Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Aniline Assisted Dimerization of Phenylalanines: Convenient Synthesis of 2-Aroyl-3-arylquinoline in I₂-DMSO System

Jin-Tian Ma^a, Ting Chen^a, Xiang-Long Chen^a, You Zhou^a, Zhi-Cheng Yu^a, Shi-Yi

Zhuang^a, Yan-Dong Wu^a, Jia-Chen Xiang^{*b} and An-Xin Wu^{*a}

^aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry,

Central China Normal University, Wuhan 430079, P. R. China.

^bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Email: chwuax@mail.ccnu.edu.cn Email: xiangjiachen@seu.edu.cn

Table of Contents

page

1.	GeneralS	2
2.	General procedure for the synthesis of 3	
3.	Mechanism studies	
4.	Characterization data for compounds 3 and 5ah S4-S17	
5.	ReferencesS17	
6.	Crystallographic data and molecular structure of 3v S18-S19	
7.	HRMS spectra for compounds 3 and 5ah	
8.	¹ H, ¹³ C and ¹⁹ F NMR spectra of compounds 3 and 5ah S32-S67	

1. General

All other substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). ¹H spectra were recorded in CDCl₃/DMSO-d₆ on 400 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃/DMSO-d₆ on 100 MHz NMR spectrometers and resonances (δ) are given in parts per million a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. The X-ray crystal-structure determinations of **3v** were obtained on a Bruker SMART APEX CCD system. Melting points were determined using XT-4 apparatus and not corrected.

2. General procedure for the synthesis of 3 (3a as an example)

To a flame-dried pressure sealed tube charged with aspartate ester or phenylalanine (1a) (165.0 mg, 1.0 mmol), *p*-toluidine (2a) (53.5 mg, 0.5 mmol), I_2 (190.5mg, 0.75mmol) and DMSO (3.0 mL, *c* 0.17 M) at 100 °C (heating block) for 12 h till almost completed conversion of the substrates by TLC analysis. When the reaction is completed, the reaction was quenched by slow addition of saturated sodium thiosulfate, water and ethyl acetate. The mixture was then poured into a separating funnel. After the phases were separated, and the aqueous phase was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated by rotary evaporation. The crude product can be separated by preparative TLC or silica gel column chromatography to obtain the dichlorination product **3a** (117.9 mg, 73% yield).

3. Mechanism study

When 20 equiv of H_2O^{18} was added to conduct the reaction under N_2 using a dry-DMSO solvent, both **3a**-O¹⁸ and **3a**-O¹⁶ were detected as products. Since it is understandable that O-exchange could happen between 2-aroylpyridines and H_2O , the detection of 3a-O¹⁶ clearly proved that the oxygen in the product comes from both DMSO and water.

The HRMS Spectra of **3a**-O¹⁸ is listed below:

HRMS (ESI) m/z calcd for $C_{23}H_{17}N^{18}ONa^+$ (M+Na)⁺ 348.12448, found 348.12439.

4. Characterization data for compounds 3 and 5ah

(6-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3a)^[1] Yield 73%; 117.9 mg; yellow solid; mp 96–98 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1676, 1595, 1286, 904, 825, 717, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.68 (s, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 4H), 7.35–7.26 (m, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.3, 144.6, 138.1, 137.9, 136.5, 136.2, 134.0, 133.4, 132.5, 130.4, 129.3, 129.0, 128.6, 128.3, 128.1, 127.8, 126.5, 21.7. HRMS (ESI) m/z calcd for C₂₃H₁₈NO⁺ (M+H)⁺ 324.1383, found 324.1382.

(6-ethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3b) Yield 72%; 120.6 mg; yellow solid; mp 93-95 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr):1670, 1286, 898, 844, 740, 715, 700, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.70 (s, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 4H), 7.35–7.27 (m, 3H), 2.89 (q, J = 7.6 Hz, 2H), 1.38 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.4, 144.8, 144.3, 137.9, 136.7, 136.2, 134.0, 133.4, 131.5, 130.5, 129.4, 129.0, 128.6, 128.4, 128.2, 127.8, 125.2, 29.0, 15.3. HRMS (ESI) m/z calcd for C₂₄H₂₀NO₂⁺ (M+H)⁺ 338.1539, found 338.1538.

phenyl(3-phenyl-6-propylquinolin-2-yl)methanone (3c) Yield 65%; 114.1mg; yellow solid; mp 99-101 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1670, 1452, 1284, 1157, 908, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.68 (s, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 4H), 7.35–7.27 (m, 3H), 2.83 (t, J = 7.6 Hz, 2H), 1.78 (dd, J = 15.2, 7.6 Hz, 2H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 155.3, 144.7, 142.8, 137.9, 136.8, 136.2, 134.0, 133.4, 131.9, 130.5, 129.3, 129.0, 128.6, 128.3, 128.1, 127.8, 126.0, 38.0, 24.3, 13.8. HRMS (ESI) m/z calcd for C₂₅H₂₂NO⁺ (M+H)⁺ 352.1696, found 352.1692.

(6-(tert-butyl)-3-phenylquinolin-2-yl)(phenyl)methanone (3d) Yield 61%; 111.9 mg; yellow oil; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr):1676, 1452, 1284, 1157, 908, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.12 (d, J = 8.8 Hz, 1H), 7.90–7.83 (m, 4H), 7.52 (d, J = 7.6 Hz, 1H), 7.41–7.36 (m, 4H), 7.34–7.27 (m, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.6, 151.1, 144.6, 137.9, 137.2, 136.3, 134.0, 133.4, 130.5, 129.2, 129.1, 129.0, 128.5, 128.3, 127.9, 127.8, 122.6, 35.1, 31.1. HRMS (ESI) m/z calcd for C₂₆H₂₄NO⁺ (M+H)⁺ 366.1852, found 366.1851.

(7-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3e)^[2] Yield 70%; 113.0 mg; yellow solid; mp 89-91 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1676, 1276, 1149, 897, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.97 (s, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 8.4 Hz, 1H), 7.56–7.48 (m, 2H), 7.43–7.36 (m,

4H), 7.35–7.27 (m, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 156.1, 146.2, 140.6, 137.8, 136.9, 136.2, 133.5, 133.2, 130.5, 130.3, 129.0, 128.6, 128.5, 128.4, 127.8, 127.3, 126.2, 22.0. HRMS (ESI) m/z calcd for C₂₃H₁₈NO⁺ (M+H)⁺ 324.1383, found 324.1382.

(6,7-dimethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3f)^[2] Yield 65%; 110.2 mg; yellow solid; mp 97-99 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1666, 1450, 910, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.94 (s, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.65 (s, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.42–7.36 (m, 4H), 7.34–7.26 (m, 3H), 2.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 155.2, 145.1, 140.6, 138.2, 138.1, 136.3, 136.1, 133.4, 133.3, 130.5, 128.9, 128.8, 128.5, 128.3, 127.7, 126.8, 126.7, 20.5, 20.2. HRMS (ESI) m/z calcd for C₂₄H₂₀NO⁺ (M+H)⁺ 338.1539, found 338.1538.

(5,7-dimethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3g) Yield 69%; 117.0 mg; yellow solid; mp 98-100 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1674, 1618, 1458, 1419, 1276, 1213, 1157, 918, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.90–7.81 (m, 3H), 7.53 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 4H), 7.32 (dd, J = 12.8, 5.2 Hz, 4H), 2.72 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.5, 146.5, 140.3, 138.2, 136.2, 134.3, 133.8, 133.4, 132.8, 130.8, 130.5, 129.1, 128.6, 128.3, 127.8, 126.6, 125.6, 21.9, 18.6. HRMS (ESI) m/z calcd for C₂₄H₂₀NO⁺ (M+H)⁺ 338.1539, found 338.1537.

(6-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3h)^[1] Yield 73%; 123.7 mg; yellow solid; mp 142-144 °C; R_f 0.2 (EtOAc/petroleum ether = 1:12); IR (KBr): 1676, 1618, 1490, 1276, 1213, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.07 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.45–7.35 (m, 5H), 7.35–7.26 (m, 3H), 7.16 (d, J = 2.8 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 159.0, 153.7, 142.1, 138.0, 136.3, 135.9, 134.5, 133.4, 131.1, 130.5, 129.3, 128.9, 128.5, 128.3, 127.8, 123.1, 104.8, 55.6. HRMS (ESI) m/z calcd for C₂₃H₁₈NO₂⁺ (M+H)⁺ 340.1332, found 340.1329.

(6-ethoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3i) Yield 72%; 127.1 mg; yellow solid; mp 143-145 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1676, 1618, 1597, 1490, 1452, 1309, 1274, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.43–7.37 (m, 5H), 7.34–7.28 (m, 3H), 7.15 (d, J = 2.8 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 1.52 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 158.3, 153.6, 142.0, 138.1, 136.4, 135.8, 134.5, 133.3, 131.1, 130.5, 129.4, 128.9, 128.5, 128.3, 127.8, 123.4, 105.5, 63.9, 14.7. HRMS (ESI) m/z calcd for C₂₄H₂₀NO₂⁺ (M+H)⁺ 354.1489, found 354.1486.

(6-isopropoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3j) Yield 69%; 126.6 mg; yellow solid; mp 146-148 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1674, 1618, 1487, 1452, 1288, 1213, 1110, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.39 (dd, J = 9.6, 5.6 Hz, 5H), 7.33–7.27 (m, 3H), 7.16 (d, J = 2.8 Hz, 1H), 4.75 (dt, J = 12.0, 6.0 Hz, 1H), 1.44 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 157.2, 153.5, 141.8, 138.1, 136.4, 135.8, 134.4, 133.3, 131.2, 130.5, 129.4, 128.9, 128.5, 128.3, 127.8, 124.0, 107.0, 70.3, 21.9. HRMS (ESI) m/z calcd for C₂₅H₂₂NO₂⁺ (M+H)⁺ 368.1645, found 368.1643.

(7-methoxy-6-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3k) Yield 71%; 125.3 mg; yellow solid; mp 147-159 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1674, 1491, 1448, 1238, 1141, 916, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.63 (s, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.44 (s, 1H), 7.42–7.35 (m, 4H), 7.33–7.26 (m, 3H), 3.97 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 160.4, 155.2, 146.8, 138.1, 136.3, 136.0, 133.4, 131.8, 131.4, 130.4, 129.0, 128.5, 128.3, 127.7, 127.6, 123.3, 106.2, 55.7, 17.0. HRMS (ESI) m/z calcd for C₂₄H₂₀NO₂⁺ (M+H)⁺ 354.1489, found 354.1487.

(6-methoxy-7-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3l) Yield 72%; 127.1 mg; yellow solid; mp 150-152 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1672, 1489, 1417, 1228, 1016, 927, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.93–7.86 (m, 3H), 7.52 (d, J = 7.2 Hz, 1H), 7.41–7.36 (m, 4H), 7.33– 7.27 (m, 3H), 7.09 (s, 1H), 3.99 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 158.3, 153.3, 141.9, 138.2, 136.5, 135.4, 133.69, 133.65, 133.3, 130.5, 130.3, 129.0, 128.5, 128.3, 128.1, 127.6, 103.3, 55.6, 17.2. HRMS (ESI) m/z calcd for $C_{24}H_{20}NO_2^+$ (M+H)⁺ 354.1489, found 354.1487.

(6-fluoro-3-phenylquinolin-2-yl)(phenyl)methanone (3m) Yield 69%; 112.8 mg; yellow solid; mp 95-97 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1676, 1448, 1284, 1207, 1151, 912, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.19 (dd, J = 10.0, 5.5 Hz, 1H), 7.87 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.8 Hz, 3H), 7.40 (dd, J = 14.9, 7.0 Hz, 4H), 7.32 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8,

161.4 (d, J = 248.0 Hz, ${}^{1}J_{CF}$), 155.7, 143.0, 137.3, 136.5 (d, J = 5.0 Hz, ${}^{3}J_{CF}$), 136.0, 134.9, 133.6, 132.3 (d, J = 9.0 Hz, ${}^{3}J_{CF}$), 130.4, 128.9, 128.8, 128.7, 128.4, 128.1, 120.5 (d, J = 26.0 Hz, ${}^{2}J_{CF}$), 110.7 (d, J = 22.0 Hz, ${}^{2}J_{CF}$). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.85. HRMS (ESI) m/z calcd for C₂₂H₁₅FNO⁺ (M+H)⁺ 328.1132, found 328.1135.

(6-chloro-3-phenylquinolin-2-yl)(phenyl)methanone (3n)^[3] Yield 62%; 106.3mg; yellow solid; mp 100-102 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1676, 1448, 1286, 896, 758, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.11 (d, J = 9.2 Hz, 1H), 7.91 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.8 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.42 (d, J = 7.6 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 156.5, 144.4, 137.2, 136.1, 135.9, 135.0, 133.8, 133.7, 131.3, 131.1, 130.4, 128.9, 128.7, 128.5, 128.2, 126.3. HRMS (ESI) m/z calcd for C₂₂H₁₅ClNO⁺ (M+H)⁺ 344.0837, found 344.0840.

(6-bromo-3-phenylquinolin-2-yl)(phenyl)methanone (30) Yield 54%; 104.5 mg; yellow solid; mp 123-125 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1680, 1595, 1448, 1286, 1220, 1178, 1153, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.10 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.85 (s, 3H), 7.55 (s, 1H), 7.45–7.29 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 156.7, 144.5, 137.2, 136.0, 135.9, 135.0, 133.7, 133.6, 131.3, 130.4, 129.7, 129.2, 128.9, 128.7, 128.5, 128.2, 122.1. HRMS (ESI) m/z calcd for C₂₂H₁₅BrNO⁺ (M+H)⁺ 388.0332, found 388.0334.

(6-iodo-3-phenylquinolin-2-yl)(phenyl)methanone (3p) Yield 48%; 104.4 mg; yellow solid; mp 129-131 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1678, 1282, 763, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.78 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.2 Hz, 4H), 7.31 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 156.8, 144.9, 138.9, 137.2, 136.4, 135.9, 135.8, 134.8, 133.7, 131.2, 130.4, 129.7, 128.9, 128.7, 128.5, 128.2, 93.9. HRMS (ESI) m/z calcd for C₂₂H₁₅INO⁺ (M+H)⁺436.0193, found 436.0192.

(6-fluoro-7-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3q) Yield 68%; 121.4 mg; yellow solid; mp 147-149 °C; R_f 0.2 (EtOAc/petroleum ether = 1:12); IR (KBr): 1674, 1450, 1236, 1147, 912, 754, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.60–7.52 (m, 3H), 7.44–7.35 (m, 4H), 7.34– 7.27 (m, 3H), 4.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 155.7 (d, J = 2.0Hz, ⁴ J_{CF}), 153.3 (d, J = 253.0 Hz, ¹ J_{CF}), 151.4 (d, J = 13.0 Hz, ² J_{CF}), 144.2, 137.5, 136.2 (d, J = 6.0 Hz, ³ J_{CF}), 133.6, 132.8, 130.4, 129.0, 128.6, 128.4, 127.9, 123.1 (d, J = 9.0 Hz, ³ J_{CF}), 111.2 (d, J = 19.0 Hz, ² J_{CF}), 109.9 (d, J = 3.0 Hz, ⁴ J_{CF}), 56.3. ¹⁹F NMR (376 MHz, CDCl3) δ -129.99. HRMS (ESI) m/z calcd for C₂₃H₁₇FNO₂⁺ (M+H)⁺ 358.1238, found 358.1235.

(6-chloro-7-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3r) Yield 71%; 132.4 mg; yellow solid; mp 151-153 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1678, 1446, 1238, 914, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.94 (s, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.57–7.52 (m, 2H), 7.43–7.28 (m, 7H), 4.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 156.6, 156.5, 146.2, 137.4, 136.0, 135.8, 133.6, 132.8, 130.4, 129.0, 128.6, 128.5, 127.93, 127.86, 126.4, 123.3, 108.7, 56.6. HRMS (ESI) m/z calcd for C₂₃H₁₇ClNO₂⁺ (M+H)⁺ 374.0942, found 374.0940.

ethyl 2-benzoyl-3-phenylquinoline-6-carboxylate (3s)^[1] Yield 55%; 104.8 mg; yellow solid; mp 96-98 °C; R_f 0.2 (EtOAc/petroleum ether = 1:12); IR (KBr): 1710, 1678, 1276, 1250, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.40–8.34 (m, 2H), 8.21 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.44–7.32 (m, 7H), 4.49 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 165.9, 158.3, 147.7, 138.3, 137.1, 135.8, 134.8, 133.7, 130.4, 129.9, 129.7, 129.6, 129.0, 128.7, 128.5, 128.2, 127.3, 61.5, 14.3. HRMS (ESI) m/z calcd for C₂₅H₂₀NO₃⁺ (M+H)⁺ 382.1438, found 382.1436.

(3,6-diphenylquinolin-2-yl)(phenyl)methanone (3t) Yield 67%; 130.0 mg; yellow solid; mp 131-133 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1674, 1481, 1284, 760, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.24 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 1.6 Hz, 1H), 8.04 (dd, J = 8.8, 2.0 Hz, 1H), 7.89 (d, J = 7.6 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 8.0 Hz, 3H), 7.44–7.38 (m, 5H), 7.35–7.29 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 156.2, 145.4, 140.8, 140.1, 137.7, 137.3, 136.2, 134.5, 133.5, 130.5, 130.1, 129.9, 129.1, 129.0, 128.6, 128.4, 128.3, 128.0, 127.9, 127.5, 125.3. HRMS (ESI) m/z calcd for C₂₈H₂₀NO⁺ (M+H)⁺ 386.1539, found 386.1538.

(6-(methylthio)-3-phenylquinolin-2-yl)(phenyl)methanone (3u) Yield 69%; 122.5 mg; yellow solid; mp 119-121 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:12); IR (KBr): 1668, 1446, 1273, 1226, 903, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.05 (d, J = 8.9 Hz, 1H), 7.88 (d, J = 7.4 Hz, 2H), 7.66 – 7.58 (m, 2H), 7.55 (t, J = 7.4 Hz, 2H)

Hz, 1H), 7.44 – 7.36 (m, 4H), 7.35 – 7.28 (m, 3H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 155.1, 144.1, 139.6, 137.7, 136.2, 135.7, 134.8, 133.5, 130.5, 129.7, 129.4, 128.9, 128.6, 128.4, 127.9, 121.5, 15.4. HRMS (ESI) m/z calcd for C₂₃H₁₈NOS⁺ (M+H)⁺ 356.1104, found 356.1100.

(6-methyl-3-(p-tolyl)quinolin-2-yl)(p-tolyl)methanone (3v) Yield 73%; 128.1 mg; yellow solid; mp 101-103 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr):825, 906, 1290, 1600, 1664 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.67 (s, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.05 (dd, J = 61.6, 7.6 Hz, 2H), 2.59 (s, 3H), 2.39 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 155.7, 144.4, 138.0, 137.7, 136.4, 135.1, 134.0, 133.9, 132.3, 130.7, 129.4, 129.3, 129.2, 128.8, 128.2, 126.5, 21.82, 21.78, 21.2. HRMS (ESI) m/z calcd for C₂₅H₂₂NO⁺ (M+H)⁺ 352.1696, found 352.1694.

(4-fluorophenyl)(3-(4-fluorophenyl)-6-methylquinolin-2-yl)methanone (3w) Yield 69%; 123.9 mg; yellow solid; mp 101-103 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1666, 1595, 1296, 1224, 1145, 906, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.91 (dd, J = 8.4, 5.6 Hz, 2H), 7.69 (s, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.33 (dd, J = 8.0, 5.6 Hz, 2H), 7.06 (dt, J = 22.4, 8.4 Hz, 4H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 166.1 (d, J = 254.0 Hz, ¹J_{CF}), 162.6 (d, J = 247.0 Hz, ¹J_{CF}), 154.8, 144.6, 138.5, 136.7, 133.9 (d, J = 3.0 Hz, ⁴J_{CF}), 133.2 (d, J = 9.0 Hz, ³J_{CF}), 133.0, 132.8, 132.6 (d, J = 3.0 Hz, ⁴J_{CF}), 130.7 (d, J = 8.0 Hz, ³J_{CF}), 129.3, 128.2, 126.5, 115.74 (d, J = 22.0 Hz, ²J_{CF}), 115.71 (d, J = 22.0 Hz, ²J_{CF}), 21.8. ¹⁹F NMR (376 MHz, CDCl3) δ -103.84, -113.97. HRMS (ESI) m/z calcd for C₂₃H₁₆F₂NO⁺ (M+H)⁺ 360.1194, found 360.1193.

(4-chlorophenyl)(3-(4-chlorophenyl)-6-methylquinolin-2-yl)methanone (3x) Yield 62%; 121.2 mg; yellow solid; mp 107-109 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1664, 1583, 1292, 1088, 902, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.68 (s, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.34-7.27 (m, 4H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 154.3, 144.6, 140.2, 138.6, 136.7, 136.3, 134.5, 134.2, 132.95, 132.86, 131.9, 130.2, 129.3, 128.88, 128.86, 128.1, 126.5, 21.8. HRMS (ESI) m/z calcd for C₂₃H₁₆Cl₂NO⁺ (M+H)⁺ 392.0603, found 392.0601.

(4-bromophenyl)(3-(4-bromophenyl)-6-methylquinolin-2-yl)methanone (3y) Yield 57%; 136.8 mg; yellow solid; mp 129-131 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1672, 1581, 1286, 904, 831, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.68 (s, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 154.1, 144.5, 138.7, 136.8, 134.9, 133.00, 132.96, 132.0, 131.9, 131.8, 130.5, 129.2, 129.1, 128.1, 126.5, 122.5, 21.8. HRMS (ESI) m/z calcd for C₂₃H₁₆Br₂NO⁺ (M+H)⁺ 481.9573, found 481.9569.

(4-iodophenyl)(3-(4-iodophenyl)-6-methylquinolin-2-yl)methanone (3z) Yield 54%; 155.2 mg; yellow solid; mp 135-137 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15);

IR (KBr):1670, 1576, 1284, 902, 829, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.65 (dd, J = 19.6, 8.0 Hz, 6H), 7.09 (d, J = 8.0 Hz, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 154.1, 144.6, 138.7, 137.84, 137.76, 137.4, 136.6, 135.4, 133.1, 132.9, 131.8, 130.6, 129.3, 128.1, 126.5, 102.2, 94.1, 21.8. HRMS (ESI) m/z calcd for C₂₃H₁₆I₂NO ⁺ (M+H)⁺ 575.9316, found 575.9311.

(2-fluorophenyl)(3-(2-fluorophenyl)-6-methoxyquinolin-2-yl)methanone (3aa) Yield 67%; 125.6 mg; yellow solid; mp 118-120 °C; R_f 0.2 (EtOAc/petroleum ether = 1:12); IR (KBr): 1676, 1614, 1454, 1221, 916, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.83 (dd, J = 10.4, 4.4 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.48–7.38 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.22 (td, J = 7.6, 4.4 Hz, 2H), 7.14 (d, J = 2.8 Hz, 1H), 7.06 (dd, J = 18.0, 8.0 Hz, 2H), 3.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 161.8 (d, J = 255.0 Hz, ¹J_{CF}), 159.3, 159.2 (d, J = 245.0 Hz, ¹J_{CF}), 153.0, 142.3, 137.1, 134.4 (d, J = 8.0 Hz, ³J_{CF}), 131.9 (d, J = 2.0 Hz, ⁴J_{CF}), 131.5, 131.1 (d, J = 3.0 Hz, ⁴J_{CF}), 129.9 (d, J = 8.0 Hz, ³J_{CF}), 129.7, 128.1, 126.2 (d, J = 3.0 Hz, ²J_{CF}), 126.1 (d, J = 29.0 Hz, ²J_{CF}), 124.5 (d, J = 3.0 Hz, ⁴J_{CF}), 123.3, 116.3 (d, J = 22.0 Hz, ²J_{CF}), 115.6 (d, J = 22.0 Hz, ²J_{CF}), 104.9, 55.7. ¹⁹F NMR (376 MHz, CDCl3) δ -112.72, -114.99. HRMS (ESI) m/z calcd for C₂₃H₁₆F₂NO₂⁺ (M+H)⁺ 376.1144, found 376.1141.

(3,4-dichlorophenyl)(3-(3,4-dichlorophenyl)-6-methylquinolin-2-yl)methanone (3ab) Yield 61%; 140.6 mg; yellow solid; mp 135-137 °C; R_f 0.2 (EtOAc/petroleum ether = 1:15); IR (KBr): 1668, 1288, 1151, 1026, 927, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.06 (d, J = 8.8 Hz, 2H), 7.79 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.14 (dd, J = 8.4, 2.0 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 153.1, 144.6, 139.2, 138.4, 137.9, 137.1, 135.7, 133.3, 133.2, 132.9, 132.5, 132.4, 132.1, 130.70, 130.66, 130.6, 129.6, 129.4, 128.2, 128.1, 126.5, 21.8. HRMS (ESI) m/z calcd for $C_{23}H_{14}Cl_4NO^+$ (M+H)⁺461.9795, found 461.9792.

(3-chlorophenyl)(3-(3-chlorophenyl)-6-methylquinolin-2-yl)methanone (3ac) Yield 64%; 125.1 mg; yellow solid; mp 102-104 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1672, 1566, 1209, 1157, 929, 827, 781, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.89 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.69 (s, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.38 (dd, J = 13.2, 4.8 Hz, 2H), 7.30 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 3.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 153.9, 144.7, 139.7, 138.8, 137.7, 136.9, 134.7, 134.6, 133.5, 133.0, 132.8, 130.3, 129.79, 129.78, 129.4, 128.9, 128.7, 128.1, 128.0, 127.2, 126.5, 21.8. HRMS (ESI) m/z calcd for $C_{23}H_{16}Cl_2NO^+$ (M+H)⁺ 392.0603, found 392.0598.

(4-(benzyloxy)phenyl)(3-(4-(benzyloxy)phenyl)-6-methylquinolin-2-yl)methanone (3ad) Yield 63%; 168.5 mg; yellow solid; mp 142-144 °C; R_f 0.2 (EtOAc/petroleum ether = 1:12); IR (KBr): 1666, 1599, 1510, 1249, 1228, 1149, 993, 908, 831, 738, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.03 (m, 2H), 7.85 (d, J = 6.8 Hz, 2H), 7.62 (d, J = 26.8 Hz, 2H), 7.37 (d, J = 28.0 Hz, 14H), 6.94 (s, 4H), 5.07 (d, J = 29.6 Hz, 4H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 163.0, 158.5, 155.8, 144.4, 137.8, 136.7, 136.1, 133.4, 132.9, 132.2, 130.5, 130.1, 129.5, 129.2, 128.7, 128.6, 128.23, 128.15, 128.0, 127.50, 127.48, 126.4, 114.9, 114.5, 70.1, 69.9, 21.7. HRMS (ESI) m/z calcd for C₃₇H₃₀NO₃⁺ (M+H)⁺ 536.2220, found 536.2221.

(6-methyl-3-(naphthalen-1-yl)quinolin-2-yl)(naphthalen-1-yl)methanone (3ae) Yield 69%; 145.9 mg; yellow solid; mp 131-133 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1670, 1288, 902, 777, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, J = 13.2, 8.8 Hz, 2H), 8.18 (s, 1H), 7.67 (t, J = 10.0 Hz, 5H), 7.58 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 7.6 Hz, 2H), 7.40–7.30 (m, 4H), 7.24 (d, J = 7.2 Hz, 1H), 7.17–7.09 (m, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 157.4, 145.2, 138.4, 138.1, 135.2, 133.8, 133.4, 133.2, 132.8, 132.7, 132.4, 131.7, 131.3, 130.5, 129.7, 128.1, 128.0, 127.90, 127.88, 127.6, 126.4, 126.2, 126.0, 125.8, 125.7, 125.5, 124.8, 123.6, 21.8. HRMS (ESI) m/z calcd for C₃₁H₂₂NO⁺ (M+H)⁺ 424.1696, found 424.1693.

(6-methyl-3-(naphthalen-2-yl)quinolin-2-yl)(naphthalen-2-yl)methanone (3af) Yield 68%; 143.8 mg; yellow solid; mp 137-139 °C; $R_f 0.2$ (EtOAc/petroleum ether = 1:15); IR (KBr): 1660, 1294, 904, 825, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.32 (s, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.04 (dd, J = 8.8, 1.2 Hz, 1H), 7.92 (s, 1H), 7.84 (dd, J = 8.4, 3.6 Hz, 3H), 7.75 (t, J = 8.4 Hz, 4H), 7.64 (d, J = 8.8 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.52–7.46 (m, 2H), 7.43 (dd, J = 6.4, 3.2 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.6, 144.6, 138.2, 136.9, 135.8, 135.4, 134.1, 133.7, 133.4, 133.2, 132.6, 132.5, 132.3, 129.8, 129.4, 128.7, 128.4, 128.3, 128.2, 128.1, 127.8, 127.6, 126.8, 126.60, 126.56, 126.4, 126.3, 125.1, 21.8. HRMS (ESI) m/z calcd for C₃₁H₂₂NO⁺ (M+H)⁺ 424.1696, found 424.1693.

(4-hydroxyphenyl)(3-(4-hydroxyphenyl)-6-methylquinolin-2-yl)methanone (5ah) Yield 37%; 65.7 mg; yellow solid; mp 169-171 °C; R_f 0.3 (EtOAc/petroleum ether = 1:3); IR (KBr): 3370, 1660, 1591, 1282, 1226, 1153, 831, 756 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 10.60 (s, 1H), 9.64 (s, 1H), 8.34 (s, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.85 (s, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 2.53 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 193.5, 162.8, 157.4, 156.0, 143.8, 137.5, 135.9, 133.0, 132.7, 132.3, 130.1, 128.5, 128.2, 128.0, 127.7, 126.8, 115.63, 115.58, 21.4. HRMS (ESI) m/z calcd for C₂₃H₁₈NO₃⁺ (M+H)⁺ 356.1281, found 356.1278.

5. References

[1] X. Geng, X. Wu, P. Zhao, J. Zhang, Y. D. Wu and A. X. Wu, *Org. Lett.*, 2017, **19**, 4179-4182.

[2] Z. Y. Li, X. Y. Wang, L. F. Ma and N. Jiao, Synlett. 2017, 28, 1581–1585.

[3] X. Wan, S. Wang, C. Wu, J. Gan and C. Wang, Org. Lett., 2021, 23, 8799-8803.

6. Crystallographic data and molecular structure of 3v

Figure S1. X-ray crystal structure of 3v, thermal ellipsoids shown at 50% probability level. Sample preparation: 35 mg of 3v was dissolved in 6 ml CH₂Cl₂ and 1 ml CH₃OH at room temperature for slow evaporation about a week. The crystals were mounted on a glass fiber for diffraction experiments. Intensity data were collected on a Bruker SMART APEX CCD diffractometer with Mo K α radiation (0.71073 Å) at room temperature. Crystal Data for Compound 3v: CCDC 2227223 contains the supplementary crystallographic data for this paper. These data could be obtained free of charge from The Cambridge Crystallographic.

Bond precision	C-C = 0.001	9 A	Wavelength=0.71073				
Cell:	a=8.2419(15) alpha=99.154(3	b=10.53 beta=93	399(19) 3.011(3)	c=11.222(2) gamma=102.359(3)			
Temperature:	296 K						
	Calculated		Report	ed			
Volume	936.3(3)		936.3	936.3(3)			
Space group	P -1		P -1				
Hall group	-P 1		-P 1				
Moiety formula	C25 H21 N O		C25 H21 N O				
Sum formula	C25 H21 N O		C25 H21 N O				
Mr	351.43		351.43				
Dx,g cm-3	1.247		1.246				
Z	2		2				
Mu (mm-1)	0.075		0.075				
F000	372.0	372.0					
F000'	372.14	4					
h,k,lmax	11,14,15	11		,14,15			
Nref	5644		5497				
Tmin, Tmax	0.985,0.993		0.645,0.746				
Tmin'	0.985						
Correction method= # Reported T Limits: Tmin=0.645 Tmax=0.746 AbsCorr = MULTI-SCAN							
Data completen	ess= 0.974	Theta	Theta(max) = 30.374				
R(reflections) = 0.0567(4130) wR2(reflections) = 0.1870(5497)							
S = 1.040 Npar= 247							

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

5. HRMS spectra for compounds 3 and 5ah

(6-ethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3b) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO_2^+$ (M+H)⁺ 338.1539, found 338.1538.

phenyl(3-phenyl-6-propylquinolin-2-yl)methanone (3c) HRMS (ESI) m/z calcd for $C_{25}H_{22}NO^+$ (M+H)⁺ 352.1696, found 352.1692.

(6-(tert-butyl)-3-phenylquinolin-2-yl)(phenyl)methanone (3d) HRMS (ESI) m/z calcd for $C_{26}H_{24}NO^+$ (M+H)⁺ 366.1852, found 366.1851.

(7-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3e) HRMS (ESI) m/z calcd for $C_{23}H_{18}NO^+$ (M+H)⁺ 324.1383, found 324.1382.

(6,7-dimethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3f) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO^+$ (M+H)⁺ 338.1539, found 338.1538.

(5,7-dimethyl-3-phenylquinolin-2-yl)(phenyl)methanone (3g) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO^+$ (M+H)⁺ 338.1539, found 338.1537.

(6-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3h) HRMS (ESI) m/z calcd for $C_{23}H_{18}NO_2^+$ (M+H)⁺ 340.1332, found 340.1329.

(6-ethoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3i) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO_2^+$ (M+H)⁺ 354.1489, found 354.1486.

(6-isopropoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3j) HRMS (ESI) m/z calcd for $C_{25}H_{22}NO_2^+$ (M+H)⁺ 368.1645, found 368.1643.

(7-methoxy-6-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3k) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO_2^+$ (M+H)+354.1489, found 354.1487.

(6-methoxy-7-methyl-3-phenylquinolin-2-yl)(phenyl)methanone (3l) HRMS (ESI) m/z calcd for $C_{24}H_{20}NO_2^+$ (M+H)⁺ 354.1489, found 354.1487.

(6-fluoro-3-phenylquinolin-2-yl)(phenyl)methanone (3m) HRMS (ESI) m/z calcd for $C_{22}H_{15}FNO^+$ (M+H)⁺ 328.1132, found 328.1135.

(6-chloro-3-phenylquinolin-2-yl)(phenyl)methanone (3n) HRMS (ESI) m/z calcd for $C_{22}H_{15}CINO^+$ (M+H)⁺ 344.0837, found 344.0840.

(6-bromo-3-phenylquinolin-2-yl)(phenyl)methanone (30) HRMS (ESI) m/z calcd for $C_{22}H_{15}BrNO^+$ (M+H)⁺ 388.0332, found 388.0334.

(6-iodo-3-phenylquinolin-2-yl)(phenyl)methanone (3p) HRMS (ESI) m/z calcd for $C_{22}H_{15}INO^+$ (M+H)⁺ 436.0193, found 436.0192.

(6-fluoro-7-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3q) HRMS (ESI) m/z calcd for $C_{23}H_{17}FNO_2^+$ (M+H)⁺ 358.1238, found 358.1235.

(6-chloro-7-methoxy-3-phenylquinolin-2-yl)(phenyl)methanone (3r) HRMS (ESI) m/z calcd for $C_{23}H_{17}CINO_2^+$ (M+H)⁺ 374.0942, found 374.0940.

ethyl 2-benzoyl-3-phenylquinoline-6-carboxylate (3s) HRMS (ESI) m/z calcd for $C_{25}H_{20}NO_3^+$ (M+H)⁺ 382.1438, found 382.1436.

(3,6-diphenylquinolin-2-yl)(phenyl)methanone (3t) HRMS (ESI) m/z calcd for $C_{28}H_{20}NO^+$ (M+H)⁺ 386.1539, found 386.1538.

(6-(methylthio)-3-phenylquinolin-2-yl)(phenyl)methanone (3u) HRMS (ESI) m/z calcd for $C_{23}H_{18}NOS^+$ (M+H)⁺ 356.1104, found 356.1100.

(6-methyl-3-(p-tolyl)quinolin-2-yl)(p-tolyl)methanone (3v) HRMS (ESI) m/z calcd for $C_{25}H_{22}NO^+$ (M+H)⁺ 352.1696, found 352.1694.

 $(4-chlorophenyl)(3-(4-chlorophenyl)-6-methylquinolin-2-yl)methanone (3x) \\ HRMS (ESI) m/z calcd for C_{23}H_{16}Cl_2NO^+ (M+H)^+ 392.0603, found 392.0601.$

(4-iodophenyl)(3-(4-iodophenyl)-6-methylquinolin-2-yl)methanone (3z) HRMS (ESI) m/z calcd for $C_{23}H_{16}I_2NO^+$ (M+H)⁺ 575.9316, found 575.9311.

(2-fluorophenyl)(3-(2-fluorophenyl)-6-methoxyquinolin-2-yl)methanone (3aa) HRMS (ESI) m/z calcd for $C_{23}H_{16}F_2NO_2^+$ (M+H)⁺ 376.1144, found 376.1141.

(3,4-dichlorophenyl)(3-(3,4-dichlorophenyl)-6-methylquinolin-2-yl)methanone (3ab) HRMS (ESI) m/z calcd for $C_{23}H_{14}Cl_4NO^+$ (M+H)⁺ 461.9795, found 461.9792.

 $(3-chlorophenyl)(3-(3-chlorophenyl)-6-methylquinolin-2-yl)methanone (3ac) \\ HRMS (ESI) m/z calcd for C_{23}H_{16}Cl_2NO^+ (M+H)^+ 392.0603, found 392.0598.$

(4-(benzyloxy)phenyl)(3-(4-(benzyloxy)phenyl)-6-methylquinolin-2-yl)methanone (3ad) HRMS (ESI) m/z calcd for $C_{37}H_{30}NO_3^+$ (M+H)⁺ 536.2220, found 536.2221.

 $\begin{array}{ll} \mbox{(6-methyl-3-(naphthalen-2-yl)quinolin-2-yl)(naphthalen-2-yl)methanone} \\ \mbox{(3af)} \\ \mbox{HRMS (ESI) m/z calcd for $C_{31}H_{22}NO^+$ (M+H)^+$424.1696, found 424.1693.} \end{array}$

(4-hydroxyphenyl)(3-(4-hydroxyphenyl)-6-methylquinolin-2-yl)methanone (5ah) HRMS (ESI) m/z calcd for $C_{23}H_{18}NO_3^+$ (M+H)⁺ 356.1281, found 356.1278.

7. ¹H and ¹³C NMR spectra of compounds 3 and 5ah

-0.000

-0.001

-0.000

