Supplementary information

Development of a new synthetic method for

deoxyoligonucleotides using 3'-H-phosphonamidate derivatives

Taiki Tsurusaki[†], Kazuki Sato[†], Takeshi Wada^{†*}

[†]Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences,

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

* Corresponding author E-mail: twada@rs.tus.ac.jp

Table of contents

1.	Experimental procedure and data	S 3
2.	³¹ P NMR analysis of the synthesis of 3'- <i>H</i> -phosphonamidate mono (Table 1)	mers S18
3.	³¹ P NMR analysis of the condensation of a 3'- <i>H</i> -phosphonamidate monomer $2t$, $3t$, or $4t$ with a thymidine derivative 5t during azeotromanipulation.	opic S21
4.	³¹ P NMR analysis of the condensation of a 3'- <i>H</i> -phosphonamidate monomer $3t$ with a thymidine derivative $5t$ (Table 2).	S24
5.	³¹ P NMR analysis of the synthesis of <i>S</i> -cyanoethyl phosphorothioa diester ($T_{PSCE}T$) 9 .	te S29
6.	31 P NMR analysis of the synthesis of T _{PS} T _{PS} T trimer 10 (Scheme 5) S31
7.	¹ H, ¹³ C, ³¹ P NMR spectra of isolated compounds	S33

1. Experimental section

General information

All reactions were conducted under an Ar atmosphere. Dry organic solvents were prepared by appropriate procedures. Additionally, ¹H NMR spectra were recorded at 400 or 600 MHz with tetramethylsilane (δ 0.0) as the internal standard in CDCl₃, CD₃CN, or pyridine-d₅ or CH₃CN (δ 2.06) as the internal standard in D₂O. Further, ¹³C NMR spectra were recorded at 100 or 151 MHz with CDCl₃, which was used as the internal standard at δ 77.0 or CH₃CN (δ 1.47) as the internal standard in D₂O. Furthermore, ³¹P NMR spectra were recorded at 162 MHz with H₃PO₄ (δ 0.0) as the external standard in CDCl₃, CD₃CN, or pyridine-d₅. Analytical thin-layer chromatography was performed on commercial glass plates with a 0.25 mm-thick silica gel layer. Silica gel column chromatography was performed on silica gel (Yamazen UNIVERSAL Premium column (30 µm 60 Å)) or ODS silica gel (Yamazen UNIVERSAL Premium column (30 µm 120 Å)) (Yamazen Corporation) using automated flash chromatography system W-prep 2XY (Yamazen Corporation). RP-HPLC for analysis and purification was performed using a µBondasphere 5 µm C18, 100 Å, 19 × 150 mm² (Waters).

Synthesis of compounds

5'-O-Dimethoxytritylthymidine 3'-morpholino H-phosphonamidate (2t)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytritylthymidine 3'-*H*-phosphonate monoester **1t**¹ (0.380 g, 0.5 mmol) and morpholine (0.044 mL, 0.50 mmol) were dissolved in dry CH₂Cl₂ (10 mL) and dry pyridine (0.1 mL) with molecular sieves 4A (1.0 g). Afterward, bis (2-oxo-3-oxazolidinyl) phosphinic chloride (BOPCl) (0.32 g, 1.25 mmol) was added to the solution at rt. The mixture was stirred for 20 min at rt. Thereafter, morpholine (0.044 mL, 0.50 mmol) was added to the solution. After the mixture was stirred for 30 min at rt, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with saturated aqueous solutions of NaHCO₃ (2 × 30 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on the Yamazen UNIVERSAL Premium column (M size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed three times with a linear gradient of 0%–100% acetone in CHCl₃ to afford **2t** as a colorless foam (0.144 g, 0.21 mmol, 43%).

¹H NMR (600 MHz, CDCl₃) δ 9.01, 8.98 (br, 1H (H-3), diastereomers), 7.57, 7.56 (d, J = 1.2 Hz, 1H (H-6), diastereomers), 7.39–7.36 (m, 2H (Ar)), 7.33–7.22 (m, 7H (Ar)),

6.86-6.83 (m, 4H (Ar)), 6.81 (d, J = 657 Hz, 1H (P-H)), 6.47 (dd, J = 8.8, 5.5 Hz, 1H (H-1'), one of diastereomers), 6.44 (dd, J = 8.5, 5.6 Hz, 1H (H-1'), one of diastereomers), 5.15-5.08 (m, 1H (H-3')), 4.25, 4.20 (dd, J = 4.7, 2.4, 4.7, 2.5 Hz, 1H (H-4'), diastereomers), 3.79 (s, 6H (-OCH₃)), 3.67–3.52 (m, 5H (H-5', -NCH₂-)), 3.37 (dd, J =11.8, 2.6 Hz, 1H (H-5'), diastereomers), 3.18-3.00 (m, 4H (-CH₂O-)), 2.63-2.55 (m, 1H (H-2'), 2.46–2.40 (m, 1H (H-1')), 1.43, 1.42 (d, J = 1.1 Hz, 3H (5-C<u>H</u>₃), diastereomers); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ163.6, 163.6 (C-4, diastereomers), 158.8, 158.8 (Ar), 150.4 (C-2), 144.0, 143.9 (Ar), 135.1, 135.0 (C-6, diastereomers), 134.9, 134.9 (Ar), 130.1, 129.1, 128.1, 128.1, 128.0, 128.0, 127.3, 127.2, 113.3, 113.3 (Ar), 111.7, 111.6 (C-5, diastereomers), 87.2, 87.2 (-OC(Ar)₃), 84.8 (d, ${}^{3}J_{PC} = 5.3$ Hz, C-4', one of diastereomers), 84.7 (d, ${}^{3}J_{PC} = 5.9$ Hz, C-4', one of diastereomers), 84.3, 84.3 (C-1', diastereomers), 75.0 (d, ${}^{2}J_{PC} = 5.7$ Hz, C-3', one of diastereomers), 74.7 (d, ${}^{2}J_{PC} = 5.9$ Hz, C-3', one of diastereomers), 66.9, 66.9 (d, ${}^{2}J_{PC} = 5.5$ Hz, -NCH₂-, diastereomers), 63.2, 62.9 (C-5', diastereomers), 55.2 (-O<u>C</u>H₃), 42.6 (d, ${}^{3}J_{PC} = 1.5$ Hz, -O<u>C</u>H₂-), 39.5 (d, ${}^{3}J_{PC}$ = 3.5, Hz, C-2', one of diastereomers), 39.3 (d, ${}^{3}J_{PC}$ = 3.9 Hz, C-2', one of diastereomers), 11.7, 11.6 (5-CH₃, diastereomers); ${}^{31}P$ { ^{1}H }NMR (162 MHz, CDCl₃) δ 13.1 (${}^{1}J_{PH} = 659$ Hz), 12.7 (${}^{1}J_{PH} = 655$ Hz)

HRMS (ESI-TOF) *m/z* calcd for C₃₅H₄₄N₄O₉P⁺ [M+NH₄]⁺, 695.2840; found 695.2844.

5'-O-Dimethoxytritylthymidine 3'-thiomorpholino H-phosphonamidate (3t)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytritylthymidine 3'-*H*-phosphonate monoester **1t** (1.52 g, 2.0 mmol) and thiomorpholine (0.19 mL, 2.0 mmol) were dissolved in dry pyridine (20 mL) and dry MeCN (20 mL) with molecular sieves 3A (4.0 g). Afterward, BOPCl (1.27 g, 5.0 mmol) was added to the solution at 0 °C. After the mixture was stirred for 20 min at 0 °C, the mixture was diluted with CH₂Cl₂ (80 mL) and washed with saturated aqueous solutions of NaHCO₃ (2 × 60 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 60 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on the Yamazen UNIVERSAL Premium column (L size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–100% acetone in CHCl₃-pyridine (99:1, v/v) to afford **3t** as a colorless foam (0.94 g, 1.35 mmol, 68%)

¹H NMR (400 MHz, CDCl₃) δ 9.2–9.1 (br, 1H (H-3)), 7.57 (d, J = 1.4 Hz, 0.5H (H-6) one of diastereomers), 7.56 (d, J = 0.9 Hz, 0.5H (H-6) one of diastereomers), 7.39–7.36 (m, 2H (Ar)), 7.33–7.23 (m, 7H (Ar)), 6.87–6.82 (m, 4H (Ar)), 6.78 (d, J = 655.9 Hz, (P-<u>H</u>)

one of diastereomers), 6.73 (d, J = 653.2 Hz, (P-H) one of diastereomers), 6.49–6.42 (m, 1H (H-1')), 5.12–5.05 (m, 1H (H-3')), 4.22 (q, J = 2.3 Hz, 0.5H (4'), diastereomers), 4.20 $(q, J = 1.8 \text{ Hz}, 0.5 \text{ H} (4'), \text{ diastereomers}), 3.79 (s, 6 \text{ H} (-\text{OC}\underline{\text{H}}_3)), 3.56-3.51 (m, 1 \text{ H} (\text{H}-5')),$ 3.45-3.19 (m, 5H (H-5", thiomorpholine-NCH2)), 2.62-2.39 (m, 6H (H-2', thiomorpholine-SCH₂)), 1.43 (d, J = 0.9 Hz, 1.5H (5-CH₃), one of diastereomers), 1.40 $(d, J = 1.4 \text{ Hz}, 1.5 \text{ H} (5-C\underline{\text{H}}_3), \text{ diastereomers}); {}^{13}\text{C} \{{}^{1}\text{H}\} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 163.6,$ 163.6 (C-4, diastereomers), 158.8, 158.8, 158.8, 158.7 (Ar), 150.4 (C-2), 144.0, 143.9 (Ar), 135.1, 135.1 (C-6, diastereomers), 135.0, 134.9, 134.9, 130.1, 130.0, 130.0, 128.1, 128.1, 128.0, 128.0, 127.3, 127.2, 113.3, 113.3 (Ar), 111.7, 111.6 (C-5, diastereomers), 87.2, 87.2 (-CAr₃, diastereomers), 84.7, 84.7 (${}^{3}J_{PC} = 5.7$ Hz, C-4', diastereomers), 84.3, 84.3 (C-1', diastereomers), 74.9 (${}^{2}J_{PC} = 5.7$ Hz, C-3', one of diastereomers), 74.7 (${}^{2}J_{PC} =$ 5.9 Hz, C-3', one of diastereomers), 63.2, 62.9 (C-5', diastereomers), 55.2 (-OCH₃)), 44.3 $(^{2}J_{PC} = 3.9 \text{ Hz}, \text{ thiomorpholine-NCH}_{2}), 39.4 (^{3}J_{PC} = 3.5 \text{ Hz}, \text{ CH}_{2} (2'), \text{ one of}$ diastereomers), 39.3 (${}^{3}J_{PC} = 3.8$ Hz, CH₂ (2'), one of diastereomers), 27.4, 27.3 (thiomorpholine-S<u>C</u>H₂, diastereomers), 11.7, 11.6 (5-<u>C</u>H₃), diastereomers); ${}^{31}P$ {¹H}NMR (162 MHz, CDCl₃) δ 13.6 (¹*J*_{PH} = 655 Hz), 13.2 (¹*J*_{PH} = 655 Hz) HRMS (ESI-TOF) *m/z* calcd for C₃₅H₄₄N₄O₈PS⁺ [M+H]⁺, 711.2612; found 711.2627.

5'-O-Dimethoxytritylthymidine 3'-N-methylpiperadino H-phosphonamidate (4t)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytritylthymidine 3'-Hphosphonate monoester **1t** (0.380 g, 0.5 mmol) and N-methylpiperadine (0.055 mL, 0.50 mmol) were dissolved in dry CH₂Cl₂ (10 mL) and dry pyridine (0.1 mL) with molecular sieves 4A (1.0 g). Afterward, BOPCl (0.32 g, 1.25 mmol) was added to the solution at rt. The mixture was stirred for 20 min at rt. Thereafter, N-methylpiperadine (0.055 mL, 0.50 mmol) was added to the solution. After the mixture was stirred for 30 min at rt, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with saturated aqueous solutions of NaHCO₃ (2 × 30 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford **4t** as a colorless foam. Compound **4t** was used for next reaction, without further purifications.

³¹P {¹H}NMR (162 MHz, CDCl₃) δ 13.1 (¹*J*_{PH} = 650 Hz), 12.9 (¹*J*_{PH} = 646 Hz)

HRMS (ESI-TOF) m/z calcd for C₃₆H₄₄N₄O₈P + [M+H]⁺, 691.2891; found 691.2890.

5'-O-Dimethoxytrityl-N⁶-benzoyldeoxyadenosine 3'-thiomorpholino Hphosphonamidate (3a)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytrityl-N⁶-

benzoyldeoxyadenosine 3'-H-phosphonate monoester **1a** (0.44 g, 0.50 mmol) and thiomorpholine (0.047 mL, 0.50 mmol) were dissolved in dry CH₂Cl₂ (10 mL) and dry pyridine (0.1 mL) with molecular sieves 4A (1.0 g). Afterward, BOPCl (0.32 g, 1.25 mmol) was added to the solution at rt. The mixture was stirred for 20 min at rt. Thereafter, thiomorpholine (0.047 mL, 0.50 mmol) was added to the solution. After the mixture was stirred for 30 min at rt, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with saturated aqueous solutions of NaHCO₃ (2 × 30 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on the Yamazen UNIVERSAL Premium column (L size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed three times with a linear gradient of 0%–100% acetone in CHCl₃ to afford **3a** as a colorless foam (0.21 g, 0.26 mmol, 53%).

¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H (-CONH-)), 8.72 (d, J = 4.1 Hz, 1H (H-2)), 8.16 (d, J = 5.0 Hz, 1H (8-H)), 8.02 (d, J = 7.3 Hz, 2H (Ar)), 7.60 (t, J = 6.6 Hz, 1H (Ar)),7.51 (t, J = 7.6 Hz, 2H (Ar)), 7.40–7.36 (m, 2H (Ar)), 7.29–7.19 (m, 7H (Ar)), 6.82 (d, J = 657.7 Hz, 1H (P-H)), 6.82–6.79 (m, 4H (Ar)), 6.53–6.49 (m, 1H (H-1')), 5.26–5.16 (m, 1H (H-3')), 4.38–4.33 (m, 1H (H-4')), 3.77 (s, 6H (-OCH₃)), 3.50–3.30 (m, 6H (H-5', 5", thiomorpholine-NCH2)), 3.13-3.06 (m, 1H (H-2')), 2.85-2.74 (m, 1H (H-2'')), 2.64-2.49 (m, 4H (thiomorpholine-SCH)); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) δ 164.5 (-CONH-), 158.5 (Ar), 152.6 (C-2), 151.4 (C-4), 149.5 (C (6)), 144.2 (Ar), 144.1 (Ar), 141.4, 141.4 (C-8, diastereomers), 135.3, 135.3, 135.2, 133.5, 132.7, 129.9, 129.9, 129.1, 128.8, 128.0, 127.9, 127.8, 127.0 (Ar), 123.5 (C-5), 113.2 (Ar), 86.7 (O-C(Ar)₃), 85.2, 85.1 (C-4", diastereomers), 84.5 (C-1'), 75.0 (d, ${}^{2}J_{PC} = 4.8$ Hz, C-3', one of diastereomers), 74.6 (d, $^{2}J_{PC} = 5.8 \text{ Hz}, \text{ C-3'}, \text{ one of diastereomers}), 63.1, 62.8 (C-5', diastereomers}), 55.2 (-O<u>C</u>H₃),$ 44.4, $(^{2}J_{PC} = 3.9 \text{ Hz}, \text{thiomorpholine-NCH}_{2}, \text{diastereomers}), 44.3 (thiomorpholine-NCH}_{2}, \text{diastereomers})$ diastereomers), 38.9, 38.8 (C-2', diastereomers), 27.4, 27.4 (thiomorpholine-SCH₂, diastereomers); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 13.9 (¹J_{PH} = 650 Hz), 13.0 (¹J_{PH} = 659 Hz)

HRMS (ESI-TOF) *m/z* calcd for C₄₂H₄₄N₆O₇PS⁺ [M+H]⁺, 807.2724; found 807.2726.

5'-O-Dimethoxytrityl- N^4 -isobutyryldeoxycytidine 3'-thiomorpholino Hphosphonamidate (3c)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytrityl- N^4 isobutyryldeoxycytidine 3'-H-phosphonate monoester **1c** (0.41 g, 0.50 mmol) and thiomorpholine (0.047 mL, 0.50 mmol) were dissolved in dry CH₂Cl₂ (10 mL) and dry pyridine (0.1 mL) with molecular sieves 4A (1.0 g). Bis (2-oxo-3-oxazolidinyl) phosphinic chloride (BOPCl) (0.32 g, 1.25 mmol) was added to the solution at rt. The mixture was stirred for 20 min at rt. Thereafter, thiomorpholine (0.047 mL, 0.50 mmol) was added to the solution. After the mixture was stirred for 30 min at rt, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with a saturated aqueous solution of NaHCO₃ (2 × 30 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography Column chromatography was carried out on the Yamazen UNIVERSAL Premium column (L size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed four times with a linear gradient of 0%–100% acetone in CHCl₃ to afford **3c** as a colorless foam (0.22 g, 0.29 mmol, 58%)

¹H NMR (400 MHz, CDCl₃) δ 8.26 (br, 1H (-CON<u>H</u>-)), 8.14 (d, *J* = 7.3 Hz, 0.5H (H-6), one of diastereomers), 8.09 (d, J = 7.8 Hz, 0.5H (H-6), one of diastereomers), 7.37–7.14 (m, 9H (Ar)), 6.87–6.84 (m, 4H (Ar)), 6.79 (d, J = 651.8 Hz, 0.5H (P-H) one of diastereomaers), 6.71 (d, J = 654.1 Hz, 0.5H (P-H) one of diastereomaers), 6.33–6.26 (m, 1H (H-1')), 5.06–4.99 (m ,1H (H-3')), 4.34–4.31 (m, 1H (H-4')), 3.80 (s, 6H (-O<u>CH</u>₃)), 3.52-3.25 (m, 6H (H-5', 5", thiomorpholine-NCH2)), 2.89-2.80 (m, 1H (H-2')), 2.62-2.50 (m, 5H (-CH(CH₃)₂, thiomorpholine-SCH₂)), 2.36–2.27 (m, 1H (H-2')), 1.24–1.21 (m, 6H (-CH(CH₃)); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ176.5 (-CONH-), 162.2 (C-4), 158.7 (Ar), 155.0 (C-2), 144.2 (C-6), 143.8 (Ar), 135.1, 135.0, 135.0, 134.9, 130.0, 130.0, 128.0, 127.2, 113.3 (Ar), 96.2 (C-5'), 87.1 (-CAr₃), 87.1, 86.9 (C-1', diastereomers), 85.4, 85.3 (C-4', diastereomers), 74.0, 73.4 (d, ${}^{2}J_{PC} = 5.8$ Hz, C-3', diastereomers), 62.5, 62.1 (C-5', diastereomers), 55.2 (CH₃ (-OCH₃)), 44.3, 44.2 (d, ${}^{2}J_{PC} = 3.9$ Hz, CH₂ (thiomorpholine-N<u>C</u>H₂, diastereomers), 40.7, 40.5 (d, ${}^{3}J_{PC}$ =3.8 Hz, C-2', diastereomers), 36.8 (-CH(CH₃)₂), 27.4, 27.4 (d, ${}^{3}J_{PC} = 3.9$ Hz, CH₂ (thiomorpholine-SCH)), 19.0, 19.0 (CH₃ (-CH(<u>C</u>H₃)₂, diastereomers); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 13.5 (¹J_{PH} = 650 Hz)

HRMS (ESI-TOF) m/z calcd for C₃₈H₄₆N₄O₈PS⁺ [M+H]⁺, 749.2768; found 749.2766.

5'-O-Dimethoxytrityl- N^2 -isobutyryldeoxyguanosine 3'-thiomorpholino Hphosphonamidate (3g)

Firstly, 1,8-diazabicyclo [5.4.0] undec-7-enium 5'-O-dimethoxytrityl- N^2 isobutyryldeoxyguanosine 3'-H-phosphonate monoester **1g** (0.43 g, 0.50 mmol) and thiomorpholine (0.047 mL, 0.50 mmol) were dissolved in dry pyridine (5 mL) and dry MeCN (5 mL) with molecular sieves 3A (1.0 g). Afterward, BOPCl (0.32 g, 1.25 mmol) was added to the solution at 0 °C. After the mixture was stirred for 20 min at 0 °C, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with saturated aqueous solutions of NaHCO₃ (2 × 30 mL). The aqueous layers were combined and back-extracted with CH₂Cl₂ (2 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on the Yamazen UNIVERSAL Premium column (L size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–60% acetone in CHCl₃ for the first time and 0%–60% acetone in CHCl₃-pyridine (1:1, v/v) for the second time to afford **3g** as a colorless foam (0.21 g, 0.27 mmol, 53%)

¹H NMR (400 MHz, CDCl₃) δ12.0 (brs, 1H (NH-1)), 9.37 (s, 0.5H (-COHN-), one of diastereomers), 8.98 (s, 0.5H (-COHN-), one of diastereomers), 7.78 (s, 1H, H-8), 7.42-7.40 (m, 1H (Ar)), 7.36–7.34 (m, 1H (Ar)), 7.30–7.16 (m, 7H (Ar)), 6.83–6.73 (m, 4H (Ar)), 6.82 (d, J = 659.1 Hz, P-H), 6.71 (d, J = 656.4 Hz, P-H), 6.17-6.13 (m, 1H (H-1')), 5.62-5.57 (m, 0.5H (H-3'), one of diastereomers), 5.46-5.41 (m, 0.5H (H-3'), one of diastereomers), 4.23-4.19 (m, 1H (H-4')), 3.77, 3.76 (s, 6H (-OCH₃), 3.44-3.19 (m, 6H (H-5', thiomorpholine-NCH2)), 3.17-3.03 (m, 1H (H-2')), 2.71-2.53 (m, 3H (H-2', thiomorpholine-SCH₂)), 2.46 (t, J = 5.0 Hz, 2H (thiomorpholine-SCH₂)), 2.37 (quin, J =6.9 Hz, 0.5H (-CH(CH₃)₂), one of diastereomers), 2.17 (quin, J = 6.9 Hz, 0.5H (-CH(CH₃)₂), one of diastereomers), 1.14-0.95 (m, 6H (-CH(CH₃)₂, diastereomers, rotamers); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) δ 178.9, 178.8 (-CONH-, diastereomers), 158.6, 158.6 (Ar), 155.5, 155.5 (C-6, diastereomers), 147.8, 147.6 (C-2, diastereomers), 147.5, 147.4 (C-4, diastereomers), 144.4, 144.3 (Ar), 137.9 (C-8), 135.5, 135.2, 135.2, 129.8, 127.9, 127.9, 127.9, 127.1, 127.0 (Ar), 121.9, 121.8 (C-5, diastereomers), 113,2, 113.1 (Ar), 86.4, 86.4 (-CAr₃, diastereomers), 84.2 (d, ${}^{3}J_{PC} = 6.7$ Hz, C-4', one of diastereomers) 84.2, 83.9 (C-1', diastereomers) 83.8 (d, ${}^{3}J_{PC} = 6.7$ Hz, C-4', one of diastereomers), 73.9 (d, ${}^{2}J_{PC} = 4.8$ Hz, C-3', one of diastereomers), 73.8 (d, ${}^{2}J_{PC} = 5.8$ Hz, C-3', one of diastereomers), 62.9, 62.1 (C-5', diasreteomers), 55.2 (-OCH₃)), 44.3, 44.2 (d, ${}^{2}J_{PC} = 3.9$ Hz, CH₂ (thiomorpholine-NCH₂), diastereomers), 38.4, 38.2 (C-2', diastereomers), 36.1, 36.1 (-<u>C</u>H(CH₃)₂), 27.3 (d, ${}^{3}J_{PC} = 5.9$ Hz, CH₂ (thiomorpholine-S<u>C</u>H), one of diastereomers), 27.3 (d, ${}^{3}J_{PC}$ = 4.8 Hz, CH₂ (thiomorpholine-S<u>C</u>H), one of diastereomers), 18.7, 18.7 (CH₃ (-CH(<u>C</u>H₃)₂, diastereomers); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 14.2 (¹*J*_{PH} = 652 Hz), 13.4 (¹*J*_{PH} = 659 Hz)

HRMS (ESI-TOF) m/z calcd for C₃₉H₄₆N₆O₈PS + [M+H]⁺, 789.2830; found 789.2831.

3'-O-t-Butyldiphenylsilyl-N⁴-isobutyryldeoxycytidine (5c)

Firstly, 5'-O-dimethoxytrityl- N^4 -isobutyryldeoxycytidine (6.00 g, 10 mmol) and imidazole (2.72 g, 40 mmol) were dissolved in dry DMF (50 mL). t-Butyldiphenylchlorosilane (5.14 mL, 20 mmol) was added to the mixture at rt. After the mixture was stirred for 1 h at rt, t-butyldiphenylchlorosilane (2.57 mL, 10 mmol) was added. The mixture was stirred for 30 min at rt. Thereafter, the reaction was quenched with MeOH (10 mL). The mixture was diluted with ethyl acetate (EtOAc) (100 mL) and washed with saturated aqueous solutions of NaHCO₃ (6×100 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (200 mL) and 6% dichloroacetic acid (DCA) solution in CH₂Cl₂ (200 mL) was added to the solution. After the mixture was stirred for 2 h at rt, MeOH (20 mL) was added to the mixture and the mixture was washed with saturated aqueous solutions of NaHCO₃ (3 \times 200 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on Yamazen UNIVERSAL Premium column (L size) using automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–10% MeOH in CHCl₃ to afford **5c** as a colorless foam (4.95 g, 9.23 mmol, 92%)

¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H, -N<u>H</u>CO-), 8.17 (d, *J* = 7.5 Hz, 1H, H-6), 7.63 (dd, *J* = 8.0, 1.3 Hz, 4H, Ar), 7.46–7.33 (m, 7H, H-5, Ar), 6.25 (t, *J* = 6.4 Hz, 1H, H-1'), 4.44 (dt, *J* = 5.9, 3.3 Hz, 1H, H-3'), 4.04 (q, *J* = 2.9 Hz, 1H, H-4'), 3.65 (d, *J* = 12.0 Hz, 1H, H-5'), 3.24 (dt, *J* = 12.0, 3.4 Hz, 1H, H-5'), 2.71–2.69 (br, 1H, 5'-OH), 2.68–2.63 (m, 1H, -C<u>H</u>(CH₃)₂), 2.57 (dd, *J* = 6.1, 3.5 Hz, 1H, H-2', diastereomers), 2.15 (t, *J* = 6.6 Hz, 1H, H-2', diastereomers), 1.19, 1.18 (d, *J* = 2.4 Hz, 6H, -CH(C<u>H₃)₂, rotamers</u>), 1.08 (s, 9H, -C(C<u>H₃)₃); ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 177.6 (-NH<u>C</u>O-),162.4 (C-4), 155.3 (C-2), 145.6 (C-6), 135.5, 135.5, 133.2, 132.9, 129.9, 129.8, 127.7 (Ar), 96.7 (C-5), 88.5 (C-4'), 88.1 (C-1'), 73.0 (C-3'), 61.5 (C-5'), 41.7 (C-2'), 36.2 (-<u>C</u>H(CH₃)₂), 26.7(-C(<u>C</u>H₃)₃); 19.0, 18.9 (-CH(<u>C</u>H₃)₂, rotamers), 18.9 (-<u>C</u>(CH₃)₃)</u>

HRMS (ESI-TOF) *m/z* calcd for C₂₉H₃₈N₃O₅Si⁺ [M+H]⁺, 536.2575; found 536.2573.

The synthesis of T_{PH}T (6tt) dimer by azeotropic manipulation

Firstly, *H*-phosphonamidate monomer **2t** (0.0254 g, 0.0375 mmol), **3t** (0.0260 g, 0.0375 mmol), or **4t** (0.0259 g, 0.0375 mmol) and a thymidine derivative **5t** (0.0120 g, 0.025 mmol) were dried by coevaporation with dry pyridine (6×1 mL). Afterward, the residue was dissolved in CDCl₃ (0.5 mL) and ³¹P NMR spectrum was recorded. The formation of **6tt** was confirmed by ³¹P NMR spectra (δ 9.2, 7.6 ppm, ¹*J*_{PH} = 715, 724 Hz) (Fig. S4–S6)

and mass spectrometry analysis (high-resolution mass spectroscopy (electrospray ionization-time-of-flight) (HRMS (ESI-TOF)) m/z calcd for C₅₇H₆₃N₄NaO₁₃Psi⁺ [M+Na]⁺, 1093.3791; found 1093.3817.).

The synthesis of $T_{PH}T$ (6tt) dimer under conditions of constant temperature, concentration, and pressure. (Table 2)

Firstly, 5'-*O*-dimethoxytritylthymidine 3'-morpholino *H*-phosphonamidate **3t** (0.0173 g, 0.025 mmol) and a thymidine derivative **5t** (0.0144 g, 0.030 mmol) were dissolved in dry pyridine- d_5 (0.125 or 0.50 mL) with MS4A (0.4 g). After the mixture was stirred for 1 or 2 h at 25 or 40 °C, the reaction mixture was transferred into an NMR sample tube (5 mm × 180 mm) and a spectrum was recorded. The formation of **6tt** was confirmed by ³¹P NMR spectra (δ 9.1, 7.6 ppm, ¹*J*_{PH} = 715, 724 Hz) (Fig. S7–S11)

Synthesis of dimers

T_{PSCE}T dimer (9tt)

Firstly, 5'-O-dimethoxytritylthymidine 3'-morpholino H-phosphonamidate 3t (0.0416 g, 0.060 mmol) and a thymidine derivative 5t (0.0192 g, 0.040 mmol) were dissolved in dry pyridine (0.40 mL) with MS4A (0.8 g). After the mixture was stirred for 2 h at 40 °C, a sulfurizing reagent (8) in pyridine (0.8 mL, 0.048 mmol) was added to the mixture. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed by repeated coevaporations with toluene. The residue was dissolved in CHCl₃ (2 mL) and 2% TFA solution in CHCl₃ (2 mL) was added. After the mixture was stirred for 10 min at rt, MeOH (2 mL) and CHCl₃ (30 mL) were successively added to the mixture, and the mixture was washed with a saturated aqueous solution of NaHCO₃ (3×20 mL). The aqueous layers were combined and back-extracted with $CHCl_3$ (1 × 30 mL) The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on Yamazen UNIVERSAL Premium column (M size) using automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–10% MeOH in CHCl₃ to afford 9tt as a colorless foam (0.0252 g, 0.030 mmol, 74%)

¹H NMR (400 MHz, CDCl₃) δ 9.62, 9.48, 9.46 (s, 2H, H-3, diastereomers), 7.66–7.63 (m, 4H, Ar), 7.51–7.39 (m, 7H, H-6 (5'-upstream), Ar), 7.18, 7.15 (d, J = 0.9 Hz, 1H, H-6 (3'-downstream), diastereomers), 6.34, 6.31 (t, J = 6.9 Hz, , 1H, H-1' (3'-downstream), diastereomers), 6.16 (t, J = 6.9 Hz, , 1H, H-1' (5'-upstream), one of diastereomers), 6.13 (t, J = 7.1 Hz, , 1H, H-1' (5'-upstream), one of diastereomers), 5.24–5.16 (m, 1H, H-3'

(5'-upstream)), 4.40–4.34 (m, 1H, H-3' (3'-downstream)), 4.15–3.70 (m, 6H, H-4', H-5'), 3.38 (br, 1H, 5'-OH), 3.12–2.92 (m, 2H, -SCH₂-), 2.89–2.68 (m, 2H, -CH₂CN), 2.54–2.28 (m, 3H, H-2'), 2.07-1.99 (m, 1H, H-2' (3'-downstream)), 1.90-1.83 (m, 6H, 5-CH₃), diastereomers), 1.09 (s, 9H, -C(CH₃)₃); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ164.1 (C-4 (3'-downstream)), 164.0, 163.9 (C-4 (5'-upstream), diastereomers), 150.5, 150.4 (C-2 (5'upstream), diastereomers), 150.3 (C-2 (3'-downstream)), 136.6, 136.4 (C-6 (5'-upstream), diastereomers), 136.0, 135.9 (C-6 (3'-downstream), diastereomers), 135.7, 135.7, 132.8, 132.6, 130.3, 130.2, 128.1, 128.0 (Ar), 117.4 (-CN), 111.4, 111.3 (C-5 (3'-downstream), diastereomers), 111.2 (C-5 (5'-upstream)), 86.1 (C-1' (5'-upstream)), 85.8 (d, ${}^{3}J_{PC} = 3.9$ Hz, C-4' (3'-downstream), one of diastereomers), 85.6 (C-1' (3'-downstream)), 85.4 (d, ${}^{3}J_{PC} = 5.8$ Hz, C-4' (3'-downstream), one of diastereomers), 84.8 (d, ${}^{3}J_{PC} = 8.7$ Hz, C-4' (5'-upstream), one of diastereomers), 84.7 (d, ${}^{3}J_{PC} = 7.7$ Hz, C-4' (5'-upstream), one of diastereomers), 78.9 (d, ${}^{2}J_{PC} = 6.7$ Hz, C-3' (5'-upstream) one of diastereomers), 78.5 (d, $^{2}J_{PC} = 4.8$ Hz, C-3' (5'-upstream) one of diastereomers), 72.8, 72.6 (C-3' (3'-downstream), diastereomers), 67.1 (d, ${}^{2}J_{PC} = 7.7$ Hz, C-5' (3'-downstream), one of diastereomers), 67.0 (d, ${}^{2}J_{PC} = 6.7$ Hz, C-5' (3'-downstream), one of diastereomers), 61.9, 61.7 (C-5' (5'upstream), diastereomers), 40.0, 39.9 (C-2' (3'-downstream), diastereomers), 38.4 (d, ³J_{PC} = 2.9 Hz, C-2' (5'-upstream), one of diastereomers), 38.3 (d, ${}^{3}J_{PC}$ = 5.8 Hz, C-2' (5'upstream), one of diastereomers), 26.8 (-C(CH₃)₃), 26.7, 26.4 (d, ${}^{2}J_{PC} = 3.9$ Hz, -SCH₂-, diastereomers), 19.8 (-<u>CH</u>₂CN), 19.0 (-<u>C</u>(CH₃)₃), 12.5, 12.4, 12.4 (5-<u>C</u>H₃, diastereomers); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 27.8, 27.3

HRMS (ESI-TOF) m/z calcd for C₃₉H₄₉N₅O₁₁PSSi⁺ [M+H]⁺, 854.2651; found 854.2652.

APSCEA dimer (9aa)

Firstly, 5'-O-dimethoxytrityl-N⁶-benzoyldeoxyadenosine 3'-thiomorpholino *H*-phosphonamidate **3a** (0.0484 g, 0.060 mmol) and a deoxyadenosine derivative **5a** (0.0484 g, 0.060 mmol) were dissolved in dry pyridine (0.40 mL) with MS4A (0.8 g). After the mixture was stirred for 2 h at 40 °C, a sulfurizing reagent (**8**) in pyridine (0.8 mL, 0.048 mmol) was added to the mixture. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed by repeated coevaporations with toluene. The residue was dissolved in CHCl₃ (2 mL), and 2% trifluoroacetic acid (TFA) solution in CHCl₃ (2 mL) was added. After the mixture was stirred for 10 min at rt, MeOH (2 mL) and CHCl₃ (30 mL) were successively added to the mixture, and the mixture was washed with saturated aqueous solutions of NaHCO₃ (3 × 20 mL). The aqueous layers were combined and back-extracted with CHCl₃ (1 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column

chromatography. Column chromatography was carried out on a Yamazen UNIVERSAL Premium column (M size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–10% MeOH in CHCl₃ to afford **9aa** as a colorless foam (0.0324 g, 0.030 mmol, 75%).

¹H NMR (400 MHz, CDCl₃) δ 9.23–9.17 (m, 2H (-CON<u>H</u>-)), 8.72-8.70 (m, 2H, H-2), 8.17–8.14 (m, 2H, H-8), 8.02–7.94 (m, 4H (Ar)), 7.71–7.69 (m, 4H (Ar)), 7.61 (t, J = 7.8 Hz, 1H (Ar)), 7.54–7.42 (m, 11H (Ar)), 6.55 (dd, J = 12.4 Hz, 5.9 Hz, 1H, H-1' (3'downstream)), 6.44-6.30 (m, 1H, H-1' (5'-upstream)), 5.9-5.8 (br, 1H (5'-OH)), 5.30-5.25 (m, 1H H-3' (5'-upstream)), 4.75-4.71 (m, 1H, H-3' (3'-downstream)), 4.28 (d, 2H, H-4'), 4.16-3.71 (m, 4H, H-5'), 3.22-2.90 (m, 3H, H-2' (5'-upstream), -SCH₂-), 2.77-2.48 (m, 5H, H-2', -CH₂CN)), 1.14 (s, 9H (-C(CH₃)₃); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 164.8, 164.5 (-CONH-, diastereomers), 152.5 (C-2 (3'-downstream)) 152.0 (C-2 (5'upstream)), 151.6 (C-4 (3'-downstream)), 150.5 (C-4 (5'-upstream)), 150.2 (C-6) 3'downstream)), 149.6 (C-6 (5'-upstream)), 142.7 (C-8 (5'-upstream)), 141.7, 141.6 (C-8 (3'-downstream), diastereomers), 135.7, 133.4, 133.2, 132.9, 132.8, 132.6, 130.3, 128.8, 128.7, 128.1, 128.0, 127.9 (Ar), 124.4 (C-5 (5'-upstream)), 123.6 (C-5 (3'-downstream)), 117.2 (-CN)), 87.6 (d, ${}^{3}J_{PC} = 2.9$ Hz, C-4' (3'-downstream), one of diastereomers), 87.3 (d, ${}^{3}J_{PC} = 4.8$ Hz, C-4' (3'-downstream), one of diastereomers), 87.1, 86.9 (C-1' (5'upstream), diastereomers), 85.5, 85.4, 85.4 (C-4' (5'-upstream), diastereomers), 84.8, 84.6 (C-1' (3'-downstream), diastereomers), 80.3 (d, ${}^{2}J_{PC} = 6.3$ Hz, C-3' (5'-upstream), one of diastereomers)), 80.2 (d, ${}^{2}J_{PC} = 5.9$ Hz, C-3' (5'-upstream), one of diastereomers)), 73.0, 72.9 (C-3' (3'-downstream), diastereomers), 66.8 (d, ${}^{2}J_{PC} = 5.8$ Hz, C-5' (3'-downstream)), 62.8 (C-5' (5'-upstream)), 40.0 (C-2' (5'-upstream)), 38.9 (C-2' (3'-downstream)), 26.8 (-C(CH₃)₃), 26.7, 26.5 (-SCH₂-, diastereomers), 19.7 (-CH₂CN)), 19.0 (-C(CH₃)₃); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 27.4, 26.5

HRMS (ESI-TOF) m/z calcd for $C_{53}H_{55}N_{11}O_9PSSi^+$ [M+H]⁺, 1080.3406; found 1080.3390.

C_{PSCE}C dimer (9cc)

Firstly, 5'-O-dimethoxytrityl- N^4 -benzoyldeoxycytidine 3'-thiomorpholino Hphosphonamidate diester **3c** (0.0449 g, 0.060 mmol) and a deoxycytidine derivative **5c** (0.0214 g, 0.040 mmol) were dissolved in dry pyridine (0.40 mL) with MS4A (0.8 g). After the mixture was stirred for 2 h at 40 °C, a sulfurizing reagent (**8**) in pyridine (0.8 mL, 0.048 mmol) was added to the mixture. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed by repeated coevaporations with toluene. The residue was dissolved in CHCl₃ (2 mL) and 2% TFA solution in CHCl₃ (2 mL) was added. After the mixture was stirred for 10 min at rt, MeOH (2 mL) and CHCl₃ (30 mL) were successively added to the mixture, and the mixture was washed with saturated aqueous solutions of NaHCO₃ (3×20 mL). The aqueous layers were combined and back-extracted with CHCl₃ (1×30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on a Yamazen UNIVERSAL Premium column (M size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–10% MeOH in CHCl₃ to afford **9cc** as a colorless foam (0.0288 g, 0.030 mmol, 75%)

¹H NMR (400 MHz, CDCl₃) δ 8.99–8.83 (m, 2H (-CONH-)), 8.25, 8.21 (d, J = 7.3 Hz, 1H, H-6 (5'-upstream), diastereomers), 7.93 (d, J = 7.3 Hz, 1H, H-6 (3'-downstream), one of diastereomers), 7.89 (d, J = 7.8 Hz, 1H, H-6 (3'-downstream), one of diastereomers), 7.66–7.62 (m, 4H (Ar)), 7.50–7.38 (m, 8H, H-5, Ar), 6.28 (t, J = 5.5 Hz, 1H, H-1' (3'downstream)), 6.16 (t, J = 5.5 Hz, 1H, H-1' (5'-upstream)), 5.31–5.22 (m, 1H, H-3' (5'upstream)), 4.46-4.36 (m, 1H, H-3' (3'-downstream)), 4.23-4.13 (m, 2H, H-4'), 4.09-3.90 (m, 2H, H-5'), 3.86–3.60 (m, 2H, H-5'), 3.07–2.97 (m, 2H, -SCH₂-), 2.80–2.59 (m, 6H, H-2', -CH2CN, -COCH(CH3)2), 2.45-2.36 (m, 1H, H-2' (5'-upstream)), 2.00-1.92 (m, 1H, H-2' (3'-downstream)), 1.21, 1.18 (d, J = 6.9 Hz, 12H, -COCH(CH₃)₂), 1.08 (s, 9H, -C(CH₃)₃); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 177.5, 177.4, 177.2, 177.2 (-CONH-, diastereomers, rotamers), 162.6 (C-4 (5'-upstream)), 162.5 (C-4 (3'-downstream)), 155.3 (C-2 (5'-upstream)), 155.2, 155.2 (C-2 (3'-downstream), diastereomers), 145.4 (C-6 (5'upstream)), 144.4, 144.3 (C-6 (3'-downstream), diastereomers), 135.7, 135.6, 135.5, 132.9, 132.9, 132.5, 130.3, 130.2, 128.1, 128.0 (Ar), 117.4, 117.3 (-CN, diastereomers), 96.8 (C-5 (5'-upstream)), 96.6 (C-5 (3'-downstream)), 88.0 (C-1'), 86.5 (d, ${}^{3}J_{PC} = 3.9$ Hz, C-4' (5'-upstream), one of diastereomers), 86.4 (d, ${}^{3}J_{PC} = 5.8$ Hz, C-4' (5'-upstream), one of diastereomers), 85.6, 85.4 (d, ${}^{3}J_{PC} = 7.7$ Hz, C-4' (3'-downstream), diastereomers), 78.7, 78.4 (d, ${}^{2}J_{PC} = 5.8$ Hz, C-3' (5'-upstream), diastereomers), 72.7, 72.5 (C-3' (3'downstream), diastereomers), 66.5 (d, ${}^{2}J_{PC} = 7.7$ Hz, C-5' (3'-downstream)), 61.5, 61.4 (C-5' (5'-upstream), diastereomers), 41.6, 41.3 (C-2' (3'-downstream), diastereomers), 39.8, 39.6 (C-2' (5'-upstream), diastereomers), 36.6, 36.5 (-COCH(CH₃)₂), 26.8 (- $C(\underline{CH}_3)_3$, 26.6 (d, ${}^2J_{PC} = 3.9 \text{ Hz} - S\underline{CH}_2$ -), 19.8 (- \underline{CH}_2CN), 19.0 (- $\underline{C}(CH_3)_3$), 18.9 (-COCH(<u>C</u>H₃)₂); ³¹P {¹H}NMR (162 MHz, CDCl₃) δ 27.8, 27.2

HRMS (ESI-TOF) *m/z* calcd for C₄₅H₅₉N₇O₁₁PSSi⁺ [M+H]⁺, 964.3495; found 964.3484.

G_{PSCE}G dimer (9gg)

Firstly, 5'-O-dimethoxytrityl-N²-isobutyryldeoxyguanosine 3'-thiomorpholino H-

phosphonamidate diester **3g** (0.0473 g, 0.060 mmol) and a deoxyguanosine derivative **5g** (0.0230 g, 0.040 mmol) were dissolved in dry pyridine (0.40 mL) with MS4A (0.8 g). After the mixture was stirred for 2 h at 40 °C, a sulfurizing reagent (**8**) in pyridine (0.8 mL, 0.048 mmol) was added to the mixture. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed by repeated coevaporations with toluene. The residue was dissolved in CHCl₃ (2 mL) and 2% TFA solution in CHCl₃ (2 mL) was added. After the mixture was stirred for 10 min at rt, MeOH (2 mL) and CHCl₃ (30 mL) were successively added to the mixture, and the mixture was washed with saturated aqueous solutions of NaHCO₃ (3 × 20 mL). The aqueous layers were combined and back-extracted with CHCl₃ (1 × 30 mL) The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Column chromatography was carried out on Yamazen UNIVERSAL Premium column (M size) using automated flash chromatography system W-prep 2XY (Yamazen Corporation), which was performed with a linear gradient of 0%–10% MeOH in CHCl₃ to afford **9gg** as a colorless foam (0.0326 g, 0.031 mmol, 78%)

¹H NMR (400 MHz, CDCl₃) δ12.4–12.2 (m, 2H (1), diastereomers, rotamers), 10.9, 10.6 (s, 1H (-NHCO-), diastereomers), 10.0, 9.69 (s, 1H (-NHCO-), diastereomers), 7.96, 7.94 (s, 1H, H-8 (5'-upstream), diastereomers), 7.71–7.64 (m, 5H, H-8 (3'-downstream, Ar)), 7.53-7.40 (m, 6H (Ar)), 6.29-6.23 (m, 1H, H-1' (3'-downstream)), 6.10 (dd, J = 8.6, 6.4Hz, 0.3 H, H-1' (5'-upstream), one of diastereomers), 5.76 (dd J = 8.9, 5.7 Hz, 0.7H, H-1' (5'-upstream), one of diastereomers), 5.18 (t, J = 6.9 Hz, 0.3H, H-3' (5'-upstream), one of diastereomers), 5.02 (t, J = 5.5 Hz, 0.7H, H-3' (5'-upstream), one of diastereomers), 4.57 (m, 0.3H, H-3' (3'-downstream), one of diastereomers), 4.45 (d, J = 4.6 Hz, 0.7H, H-3' (3'-downstream), one of diastereomers), 4.24-4.09 (m, 3.3H, H-4', H-5', diastereomers), 3.90-3.83 (m, 0.7H, H-5' (5'-upstream), one of diastereomers), 3.75-3.69 (m, 1.3H, H-5', diastereomers), 3.59 (d, J = 11.0 Hz, 0.7H, H-5' (5'-upstream), one of diastereomers), 3.14-2.61 (m, 8H, H-2', -COCH(CH₃)₂, -SCH₂-, -CH₂CN), diastereomers), 2.49-2.44 (m, 1H, H-2'), 2.30-2.26 (m, 1H, H-2'), 1.32-1.10 (m, 21H, - $COCH(CH_3)_2$, $-C(CH_3)_3$, diastereomers, rotamers); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ180.7, 180.2, 180.0, 179.4 (-NHCO-, diastereomers, rotamers), 156.5, 155.8, 155.6, 155.5 (C-6, diastereomers, rotamers), 148.6, 148.4, 148.3, 148.3 (C-4, diastereomers, rotamers), 148.2, 148.1, 147.7, 147.2 (C-2, diastereomers, rotamers), 139.8 (C-8 (5'upstream)), 138.2, 132.8, 138.0, 137.8 (C-8 (3'-downstream), diastereomers, rotamers), 135.7, 135.6, 132.8, 132.6, 132.6, 130.4, 130.3, 128.1, 128.0 (Ar), 123.0 (C-5 (3'downstream)), 121.7, 121.3, 121.2 (C-5 (5'-upstream), diastereomers), 117.4, 117.1 (-CN, diastereomers), 87.0 (C-1' (3'-downstream)), 86.3 (d, ${}^{3}J_{PC} = 4.8$ Hz, C-4', one of diastereomers), 86.2 (d, ${}^{3}J_{PC} = 6.7$ Hz, C-4', one of diastereomers), 85.4 (d, ${}^{3}J_{PC} = 7.7$ Hz, C-4', one of diastereomers), 85.1 (d, ${}^{3}J_{PC} = 8.7$ Hz, C-4', one of diastereomers), 84.6, 84.6 (C-1', diastereomers), 80.6, 80.2 (d, ${}^{2}J_{PC} = 6.7$ Hz, C-3' (5'-upstream), diastereomers), 73.6, 72.8 (C-3' (3'-downstream), diastereomers), 67.7, 66.4 (d, ${}^{2}J_{PC} = 6.7$ Hz, C-5' (3'-downstream), diastereomers), 67.7, 66.4 (d, ${}^{2}J_{PC} = 6.7$ Hz, C-5' (3'-downstream), diastereomers), 62.1, 61.9 (C-5' (5'-upstream), diastereomers), 38.6 (C-2'), 36.2, 36.1, 35.9, 35.9 (-CH(CH_3)_2, diastereomers, rotamers), 26.8 (-C(CH_3)_3), 26.4, 26.0 (d, ${}^{2}J_{PC} = 3.9$ Hz, -SCH₂-, diastereomers) 19.7 (d, ${}^{3}J_{PC} = 2.9$ Hz, -CH₂CN), 19.2, 19.2 (-CH(CH_3)_2, diastereomers), 19.1 (-C(CH_3)_3), 19.0, 18.9, 18.9, 18.6, 18.5 (-CH(CH_3)_2, diastereomers, rotamers); 31P {1H}NMR (162 MHz, CDCl_3) \delta 27.9, 27.5

HRMS (ESI-TOF) m/z calcd for C₄₇H₅₉N₁₁O₁₁PSSi⁺ [M+H]⁺, 1044.3618; found 1044.3599.

T_{Ps}T_{Ps}T trimer (10)

Thymidine 5'-O-dimethoxytritylthymidine 3'-thiomorpholino H-phosphonamidate 3t (0.0208 g, 0.030 mmol) and a thymidine derivative 5t (0.0096 g, 0.02 mmol) were dissolved in dry pyridine (0.20 mL) with MS4A (0.4 g). After the mixture was stirred for 2 h at 40°C, the sulfurizing reagent (8) in pyridine (0.4 mL, 0.024 mmol) was added. The mixture was stirred for 1 h at rt, and dimethyl phosphonate (0.011 mL, 0.12 mmol) was added. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed from the mixture by repeated coevaporation with toluene. The residue was dissolved in CHCl₃ (1 mL), and 2% TFA solution in CHCl₃ (1 mL) was added. After the mixture was stirred for 10 min at rt, MeOH (1 mL) and CHCl₃ (30 mL) were successively added, and the mixture was washed with $H_2O(20 \text{ mL})$ and a saturated aqueous solution of NaHCO₃ (5 × 30 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was used for the next reaction without further purification. The residue was dried by repeated coevaporation with dry pyridine and dissolved in dry pyridine (0.2 mL) with MS4A (0.4 g). Afterward, 5'-O-dimethoxytritylthymidine 3'thiomorpholino H-phosphonamidate 3t (0.0208 g, 0.030 mmol) was added. After the mixture was stirred for 2 h at 40°C, the sulfurizing reagent (8) in pyridine (0.4 mL, 0.024 mmol) was added. The mixture was stirred for 1 h at rt. Thereafter, pyridine was removed from the mixture by repeated coevaporation with toluene. The residue was dissolved in CHCl₃ (1 mL), and 2% TFA solution in CHCl₃ (1 mL) was added to the mixture. After the mixture was stirred for 10 min at rt, MeOH (1 mL) and CHCl₃ (20 mL) were successively added, and the mixture was washed with a saturated aqueous solution of NaHCO₃ (3×20 mL). The aqueous layers were combined and back-extracted with CHCl₃ $(1 \times 30 \text{ mL})$. The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was dissolved in dry MeCN (0.32 mL).

BSA (0.04 mL, 0.16 mmol) and DBU (0.04 mL, 0.26 mmol) were added to the mixture. After the mixture was stirred for 10 min at rt, it was diluted with CHCl₃ (20 mL) and washed with 1.0 M triethylammonium bicarbonate aqueous solutions (pH 8, 3×20 mL). The aqueous layers were combined and back-extracted with CHCl₃ (1×30 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was dissolved in dry THF (0.9 mL). Further, 1 M TBAF in THF solution (0.3 mL, 0.3 mmol) was added to the mixture. After the mixture was stirred for 2 h at rt, EtOH (3 mL) and 3% (w/w) NH₃ aqueous solution (15 mL) were successively added to the solution, and the mixture was washed with diethyl ether (2×20 mL). The organic layers were combined and back-extracted with a 3% (w/w) NH₃ aqueous solution (10 mL). The aqueous layers were combined and concentrated under reduced pressure to afford crude T_{PS}T_{PS}T. The crude T_{PS}T_{PS}T was analyzed by RP-HPLC, which was performed with a linear gradient of 0%-30% MeCN in 0.1 M TEAA buffer (pH 7.0) over 40 min at 50°C at a rate of 0.5 mL min⁻¹ using μ Bondasphere 5 μ m C18, 100 Å, 19 × 150 mm² (Waters). The crude T_{PS}T_{PS}T was purified by silica gel column chromatography. Column chromatography was carried out on the Yamazen UNIVERSAL Premium ODS column (M size) using the automated flash chromatography system W-prep 2XY (Yamazen Corporation). The chromatography was performed with a linear gradient of 0%-30% MeCN in 0.1 M TEAA buffer (pH 7.0) for the first time and 0%-30% MeCN in H₂O for the second time to afford T_{PS}T_{PS}T as a terabutylammoniun salt and a colorless foam (8.7 mg, 6.4 µmol, 32%).

¹H NMR (400 MHz, D₂O) δ 7.80–7.64 (m, 3H, H-6), 6.32–6.24 (m, 3H, H-1'), 5.12-5.02 (m, 2H, H-3'), 4.58 (m, 1H, H-3'), 4.40 (d, *J* = 8.2 Hz, 1H, H-4'), 4.22–4.16 (m, 6H, H-4', H-5'), 3.84–3.79 (m, 2H, H-5'), 3.20 (t, *J* = 4.4 Hz, 16H, -NCH₂-), 2.54–2.35 (m, 6H, H-2'), 1.95–1.87 (m, 9H, 5-CH₃)), 1.65 (br, 16H, -NCH₂CH₂-), 1.38–1.34 (m, 16H, -CH₂CH₂CH₃), 0.99–0.92 (m, 24H, -CH₂CH₃); ¹³C {¹H} NMR (100 MHz, D₂O) δ 168.0 (C-4), 153.0, 152.9 (C-2), 137.9, 137.6 (C-6), 112.3, 112.2, 112.1 (C-5), 86.1, 85.6, 84.9, 84.6 (C-1', C-4'), 76.8, 76.4, 75.8, 71.5 (C-3'), 66.1, 65.8, 61.6 (C-5'), 58.7 (-NCH₂-), 39.5, 38.4, 38.2 (C-2'), 23.7 (-NCH₂CH₂-), 19.8 (-CH₂CH₂CH₃), 13.4 (-CH₂CH₂CH₃), 12.5, 12.5, 12.3 (5-CH₃); ³¹P {¹H}NMR (162 MHz, D₂O) δ 56.1, 55.9, 55.8

HRMS (ESI-TOF) m/z calcd for $C_{30}H_{38}N_6O_{17}P_2S_2^{2-}$ [M-2H]²⁻, 440.0611; found 440.0609.

References for SI

1. K. Sato, H. Imai, T. Shuto, R. I. Hara and T. Wada, *The Journal of Organic Chemistry*, 2019, **84**, 15032–15041.

2. ³¹P NMR analysis of the synthesis of 3'-*H*-phosphonamidate monomers (Table 1)

Table 1, entry 1

Fig. S1 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **2t** after extraction.

Fig. S2 31 P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **3t** after extraction.

Fig. S3 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **4t** after extraction.

- 0.18 1.00 0.17 0.16 DMTrO. 0.15 DMTrO. 0.14 O=F 0.13 0.70 O: 0.12 ÓTBDPS 0.11 6tt 0.59 0.1 0.09 0.08 0.07 0.06 DMTrO 0.05 0.04 O=P abundance 0 0.01 0.02 0.03 0 ÓН 85,84m 8.41m 42.02m ANALANA MALANA A LANAH MANAHA KYMAN WAY with the manufacture of the ward and we all the state of 40.0 30.0 20.0 10.0 -10.0 -20.0 0 13.098 -0.254 9.201 7.594 4.004 -9.027 X : parts per Million : Phosphorus31
- 3. ³¹P NMR analysis of the condensation of a 3'-*H*-phosphonamidate monomer 2t, 3t, or 4t with a thymidine derivative 5t during azeotropic manipulation.

Fig. S4 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture after azeotropic manipulation. (*H*-phosphonamidate monomer **2t**)

Fig. S5 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture after azeotropic manipulation. (*H*-phosphonamidate monomer **3t**)

Fig. S6 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture after azeotropic manipulation. (*H*-phosphonamidate monomer **4t**)

4. ³¹P NMR analysis of the condensation of a 3'-*H*-phosphonamidate monomer 3t with a thymidine derivative 5t (Table 2)

Table 2, entry 1

Fig. S7 ³¹P NMR spectrum (pyridine-*d*₅, 162 MHz) of the reaction mixture (reaction conditions: 1 h at rt and 0.05 M).

Fig. S8 ³¹P NMR spectrum (pyridine-*d*₅, 162 MHz) of the reaction mixture (reaction conditions:1 h at 25 °C and 0.20 M).

Fig. S9 ³¹P NMR spectrum (pyridine-*d*₅, 162 MHz) of the reaction mixture (reaction conditions:1 h at 40 °C and 0.05 M).

Table 2, entry 4

Fig. S10 ³¹P NMR spectrum (pyridine-*d*₅, 162 MHz) of the reaction mixture (reaction conditions:1 h at 40 °C and 0.20 M).

Table 2, entry 5

Fig. S11 ³¹P NMR spectrum (pyridine-*d*₅, 162 MHz) of the reaction mixture (reaction conditions: 2 h at 40 °C and 0.20 M).

5. ³¹P NMR analysis of the synthesis of *S*-cyanoethyl phosphorothioate diester (T_{PSCE}T) 9

Table 3, entry1

Fig. S12 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **9tt** after extraction.

Fig. S13 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **9tt** after extraction. In the sulfurization reaction, BSA was added. The *H*-phosphonamidate monomer **3t** was also converted to the phosphorothioamidate monoester derivative which was not removed by extraction after detritylation.

6. ³¹P NMR analysis of the synthesis of T_{PS}T_{PS}T trimer 10 (Scheme 5)

A) ${}^{31}P$ NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of **9tt** after extraction.

B) ${}^{31}P$ NMR spectrum (CDCl₃, 162 MHz) of the crude mixture of $T_{PSCE}T_{PSCE}T$ after extraction.

Fig. S14 ³¹P NMR spectrum (CDCl₃, 162 MHz) of the crude mixture after extraction. A) **9tt**, B) T_{PSCE}T_{PSCE}T

7. ¹H, ¹³C, ³¹P NMR spectra of isolated compounds

¹H-NMR (600 MHz, CDCl₃)

¹³C{H}-NMR (151 MHz, CDCl₃)

S35

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹H-NMR (400 MHz, CDCl₃)

¹³C{H}-NMR (151 MHz, CDCl₃)

³¹P{¹H} NMR (162 MHz, CDCl₃)

HMBC (CDCl₃)

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹H-NMR (400 MHz, CDCl₃)

¹³C{H}-NMR (100 MHz, CDCl₃)

HMBC (CDCl₃)

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹H-NMR (400 MHz, CDCl₃)

HMQC (CDCl₃)

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹H-NMR (600 MHz, CDCl₃)

¹³C{H}-NMR (151MHz, CDCl₃)

¹³C{H}-NMR (100 MHz, CDCl₃)

HMBC

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹³C{H}-NMR (100 MHz, CDCl₃)

HMQC

HMBC

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹³C{H}-NMR (100 MHz, CDCl₃)

HMQC

HMBC

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹³C{H}-NMR (100 MHz, CDCl₃)

HMBC

³¹P{¹H} NMR (162 MHz, CDCl₃)

¹H-NMR (400 MHz, D₂O)

HMBC

$^{31}P{^{1}H} NMR (162 MHz, D_2O)$

