Biocatalytic stereoselective synthesis of pyrrolidine-2,3-diones containing all-carbon quaternary stereocenters

Mansour Shahedi ^a, Niloofar Omidi ^a, Zohreh Habibi ^{a*}, Maryam Yousefi ^{b**}, Jesper Brask ^c, Behrouz Notash ^d, Mehdi Mohammadi ^e

^a Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran

^b Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

° Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Copenhagen, Denmark

^d Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran

^e Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

Corresponding Authors Email: z_habibi@sbu.ac.ir; m.yousefi@avicenna.ac.ir

CONTENTS

General remarks	S2
Synthesis of starting materials	S2
Synthesis of products	S3
Synthesis of $3h$ by $K_3Fe(CN)_6$	S4
Characterization data of starting materials and products	
Copies of ¹ H NMR, ¹³ C NMR and Mass spectra of the products	S15
Crystallographic data (X-Ray)	S67

General Remarks:

All reagents are commercially available and used without further purification. Solvents used for extraction and purification were distilled before use. *Myceliophthora thermophila* laccase (Novozym 51003) was a generous gift from Novozymes (Copenhagen, Denmark) and Laccase from *Trametes versicolor* Purchased from Sigma. Reactions were monitored by thin-layer chromatography (TLC) using silica gel 60 F_{254} . All organic synthesis products were purified by preparative thin-layer chromatography (TLC), (CAMAG ® instrument, in-house prepared 20 × 20 cm silica plates) and characterized by NMR spectroscopy. ¹H and ¹³C NMR spectra were recorded at 300 (75) MHz on a Bruker Avance spectrometer using DMSO-*d6* and CDCl₃ as solvents. The chemical shifts were referenced to the solvent signals at δ H/C 2.49/39.50 ppm (DMSO-*d6*) and δ H/C 7.26/77 ppm (CDCl₃) relative to TMS. Melting points were determined with a Thermo Scientific 9100 melting point apparatus and are uncorrected. Mass spectra were recorded with an Agilent Technologies (HP) 5973 mass spectrometer.

Synthesis of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones (1a-1m): Pyrrolidinones **1a-1m** were prepared according to literature¹: A mixture of dimethyl acetylenedicarboxylate (DMAD) (1 mmol) and different amines (1 mmol) in ethanol (2 mL) was stirred at room temperature (25 °C) for 5 min. After that, benzaldehyde derivatives (1 mmol) and citric acid (200 mg) were added to the reaction mixture which was sonicated for 1.5 h. After the reaction was completed, the resulting precipitate was filtered and washed with cold ethanol. Selected pyrrolidinones (**1a, 1f, 1g, 1h**) were characterized by ¹H and ¹³C NMR spectroscopy to confirm their structure and purity.

Synthesis of 4-phenyl-pyrrolidine-2,3-diones (3a-3o): A 100 mL round bottom flask with a magnetic stirrer bar was charged with a solution of 3-hydroxy-1,5-dihydro-2*H*-pyrrol-2-one 1 (0.1 mmol) and catechol 2 (0.15 mmol) in acetonitrile (8 mL). Phosphate buffer (10 mM, pH 8.0, 16 mL) and *Myceliophthora thermophila* laccase (Novozyme 51003) (1 mL) (1000 U) was added, and the mixture was stirred under air. The reaction was monitored with TLC until 1 was completely

consumed (4.5 h). Then the reaction mixture was diluted with EtOAc, the layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \text{ mL}$). The combined organic phases were dried with anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure. The reaction mixture was purified by preparative TLC (eluting with *n*-hexane:ethyl acetate, 5:1-2:1), provided target compound 3.

Synthesis of 3c [methyl 3-(3,4-dihydroxyphenyl)-4,5-dioxo-1,2-diphenylpyrrolidine-3carboxylate] by K₃Fe(CN)₆

A 100 mL round bottom flask with a magnetic stirrer bar was charged with a solution of methyl 4-hydroxy-5-oxo-1,2-diphenyl-2,5-dihydro-1*H*-pyrrole-3-carboxylate **1c** (1 mmol) and catechol **2a** (1.5 mmol) in acetonitrile (8 mL). $K_3Fe(CN)_6$ (2 mmol) was dissolved in phosphate buffer (10 mM, pH 8.0, 16 mL) and added dropwise to the mixture under air. The reaction progress was detected with TLC until methyl 4-hydroxy-5-oxo-1,2-diphenyl-2,5-dihydro-1H-pyrrole-3-carboxylate was completely consumed. Then the reaction mixture was diluted with EtOAc, the layers were separated, and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic phases were dried with anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure. The reaction mixture was purified by preparative TLC (eluting with *n*-hexane:ethyl acetate, 5:1-2:1), provided target compound **3c**.

Characterization data

Methyl 4-hydroxy-5-oxo-1,2-diphenyl-2,5-dihydro-1H-pyrrole-3-carboxylate (1a)^{2, 3}, Solid (white), melting point: 181-183 °C, isolated yield (94%), ¹H NMR (300 MHz, DMSO- d_6) δ 11.66 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.39 – 7.05 (m, 8H), 6.08 (s, 1H), 3.58 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 171.8, 164.4, 162.9, 153.0, 136.9, 136.7, 129.1, 128.7, 128.4, 128.1, 125.8, 122.9, 112.4, 61.0, 51.6.

Methyl4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3-
carboxylate (1f)⁴, Solid (white), melting point: 188-190 °C, isolated yield (91%),¹H NMR (300
MHz, Chloroform-d) δ 9.14 (s, 1H), 7.21 (m, 3H), 7.11 (m, 3H), 6.94 (m, 1H), 6.85 – 6.74 (m,
2H), 5.99 (d, 1H), 3.73 (d, 6H).¹³C NMR (75 MHz, Chloroform-d) δ 165.1, 163.2, 157.8, 156.4,
136.9, 132.9, 130.7, 129.0, 128.2, 126.6, 125.1, 124.7, 114.3, 113.2, 57.7, 55.3, 52.0.

Methyl 4-hydroxy-2-(2-methoxyphenyl)-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3carboxylate (1g)⁵, Solid (white), melting point: 170-172 °C, isolated yield (82%),¹H NMR (300 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 7.9 Hz, 2H), 7.22 – 7.14 (m, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.82 (t, *J* = 7.8 Hz, 2H), 6.31 (s, 1H), 3.88 (s, 3H), 3.72 (s, 3H).¹³C NMR (75 MHz, Chloroform-*d*) δ 165.2, 163.4, 157.8, 156.1, 136.2, 129.7, 129.2, 128.8, 125.7, 122.7, 122.0, 120.9, 114.0, 111.4, 77.5, 77.1, 76.6, 55.9, 52.0.

Methyl 4-hydroxy-2-(2-nitrophenyl)-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3-carboxylate (1h), solid Melting point: 192-194 °C, ¹H NMR (300 MHz, DMSO- d_6) δ 11.88 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.34 (q, J = 9.2, 8.5 Hz, 3H), 7.13 (t, J = 7.4 Hz, 1H), 6.86 (s, 1H), 3.54 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 164.86, 162.74, 153.91, 150.60, 136.69, 134.20, 131.50, 129.76, 129.44, 127.78, 126.09, 125.22, 122.41, 111.77, 54.93, 51.78. Anal. Calcd for C₁₈H₁₄N₂O₆: C 61.02, H 3.98, N 7.91; Found: C 61.17, H 4.12, N 7.81.

Methyl2-(4-chlorophenyl)-4-hydroxy-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-3-
carboxylate (11)⁴, solid Melting point: 165-167 °C, ¹H NMR (300 MHz, DMSO- d_6) δ 11.95 (s,
1H), 7.58 (d, J = 7.9 Hz, 2H), 7.41 – 7.20 (m, 6H), 7.10 (t, J = 7.4 Hz, 1H), 6.13 (s, 1H), 3.60 (s,
3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 164.34, 162.89, 153.28, 136.50, 136.16, 132.90, 130.10,
129.20, 128.77, 125.94, 122.97, 111.93, 60.24, 51.63.

Methyl 3-(3,4-dihydroxyphenyl)-4,5-dioxo-1,2-diphenylpyrrolidine-3-carboxylate (3a), Solid (yellow), Melting point: 115-117 °C, isolated yield (53%, 22 mg). ¹H NMR (300 MHz, DMSO- d_6) δ 9.37 (s, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.28 (m, 6H), 6.85 (m, 3H), 6.53 (s, 1H), 3.13 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 191.5, 167.7, 157.5, 146.7, 146.3, 136.9, 135.7, 129.6, 129.4, 129.1, 128.1, 127.4, 123.5, 122.1, 118.6, 116.4, 115.2, 64.6, 64.1, 52.5. MS (EI, 70 eV): m/z = 417 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 69.06, H 4.59, N 3.36; Found: C 69.62, H 4.41, N 3.21.

Methyl 2-(2-chlorophenyl)-3-(3,4-dihydroxyphenyl)-4,5-dioxo-1-phenylpyrrolidine-3carboxylate (3b), Solid (yellow), Melting point: 186-188 °C, isolated yield (51%, 23 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.31 (s, 2H), 7.86 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.52 – 7.40 (m, 2H), 7.32 (m, 3H), 7.24 – 7.14 (m, 1H), 6.92 (s, 1H), 6.84 (s, 2H), 6.67 (s, 1H), 3.15 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.0, 167.2, 157.1, 146.9, 146.7, 136.6, 134.2, 132.9, 131.3, 130.3, 130.0, 128.4, 128.0, 123.6, 122.2, 122.0, 118.0, 116.8, 64.0, 61.9, 52.6. MS (EI, 70 eV): m/z = 451 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 63.79; H 4.02; N, 3.10, Found: C 63.77, H 4.12, N 3.15.

Methyl 3-(3,4-dihydroxyphenyl)-4,5-dioxo-1-phenyl-2-(o-tolyl)pyrrolidine-3-carboxylate (3c), Solid (yellow), Melting point: 123-125 °C, isolated yield (81%, 35 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.38 (s, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.27 (t, J = 7.3 Hz, 1H), 7.22 – 7.11 (m, 3H), 6.92 (m, 2H), 6.89 – 6.80 (m, 2H), 6.43 (s, 1H), 3.07 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.7, 167.7, 157.3, 146.8, 146.5, 137.5, 136.9, 133.6, 131.2, 129.8, 129.2, 127.7, 126.9, 126.2, 124.0, 122.4, 118.0, 116.6, 114.8, 64.3, 61.6, 52.5, 19.7. MS (EI, 70 eV): m/z = 431 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 69.60; H 4.91; N 3.25; Found: C 69.63, H 4.82, N 3.33.

Methyl 3-(3,4-dihydroxyphenyl)-4,5-dioxo-1-phenyl-2-(p-tolyl)pyrrolidine-3-carboxylate (3d), Solid (yellow), Melting point: 119-121 °C, isolated yield (63%, 26 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.34 (s, 2H), 7.83 (d, J = 8.1 Hz, 2H), 7.41 (t, J = 7.8 Hz, 2H), 7.24 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 9.6 Hz, 4H), 6.84 (d, J = 9.2 Hz, 3H), 6.47 (s, 1H), 3.16 (s, 3H), 2.23 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.6, 167.8, 146.7, 146.3, 137.0, 133.0, 129.6, 127.4, 126.9, 123.6, 122.0, 116.4, 115.2, 64.8, 63.2, 52.4, 24.1. MS (EI, 70 eV): m/z = 431 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 69.60; H 4.91; N 3.25; Found: C 69.62, H 4.83, N 3.31.

Methyl 3-(3,4-dihydroxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)-4,5-dioxo-1phenylpyrrolidine-3-carboxylate (3e), Solid (yellow), Melting point: 133-135 °C, isolated yield (87%, 40 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.27 (s, 3H), 7.82 (d, J = 8.1 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.26 (t, J = 7.4 Hz, 1H), 6.94 – 6.77 (m, 4H), 6.69 (d, J = 8.2 Hz, 1H), 6.57 (d, J = 8.3 Hz, 1H), 6.37 (s, 1H), 3.69 (s, 3H), 3.23 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 191.7, 167.6, 157.4, 147.8, 147.4, 146.6, 146.3, 137.1, 129.6, 127.3, 126.2, 123.7, 122.1, 118.5, 116.4, 116.0, 115.1, 64.7, 64.1, 56.1, 52.6. MS (EI, 70 eV): m/z = 463 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 64.79; H 4.57; N 3.02; Found: C 64.72, H 4.51, N 3.01.

Methyl 3-(3,4-dihydroxyphenyl)-2-(4-methoxyphenyl)-4,5-dioxo-1-phenylpyrrolidine-3carboxylate (3f), Solid (yellow), Melting point: 152-154 °C, isolated yield (72%, 31 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.28 (d, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.23 (m, 3H), 6.94 – 6.81 (m, 5H), 6.48 (s, 1H), 3.68 (s, 3H), 3.20 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.6, 167.7, 159.9, 157.4, 146.7, 146.4, 137.0, 129.6, 127.3, 123.6, 122.1, 116.5, 114.4, 67.7, 63.8, 55.5, 52.6. MS (EI, 70 eV): m/z = 447 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 67.11; H 4.73; N 3.13; Found: C 67.23, H 4.83, N 3.23.

Methyl 3-(3,4-dihydroxyphenyl)-2-(2-methoxyphenyl)-4,5-dioxo-1-phenylpyrrolidine-3carboxylate (3g), Solid (yellow), Melting point: 161-163 °C, isolated yield (67%, 29 mg). ¹H NMR (300 MHz, DMSO-d₆) δ 9.34 (s, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.24 (dt, J = 14.8, 7.5 Hz, 2H), 6.92 (dd, J = 18.3, 7.8 Hz, 2H), 6.82 (d, J = 6.2 Hz, 3H), 6.22 (s, 1H), 3.56 (s, 2H), 3.11 (s, 3H). ¹³C NMR (75 MHz, DMSO-d₆) δ 187.8, 167.5, 158.6, 157.9, 146.6, 146.5, 137.3, 133.3, 131.1, 129.5, 126.9, 124.4, 123.0, 122.1, 120.8, 117.8, 116.6, 114.4, 112.5, 64.9, 61.1, 55.1, 52.1. MS (EI, 70 eV): m/z = 447 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 67.11; H 4.73; N 3.13; Found: C 67.22 H 4.81, N 3.21.

Methyl 3-(3,4-dihydroxyphenyl)-2-(2-nitrophenyl)-4,5-dioxo-1-phenylpyrrolidine-3carboxylate (3h), Solid (brown), Melting point: 179-181 °C, isolated yield (47%, 21 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.45 (s, 2H), 8.09 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 3H), 7.30 (t, J = 7.4 Hz, 1H), 7.24 (s, 1H), 6.84 (d, J = 8.5 Hz, 2H), 6.75 (dd, J = 8.4, 2.5 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 190.6, 167.2, 157.4, 149.4, 146.9, 146.6, 136.5, 135.0, 131.2, 130.1, 130.0, 128.6, 128.0, 126.3, 123.4, 122.2, 118.0, 116.9, 114.3, 64.6, 59.8, 53.0. MS (EI, 70 eV): m/z = 462 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 62.34; H 3.92; N 6.06; Found: C 62.52, H 3.71, N 6.11.

Methyl 3-(3,4-dihydroxy-5-methylphenyl)-4,5-dioxo-1-phenyl-2-(o-tolyl)pyrrolidine-3carboxylate (3i), Solid (yellow), Melting point: 165-167 °C, isolated yield (91%, 40 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.19 (s, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.33 – 7.22 (m, 1H), 7.17 (d, J = 5.0 Hz, 3H), 6.93 (d, J = 7.0 Hz, 1H), 6.80 (s, 1H), 6.75 (s, 1H), 6.41 (s, 1H), 3.07 (s, 3H), 2.38 (s, 3H), 2.13 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.6, 167.7, 157.4, 146.0, 144.8, 137.6, 136.9, 133.7, 131.2, 129.8, 129.2, 127.7, 126.9, 126.2, 125.9, 123.1, 122.4, 119.7, 112.0, 64.2, 61.7, 52.5, 19.8, 16.8. MS (EI, 70 eV): m/z = 445 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 70.10; H 5.20; N 3.14; Found: C 70.12, H 5.26, N 3.44.

Methyl 3-(3,4-dihydroxy-5-methylphenyl)-2-(4-methoxyphenyl)-4,5-dioxo-1phenylpyrrolidine-3-carboxylate (3j), Solid (yellow), Melting point: 143-145 °C, isolated yield (42%, 19 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.59 (s, 1H), 8.67 (s, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.46 – 7.34 (m, 2H), 7.18 (m, 4H), 6.97 – 6.82 (m, 2H), 6.76 (d, J = 5.5 Hz, 2H), 6.46 (s, 1H), 3.68 (s, 3H), 3.18 (s, 2H), 2.12 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 191.5, 167.7, 159.8, 157.5, 145.7, 144.6, 137.0, 129.6, 127.3, 127.0, 125.7, 124.1, 122.8, 122.2, 114.4, 112.4, 64.6, 63.7, 55.5, 52.5, 16.8. MS (EI, 70 eV): m/z = 461 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 67.67; H 5.02; N 3.04; Found: C 67.62, H 5.11, N 3.56.

Methyl 1-benzyl-3-(3,4-dihydroxyphenyl)-4,5-dioxo-2-(o-tolyl)pyrrolidine-3-carboxylate (3k), Solid (yellow), isolated yield (74%, 32 mg), Melting point: 196-198 °C, ¹H NMR (300 MHz, DMSO- d_6) δ 7.52 – 7.32 (m, 3H), 7.27 (m, 3H), 7.12 (d, J = 7.5 Hz, 2H), 6.96 – 6.78 (m, 1H), 6.55 (d, J = 6.6 Hz, 2H), 6.18 (d, J = 8.4 Hz, 1H), 5.44 (s, 1H), 5.18 (d, J = 14.4 Hz, 1H), 3.86 (d, J = 14.3 Hz, 1H), 3.00 (s, 3H), 2.05 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 192.5, 167.7, 158.2, 146.5, 137.8, 134.2, 132.6, 131.2, 129.5, 129.4, 129.0, 126.9, 126.2, 124.2, 116.8, 116.0, 115.0, 63.9, 59.8, 52.4, 46.9, 19.3. MS (EI, 70 eV): m/z = 445 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 70.10; H 5.20; N 3.14; Found: C 69.93, H 5.21, N 3.31.

Methyl 3-(3,4-dihydroxyphenyl)-1-(4-methoxyphenyl)-4,5-dioxo-2-phenylpyrrolidine-3carboxylate (3l), Solid (yellow), Melting point:141-143 °C, isolated yield (75%, 33 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.34 (s, 2H), 7.76 (d, J = 8.9 Hz, 2H), 7.30 (d, J = 7.5 Hz, 5H), 7.00 – 6.92 (m, 2H), 6.87 (q, J = 7.5, 5.8 Hz, 3H), 6.46 (s, 1H), 3.72 (s, 3H), 3.12 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 191.6, 167.7, 158.2, 157.2, 146.7, 146.4, 135.8, 129.9, 129.4, 129.0,128.2, 123.8, 118.5, 116.4, 115.2, 114.7, 64.5, 60.2, 55.7, 52.5. MS (EI, 70 eV): m/z = 447 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 67.11; H 4.73; N 3.13; Found: C 67.32, H 4.21, N 3.51.

Methyl 3-(3,4-dihydroxyphenyl)-1-(4-methoxyphenyl)-4,5-dioxo-2-(o-tolyl)pyrrolidine-3carboxylate (3m), Solid (yellow), Melting point: 151-153 °C, isolated yield (94%. 43 mg), ¹H NMR (300 MHz, DMSO- d_6) δ 9.41 (s, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.19 (s, 3H), 6.92 (m, 6H), 6.38 (s, 1H), 3.74 (s, 3H), 3.08 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 191.8, 167.8, 158.3, 157.1, 146.9, 146.7, 137.6, 133.7, 131.2, 129.7, 129.1, 126.8, 126.2, 124.0, 117.9, 116.6, 114.8, 114.7, 64.2, 61.9, 55.7, 52.4, 19.7. MS (EI, 70 eV): m/z = 461 [M⁺], Anal. Calcd for C₂₄H₁₉NO₆: C 67.67; H 5.02; N 3.04; Found: C 67.62, H 5.01, N 3.11.

References:

- 1. H. Ahankar, A. Ramazani, K. Ślepokura, T. Lis and S. W. Joo, *Green Chem.*, 2016, **18**, 3582-3593.
- 2. R. Sarkar and C. Mukhopadhyay, *Tetrahedron Lett.*, 2013, **54**, 3706-3711.
- 3. J. Sun, Q. Wu, E. Y. Xia and C. G. Yan, *Eur. J. Org. Chem.*, 2011.
- 4. A. Dutta, M. A. Rohman, R. Nongrum, A. Thongni, S. Mitra and R. Nongkhlaw, *New J. Chem.*, 2021, **45**, 8136-8148.
- 5. A. Moshtaghi Zonouz, I. Eskandari and B. Notash, *Synth. Commun.*, 2015, **45**, 2115-2121.

¹H NMR, ¹³C NMR and mass spectra

¹³CNMR (75 MHz, DMSO- d_6) of compound **1a**

¹HNMR (300 MHz, Chloroform-*d*) of compound **1f**

¹³CNMR (75 MHz, Chloroform-*d*) of compound **1f**

¹H NMR (300 MHz, Chloroform-d) of compound **1g**

 $^{13}\text{CNMR}$ (75 MHz, Chloroform-*d*) of compound 1g

¹HNMR (300 MHz, DMSO- d_6) of compound **1h**

¹³CNMR (75 MHz, DMSO- d_6) of compound **1h**

¹HNMR (300 MHz, DMSO- d_6) of compound **11**

¹³CNMR (75 MHz, DMSO- d_6) of compound **11**

¹HNMR (300 MHz, DMSO- d_6) of compound **3a**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3a**

MW: 417

¹HNMR (300 MHz, DMSO- d_6) of compound **3b**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3b**

Mass spectra of compound **3b**

¹HNMR (300 MHz, DMSO- d_6) of compound **3c** with K₃Fe(CN)₆

¹HNMR (300 MHz, DMSO- d_6) of compound **3**c

¹³CNMR (75 MHz, DMSO- d_6) of compound **3**c

Mass spectra of compound 3c

¹³CNMR (75 MHz, DMSO- d_6) of compound **3d**

Mass spectra of compound $\mathbf{3d}$

¹HNMR (300 MHz, DMSO- d_6) of compound **3e**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3e**

Mass spectra of compound 3e

Mass spectra of compound 3e

¹HNMR (300 MHz, DMSO- d_6) of compound **3f**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3f**

MW: 447

Mass spectra of compound 3f

¹HNMR (300 MHz, DMSO- d_6) of compound **3g**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3g**

Mass spectra of compound 3g

MW: 447

¹HNMR (300 MHz, DMSO- d_6) of compound **3h**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3h**

MW: 462

Mass spectra of compound **3h**

¹HNMR (300 MHz, DMSO-*d*₆) of compound **3i**

¹³CNMR (75 MHz, DMSO-*d*₆) of compound **3i**

MW: 445

Mass spectra of compound 3i

¹HNMR (300 MHz, DMSO-*d*₆) of compound **3**j

¹³CNMR (75 MHz, DMSO- d_6) of compound **3**j

Mass spectra of compound 3j

¹HNMR (300 MHz, DMSO- d_6) of compound **3**k

¹³CNMR (75 MHz, DMSO- d_6) of compound **3**k

Mass spectra of compound $\mathbf{3k}$

¹HNMR (300 MHz, DMSO-*d*₆) of compound **3**l

¹³CNMR (75 MHz, DMSO- d_6) of compound **3**I

Mass spectra of compound 31

¹HNMR (300 MHz, DMSO- d_6) of compound **3m**

¹³CNMR (75 MHz, DMSO- d_6) of compound **3m**

Mass spectra of compound 3m

Crystallographic data (X-Ray)

The X-ray diffraction measurements were made with a STOE IPDS-2T diffractometer with graphite-monochromated MoKa radiation. Cell constants and an orientation matrix for data collection were obtained by least-squares refinement of diffraction data from 5628 unique reflection for **3h**. Data were collected at a temperature of 298(2) K to a maximum 2 θ value of 58.48 and in a series of ω scans in 1° oscillations and integrated using the Stoe X-AREA¹ software package. The data were corrected for Lorentz and Polarizing effects. The structure was solved by using SHELXS. The Data reduction and structure refinement was carried out with SHELXL using the X-STEP32 crystallographic software package.² Complete crystallographic data for compound an **3h** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 2213845. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The single crystal of compound **3h** was prepared from its solution in EtOAc by slow evaporation of the solvent.

1. X-AREA: Program for the Acquisition and Analysis of Data, version 1.30, Darmstadt, Germany, 2005.

2. X-STEP32 Version 1.07b, Crystallographic Package; Stoe & Cie GmbH: Darmstadt, Germany, 2000.

ORTEP diagram of **3h**. Thermal ellipsoids are at 30% probability level. (CCDC No. 2213845)

Empirical formula	$C_{24}H_{18}N_2O_8$
Formula weight	462.40
Temperature	298 K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, C_2/c
Unit cell dimensions	a=29.297(6) Å alpha=90 deg.
	b=8.3200(17) Å beta=115.25(3) deg.
	c=18.920(4) Å gamma=90 deg.
Volume	4171.1(18) Å ³
Z, Calculated density	8, 1.473 Mg/m ³
Absorption coefficient	0.112 mm ⁻¹
F(000)	1920.0
Crystal size	0.4 x 0.3 x 0.3 mm
Theta range for data collection	2.22 to 29.24 deg.
Limiting indices	-32<=h<=40, -11<=k<=11, -25<=l<=22
Reflections collected / unique	22356 / 5628 [R(int) = 0.1263]
Completeness to theta = 29.24	99.1 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5628 / 0 / 314
Goodness-of-fit on F ²	1.025
Final R indices [I>2sigma(I)]	R1 = 0.0647, wR2 = 0.1332
R indices (all data)	R1 = 0.1129, wR2 = 0.1501
Largest diff. peak and hole	0.302 and -0.265 e. Å ⁻³

Table S2. Crystal data and structure refinement for 3h