Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI)

New Transient Directing Group: *Diethoxyethyl-L-Proline* Facilitate *ortho*-Arylation at Aryl-Amines/-Amino acids via Pd-Catalyzed C(sp²)-H Activation

Subhashree S. Panda, ^{a,b} and Nagendra K. Sharma*^{a,b}

^a School of Chemical Sciences, National Institute of Science Education and Research

(NISER), Jatani-752050, Odisha, India.

^b Homi Bhaba National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094

India

*Corresponding author. Tel.: 0674-249-4141; fax: +91 (674) 2494004; Email: nagendra@niser.ac.in

Contents

1.	Optimization of Reaction Conditions	S2
2.	ESI-HRMS and NMR Characterization	S3
3.	¹ H, NMR Spectra of compound Mosher Amides	. S73
4.	Crude NMR analysis of imine formation	. S80

1. Optimization of Reaction Conditions

Table S1. Solvent Optimization of mono-o-arylation of amine in different solvent								
$(i) Pd(OAc)_2 (10 mol%),$ $TDG1(20 mol%), AgTFA, HFIP$ $90 °C, 20 h$ $(i) Et_3N, (BOC)_2O, DCM$ $rt, 1.5 h$								
1(a) 2(a)								
Entry	Solvent	Ag Salt	Time (h)	Temp.	Yield (%) (m:d)			
1.	HFIP	AgTFA	20	90	71:9			
2.	1,2-DCE	AgTFA	20	90	trace			
3.	АсОН	AgTFA	20	90	37			
4.	DMF	AgTFA	20	90	n.d			
5.	ACN	AgTFA	20	90	n.d			
6.	DMA	AgTFA	20	90	n.d			
7.	TFE	AgTFA	20	90	51			
8.	t-Butanol	AgTFA	20	90	n.d			
9.	THF	AgTFA	20	90	n.d			
10.	1,4-Dioxane	AgTFA	20	90	n.d			
11.	Isopropanol	AgTFA	20	90	n.d			
12.	HFIP	AgSbF ₆	20	90	7			
13.	HFIP	CF ₃ SO ₃ Ag	20	90	13			
14.	HFIP	AgPF ₆	20	90	trace			

Reaction Conditions: - (i) 1a (1.0 eq.), 4-Iodobenzene (2.0 eq.), Pd (OAc)₂ (10 mol%), Ag Salt (2.0 eq.), TDG1 (20 mol%), HFIP (1ml.), 90 °C, 20 h (ii) (Boc)₂O (1.1 eq.), Et₃N (3 eq.), DCM, rt, 1.5h.

2. ESI-HRMS and NMR Characterization.

Fig. S1 1 H, 13 C { 1 H} NMR Spectra of TDG1.

Fig. Fig. S2 ESI-HRMS Spectra of TDG 1.

Fig. S3 1 H, 13 C { 1 H} NMR Spectra of TDG2.

Fig. S4 ESI-HRMS Spectra of TDG2.

Fig. S5 1 H, 13 C { 1 H} NMR Spectra of compound 2a.

Fig. S6 ESI-HRMS Spectra of compound 2a.

Fig. S7 ¹H, ¹³C {¹H} NMR Spectra of compound 2a"

Display Report

Fig. S8 ESI-HRMS Spectra of compound 2a"

Fig. S9 1 H, 13 C { 1 H} NMR Spectra of compound 2b.

Fig. S10 ESI-HRMS Spectra of compound 2b.

Fig. S11 1 H, 13 C { 1 H} NMR Spectra of compound 2c.

Display Report D:\Data\MAY-2022\NKS\10052022_NKS-SSDP-362 S1.d Pos_tune_low_21042022.m Tmix-131118 Acquisition Date 5/10/2022 7:27:02 PM Operator Amit S.Sahu micrOTOF-Q II 10337

Analysis Info

Analysis Name Method

Sample Name

Comment

Fig. S12 ESI-HRMS Spectra of compound 2c.

Fig. S13 $^1\text{H},\,^{13}\text{C}$ { $^1\text{H}\}$ NMR Spectra of compound 2d.

Fig. S14 ESI-HRMS Spectra of compound 2d.

Fig. S15 1 H, 13 C { 1 H} NMR Spectra of compound 2d".

Fig. S16 ESI-HRMS Spectra of compound 2d".

Fig. S17 ¹H, ¹³C {¹H}, ¹⁹F NMR Spectra of compound 2e.

Fig. S18 ESI-HRMS Spectra of compound 2e.

Fig. S19 1 H, 13 C { 1 H}, 19 F NMR Spectra of compound 2f.

Fig. S20 ESI-HRMS Spectra of compound 2f.

Fig. S21 ¹H, ¹³C {¹H}, NMR Spectra of compound 2g.

Fig. S22 ESI-HRMS Spectra of compound 2g.

Fig. S23 1 H, 13 C { 1 H}, NMR Spectra of compound 2h.

Fig. S24 ESI-HRMS Spectra of compound 2h.

11.8

000---

Fig. S25 ¹H, ¹³C {¹H}, NMR Spectra of compound 2i

62.55

920P-345A 196

Fig. S26 ESI-HRMS Spectra of compound 2i.

-155.91 -155.91 -155.91 -130.156 -130.256 -139.256 -125.25 -125.25 -125.25 -125.25 -125.41 -12

13C {1H} NMR (101MHz, CDCl₃)

Fig. S27 ¹H, ¹³C {¹H}, NMR Spectra of compound 4a.

Fig. S28 ESI-HRMS Spectra of compound 4a.

Fig. S29 ¹H, ¹³C {¹H}, NMR Spectra of compound 4b

Fig. S30 ESI-HRMS Spectra of compound 4b.

¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S31 1 H, 13 C { 1 H}, 19 F NMR Spectra of compound 4c.

Fig. S32 ESI-HRMS Spectra of compound 4c.

(828) (827) (827) (827) (827) (827) (127)

Fig. S33 ¹H, ¹³C {¹H}, NMR Spectra of compound 4d.

Fig. S34 ESI-HRMS Spectra of compound 4d.

Fig. S35 1 H, 13 C { 1 H}, NMR Spectra of compound 4e.

Display Report

Analysis Info		Acquisition Date	5/15/2022 11:37:41 PM	
Analysis Name	D:\Data\MAY-2022\NKS\15052022_NKS_SSDP-355.d			
Method	Pos_tune_low_21042022.m	Operator	Amit S.Sahu	
Sample Name	Tmix-131118	Instrument	micrOTOF-Q II 10337	
Comment				

Fig. S36 ESI-HRMS Spectra of compound 4e.

Fig. S37 ¹H, ¹³C {¹H}, NMR Spectra of compound 4f.

Fig. S38 ESI-HRMS Spectra of compound 4f.

Fig. S39 1 H, 13 C { 1 H}, NMR Spectra of compound 4f".

Fig. S40 ESI-HRMS Spectra of compound 4f".

Fig. S41 ¹H, ¹³C {¹H}, NMR Spectra of compound 4g.

Fig. S42 ESI-HRMS Spectra of compound 4g.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S43 $^1H,\,^{13}C$ { 1H }, and $^{19}FNMR$ Spectra of compound 4h.

Fig. S44 ESI-HRMS Spectra of compound 4h.

7,335 7,32,335 7,355 7,555 7,5

¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101MHz, CDCl₃)

Cu11.39

Fig. S45 1 H, 13 C { 1 H}, 19 F NMR Spectra of compound 4i.

Fig. S46 ESI-HRMS Spectra of compound 4i.

Fig. S47 1 H, 13 C { 1 H}, NMR Spectra of compound 6a.

Fig. S48 ESI-HRMS Spectra of compound 6a.

2222882888888888888888888	74	18	4	53	2	80
NUNNNNNNNNNNNNNNNNNNN	4	(¹¹)	04	+-+		1
And the back of th				1		1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S49 1 H, 13 C { 1 H}, NMR Spectra of compound 6b.

Fig. S50 ESI-HRMS Spectra of compound 6b.

¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (101MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig.S52 ESI-HRMS Spectra of compound 6c.

-3.66 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79 -1.79

¹³C {¹H} NMR (101MHz, CDCl₃)

Fig. S53 1 H, 13 C { 1 H}, NMR Spectra of compound 6d.

Fig. S54 ESI-HRMS Spectra of compound 6d.

Fig. S55 1 H, 13 C { 1 H}, NMR Spectra of compound 8a.

Fig. S56 ESI-HRMS Spectra of compound 8a.

Fig. S57 ¹H, ¹³C {¹H}, NMR Spectra of compound 8b.

Fig. S58 ESI-HRMS Spectra of compound 8b.

¹H NMR (400 MHz, CDCl₃)

000---

Fig. S59 ¹H, ¹³C {¹H}, NMR Spectra of compound 8c.

Fig. S60 ESI-HRMS Spectra of compound 8c.

Fig. S61 ¹H, ¹³C {¹H}, NMR Spectra of compound 8d.

Fig. S62 ESI-HRMS Spectra of compound 8d.

Fig. S63 1 H, 13 C { 1 H}, NMR Spectra of compound 8e.

Fig. S64 ESI-HRMS Spectra of Compound 8e.

Fig. S65 1 H, 13 C { 1 H}, NMR Spectra of compound 8f.

Fig. S66 ESI-HRMS Spectra of Compound 8f.

Fig. S67 ¹H, ¹³C {¹H}, NMR Spectra of compound 8g.

Fig. S68 ESI-HRMS Spectra of Compound 8g.
3. ¹H, NMR Spectra of compound Mosher Amides

Fig. S69 ¹H, NMR Spectra of compound 6a-**Mosher Amide** (Area of interest blown up) ee-0%.

Fig. S70 ¹H, NMR Spectra of compound 6b-**Mosher Amide** (Area of interest blown up) ee 0%.

Fig. S71 ¹H, ¹⁹F NMR Spectra of compound 6C-**Mosher Amide** (Area of interest blown up) ee-0%.

Fig. S72 ¹H, ¹⁹F NMR Spectra of compound 6d-**Mosher Amide** (Area of interest blown up) ee-0%.

Fig. S73 ¹H, NMR Spectra of compound **8a-Mosher Amide** (Area of interest blown up) ee-90%

Fig. S74 ¹H, NMR Spectra of compound **8b-Mosher Amide** (Area of interest blown up) ee-77%.

Fig. S75 ¹H, NMR Spectra of compound **8b-Mosher Amide** (Area of interest blown up) ee-25%.

Fig. S76 ¹H, NMR Spectra of compound **8d-Mosher Amide** (Area of interest blown up) ee-41%.

Fig. S77 ¹H, NMR Spectra of compound **8e-Mosher Amide** (Area of interest blown up) ee-68%.

Fig. S78 ¹H, NMR Spectra of compound **8f-Mosher Amide** (Area of interest blown up) ee-64%.

Fig. S79 ¹H, NMR Spectra of compound **8g-Mosher Amide** (Area of interest blown up) ee-66%.

4. Crude NMR analysis of imine formation

In a sealed tube both benzyl amine and diethoxy ethyl proline (DEP) was taken and heated at 90^oC. After 1h reaction mixture was concentrated and taken for NMR in CDCl₃.From crude NMR analysis a triplet of 3 proton is clearly showing dissociation of -OEt group from DEP and 1 extra proton in aromatic region due to formation of imine. Formation of aldehyde intermediate was confirmed by HRMS spectrometry.

(Possible reaction pathway)

(i)A- After 1h of heating at 90° C (ii) B- Just after mixing both reagents.

Fig. S80 ¹H, NMR Spectral co-relation study of imine formation.

Fig. S81 ESI-HRMS Spectra of (2-oxoethyl) L-proline.