7.75 (m, 2H, Ar-C*H*=CH), 7.45-7.25 (m, 4H, Ar-*H*), 7.13 – 7.01 (m, 2H, Ar-*H*), 6.86 – 6.72 (m, 2H, C*H*CO).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 187.8, 140.4 (2C), 135.7 (2C), 132.0 (2C), 128.9 (2C), 128.4 (2C), 124.5 (2C).

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₀OS₂: 247.0246; found: 247.0248.

(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (4c)

Prepared according to the general procedure from 1,5-bis(hexylthio)-1,5-diphenylpentan-3-one **3c** (94.0 mg, 0.2 mmol) and NBS (71.2 mg, 0.4 mmol). The product was isolated as a white solid (43.7 mg, 93%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.75 (d, *J* = 15.9 Hz, 2H, Ar-C*H*=CH), 7.66 – 7.57 (m, 4H, Ar-*H*), 7.46-7.37 (m, 6H, Ar-*H*), 7.09 (d, *J* = 15.9 Hz, 2H, C*H*CO).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 189.0, 143.4 (2C), 134.8 (2C), 130.6 (2C), 129.0 (4C), 128.5 (4C), 125.5 (2C).

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₄O: 235.1117; found: 235.1119.

(1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one (4d)

Prepared according to the general procedure from 1,5-bis(4-fluorophenyl)-1,5-bis(hexylthio)pentan-3one **3d** (101.3 mg, 0.2 mmol) and NBS (71.2 mg, 0.4 mmol). The product was isolated as a yellow solid (39.6 mg, 73%).

¹**H NMR** (500 MHz, Chloroform-*d*) δ = 7.69 (d, *J* = 15.9 Hz, 2H, Ar-C*H*=CH), 7.64 – 7.53 (m, 4H, Ar-*H*), 7.09 (t, *J* = 8.6 Hz, 4H, Ar-*H*), 6.98 (d, *J* = 15.9 Hz, 2H, C*H*CO).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 188.5, 164.1 (2C, d, *J* = 252.0 Hz),142.1 (2C), 131.0 (2C, d, *J* = 3.2 Hz), 130.4 (4C, d, *J* = 8.5 Hz), 125.1 (2C), 116.2 (4C, d, *J* = 21.9 Hz)

HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{17}H_{12}F_2O$: 271.0929; found: 271.0925.

4-bromo-4-phenylbutan-2-one (A)

Isolated from products in Scheme 6c6

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.43 – 7.37 (m, 2H, Ar-*H*), 7.37 – 7.29 (m, 2H, Ar-*H*), 7.31 – 7.23 (m, 1H, Ar-*H*), 5.45 – 5.39 (m, 1H, CHBr), 3.53 (dd, *J* = 17.3, 8.7 Hz, 1H, CH₂CO), 3.25 (dd, *J* = 17.3, 5.7 Hz, 1H, CH₂CO), 2.17 (s, 3H, CH₃).

¹³C NMR (126 MHz, Chloroform-*d*) δ = 204.4, 141.2, 129.0 (2C), 128.8, 127.3 (2C), 52.8, 47.3, 30.8. **HRMS (ESI)**: m/z [M+Na]⁺ calcd for C₁₀H₁₁BrO: 248.9885; found: 248.9888.

This data was concordant with literature values.¹⁰

1,2-dihexyldisulfane (B)

Isolated from products in Scheme 6c

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 2.68 (t, *J* = 7.5 Hz, 4H), 1.67 (tt, *J* = 7.6, 6.4 Hz, 4H), 1.48 – 1.17 (m, 12H), 0.89 (t, *J* = 6.8 Hz, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ = 39.2, 31.5, 29.2, 28.2, 22.6, 14.1.

This data was concordant with literature values.¹¹⁻¹³

References:

- 1 T. Zhang, Y. Chen and Z. Gao, Chinese J. Org. Chem., 2021, 41, 2424–2434.
- 2 T. Stern, S. Rückbrod, C. Czekelius, C. Donner and H. Brunner, *Adv. Synth. Catal.*, 2010, **352**, 1983–1992.
- 3 K. Zumbansen, A. Döhring and B. List, Adv. Synth. Catal., 2010, 352, 1135–1138.
- 4 X. Li, L. Li, Y. Tang, L. Zhong, L. Cun, J. Zhu, J. Liao and J. Deng, *J. Org. Chem.*, 2010, **75**, 2981–2988.
- 5 N. Solin, L. Han, S. Che and O. Terasaki, *Catal. Commun.*, 2009, **10**, 1386–1389.
- 6 W. Bin Yi and C. Cai, J. Fluor. Chem., 2005, 126, 1553–1558.
- 7 H. Nemoto, R. Ma, T. Kawamura, K. Yatsuzuka, M. Kamiya and M. Shibuya, *Synthesis (Stuttg).*, 2008, 3819–3827.
- 8 J. R. Schmink, J. L. Holcomb and N. E. Leadbeater, Org. Lett., 2009, 11, 365–368.

- 9 A. Stroba, F. Schaeffer, V. Hindie, L. Lopez-Garcia, I. Adrian, W. Fröhner, R. W. Hartmann, R. M. Biondi and M. Engel, *J. Med. Chem.*, 2009, **52**, 4683–4693.
- 10 C. Jiang, L. Wang, H. Zhang, P. Chen, Y. L. Guo and G. Liu, *Chem*, 2020, 6, 2407–2419.
- 11 D. N. Harpp and M. Gingras, J. Am. Chem. Soc., 1988, 110, 7737–7745.
- 12 X. S. Jia and Y. M. Zhang, Chinese J. Chem., 2005, 23, 303–304.
- 13 L. Huo, Y. Zhou and Y. Li, *Macromol. Rapid Commun.*, 2009, **30**, 925–931.

NMR Spectra of Compounds

¹H NMR of compound **2a**

¹³C NMR of compound **2c**

¹⁹F NMR of compound **2c**

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -30 Chemical Shift (ppm)

Chemical Shift (ppm)

Chemical Shift (ppm)

¹³C NMR of compound **2e**

¹H NMR of compound **2f**

¹³C NMR of compound **2f**

Chemical Shift (ppm)

¹³C NMR of compound **2m**

Chemical Shift(ppm)

¹H NMR of compound **20**

Chemical Shift (ppm)

¹H NMR of compound **2p**

Chemical Shift (ppm)

¹⁹F NMR of compound **2p**

¹H NMR of compound **2q**

Chemical Shift (ppm)

Chemical Shift (ppm)

Chemical Shift (ppm)

¹³C NMR of compound **2s**

¹⁹F NMR of compound **2s**

¹H NMR of compound **2**t

Chemical Shift (ppm)

¹H NMR of compound **2u**

¹H NMR of compound **2v**

Chemical Shift (ppm)

¹H NMR of compound **4a**

Chemical Shift (ppm)

¹H NMR of compound **4b**

¹H NMR of compound **4**c

Chemical Shift (ppm)

¹³C NMR of compound **4**c

¹H NMR of compound **4d**

¹³C NMR of compound **4d**

¹⁹F NMR of compound **4d**

Chemical Shift (ppm)

¹H NMR of compound A
¹³C NMR of compound A

¹H NMR of compound **B**

