Electronic Supplementary Information

Phenylalanine Conjugated Supramolecular Hydrogel Developed from Mafenide and Flurbiprofen Multidrug for Biological Applications

Utsab Manna*, Rajdip Roy, Abhishek Dutta, Nabanita Roy

Address: School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata - 700032, West Bengal, India E-mail: <u>utsabmanna1991@gmail.com</u>, <u>csum2487@iacs.res.in</u>, *Corresponding author

Table of Content

Synthetic routes for the preparation of multidrug salts	2
¹ H-NMR and ¹³ C-NMR spectra of acid bioconjugate and multidrug salts	3-10
ESI-Mass spectometric data of flurbiprofen bioconjugates	11
FT-IR spectra of acid bioconjugate and multidrug salts	12-14
Gelation table and tan δ value table of all gels under study	15
Amplitude sweep plots of all gels and T _{gel} vs MGC plots of selected gels	16
Optical images of all the gels attained in different solvents	17
Crystallographic data table of FLR·AMN multidrug	18
Hydrogen bond data table and ORTEP-plot of FLR·AMN salt	19
Packing diagram from SXRD and PXRD patterns of FLR·AMN	20
Biological studies of multidrug salts FLR·PHE·MAF	21-22

Scheme S1: General synthetic routes for the preparation of various multidrug salts studied herein.

Figure S1: ¹H-NMR spectra of FLR·PHE acid in MeOD.

Figure S2: ¹³C-NMR spectra of FLR·PHE acid in MeOD.

Figure S3: ¹H-NMR spectra of FLR·ALA acid in MeOD.

Figure S4: ¹³C-NMR spectra of FLR·ALA acid in MeOD.

Figure S5: ¹H-NMR spectra of multidrug salt FLR·PHE·MAF in MeOD.

Figure S6: ¹³C-NMR spectra of multidrug salt FLR·PHE·MAF in MeOD.

Figure S7: ¹H-NMR spectra of multidrug salt FLR·PHE·AMN in MeOD.

Figure S8: ¹³C-NMR spectra of multidrug salt FLR·PHE·AMN in MeOD.

Figure S9: ¹H-NMR spectra of multidrug salt FLR·ALA·MAF in MeOD.

Figure S10: ¹³C-NMR spectra of multidrug salt FLR·ALA·MAF in MeOD.

Figure S11: ¹H-NMR spectra of multidrug salt FLR·ALA·AMN in MeOD.

Figure S12: ¹³C-NMR spectra of multidrug salt FLR·ALA·AMN in MeOD.

Figure S13: ¹H-NMR spectra of multidrug salt FLR·MAF in MeOD.

Figure S14: ¹³C-NMR spectra of multidrug salt FLR·MAF in MeOD.

Figure S15: ¹H-NMR spectra of multidrug salt FLR·AMN in MeOD.

Figure S16: ¹³C-NMR spectra of multidrug salt FLR·AMN in MeOD.

Figure S17: ESI-MS spectra of **FLR·PHE** acid. (MW = 390.4350) HRMS, ESI (CH₃OH) m/z (100%): calculated for [(C₂₄H₂₂FNO₃)][M+Na]⁺: 414.15; found: 414.1480.

Figure S18: ESI-MS spectra of FLR·ALA acid. (MW = 314.3370) HRMS, ESI (CH₃OH) m/z (100%): calculated for [(C₁₈H₁₈FNO₃)][M+Na]⁺: 338.12; found: 338.1168.

Figure S19: FT-IR spectra of FLR·PHE acid. Charcteristic >C=O_{COOH} peak at 1724.24 cm⁻¹.

Figure S20: FT-IR spectra of **FLR·PHE·MAF** multidrug salt with the presence of charcteristic $>C=O_{COO}$ peak at 1641.31 cm⁻¹ followed by the absense of $>C=O_{COOH}$ peak.

Figure S21: FT-IR spectra of **FLR·PHE·AMN** multidrug salt with the presence of charcteristic >C= O_{COO} peak at 1637.45 cm⁻¹ followed by the absense of >C= O_{COOH} peak.

Figure S22: FT-IR spectra of FLR·ALA acid. Charcteristic >C=O_{COOH} peak at 1710.74 cm⁻¹.

Figure S23: FT-IR spectra of **FLR·ALA·MAF** multidrug salt with the presence of charcteristic >C= O_{COO} peak at 1641.31 cm⁻¹ followed by the absense of >C= O_{COOH} peak.

Figure S24: FT-IR spectra of **FLR·ALA·AMN** multidrug salt with the presence of charcteristic >C= O_{COO} peak at 1641.31 cm⁻¹ followed by the absense of >C= O_{COOH} peak.

Figure S25: FT-IR spectra of FLR acid. Charcteristic >C=O_{COOH} peak at 1701.10 cm⁻¹.

Figure S26: FT-IR spectra of **FLR·MAF** multidrug salt with the presence of charcteristic $>C=O_{COO-}$ peak at 1622.02 cm⁻¹ followed by the absense of $>C=O_{COOH}$ peak.

Figure S27: FT-IR spectra of FLR·AMN multidrug salt with the presence of charcteristic $>C=O_{COO-}$ peak at 1623.95 cm⁻¹ followed by the absense of $>C=O_{COOH}$ peak.

Gelation Solvents	FLR-PHE-MAF	FLR-PHE- AMN	FLR-ALA- MAF	FLR-ALA- AMN	FLR- MAF	FLR-AMN
Bromobenzene	WG	GP	GP	GP	GP	GEL
Chlorobenzene	WG	GP	WG	INS	GP	WG
1,2- Dichlorobenzene	WG	CF	GP	GP	GP	WG
Toluene	GEL	WG	INS	INS	GP	GP
o-Xylene	WG	GEL	WG	WG	GP	WG
<i>m</i> - Xylene	WG	GEL	WG	GP	GP	GP
<i>p</i> - Xylene	WG	GEL	WG	GP	GP	WG
Mesitylene	GP	WG	INS	WG	GP	WG
Nitrobenzene	GP	GEL	GP	WG	GP	GEL
Methyl salicylate	WG	GEL (2.5 ^a , 94-95°C ^b)	PS	GP	WG/CF	GEL
Water	GEL (3.5, 80- 82°C ^b)	WG	INS	INS	INS	INS

Table S1: Gelation data table of multidrug salts studied herein:

Note: ^aMGC, ^bT_{Gel}, WG: weak gel, GP: gelatinous precipitate, CF: crystalline fibre, INS: insoluble, PS: partially soluble.

Gels	G' (KPa)	G" (KPa)	tanð
FLR·PHE·MAF-HG	5.95	1.63	0.27
FLR·PHE·MAF-TOL	1.28	0.40	0.31
FLR·PHE·AMN-MS	90.32	12.05	0.13
FLR·PHE·AMN-NB	6.83	1.65	0.24
FLR·PHE·AMN-OXY	8.92	1.19	0.13
FLR·PHE·AMN-MXY	35.25	4.96	0.14
FLR·PHE·AMN-PXY	8.81	1.45	0.16
FLR·AMN-MS	0.73	0.40	0.23
FLR·AMN-NB	5.29	1.48	0.28
FLR·AMN-BB	3.41	1.01	0.30

<u>Table S2: $tan\delta$ value table of hydrogel and all the organogels of multidrug salts under study:</u>

Figure S28: Strain sweep or amplitude sweep plots of all the gels under study (a) FLR-PHE-MAF-HG, (b) FLR-PHE-MAF-TOL, (c) FLR-PHE-AMN-MS, (d) FLR-PHE-AMN-NB, (e) FLR-PHE-AMN-OXY, (f) FLR-PHE-AMN-MXY, (g) FLR-PHE-AMN-PXY, (h) FLR AMN-MS, (i) FLR-AMN-NB and (j) FLR-AMN-BB.

Figure S29: T_{gel} vs [gelator] plot of FLR-PHE-MAF-HG and FLR-PHE-AMN-MS.

Figure S30: Optical images of pure hydrogel and toluene gel of FLR·PHE·MAF multidrug.

Figure S31: Optical images of MS and other organogels of FLR·PHE·AMN multidrug.

Figure S32: Optical images of MS and other organogels of FLR·AMN multic	rug.
Table S3: Crystallographic data parameters for the single crystal of FLR·AM	N salt:

Parameters	FLR·AMN			
CCDC No.	2192760			
Empirical formula	C ₂₅ H ₃₀ FNO ₂			
Formula weight	395.50			
Temperature/K	145.15			
Crystal system	orthorhombic			
Space group	P212121			
a/Å	6.3673(13)			
b/Å	16.941(3)			
c/Å	19.629(4)			
α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	2117.3(7)			
Z	4			
$\rho_{calc}g/cm^3$	1.241			
µ/mm ⁻¹	0.084			
F(000)	848.0			
Crystal size/mm ³	$0.12 \times 0.03 \times 0.02$			
Radiation	MoK α ($\lambda = 0.71073$)			
20 range for data collection/°	4.796 to 49.994			
Index ranges	$\begin{array}{c} -7 \leq h \leq 7, -20 \leq k \\ \leq 19, -23 \leq l \leq 23 \end{array}$			
Reflections collected	19709			
Independent reflections	$3739 [R_{int} = 0.1071, R_{sigma} = 0.0825]$			
Data/restraints/para meters	3739/1/261			
Goodness-of-fit on F ²	1.198			
Final R indexes $[I \ge 2\sigma(I)]$	$\boxed{\begin{array}{c} R_1 = 0.1653, wR_2 = \\ 0.3936 \end{array}}$			
Final R indexes [all data]	$R_1 = 0.2053, WR_2 = 0.4309$			
Largest diff. peak/hole / e Å ⁻³	1.30/-0.55			

Figure S33: ORTEP-plot of FLR·AMN multidrug salt bearing H-atoms participating hydrogen bond network formation.

Bisamide	DHarra	<i>d</i> (D-H)	<i>d</i> (H•••A)	<i>d</i> (D•••A)	∠D–H•••A	Symmetry
	₽-п⊷А	(Å)	(Å)	(Å)	(°)	operator
	N1-H1A•••O1A	0.91	1.90	2.782(14)	163	-1/2+x,3/2-y,2-z
	N1-H1A•••O1B	0.91	2.05	2.880 (2)	151	-1/2+x,3/2-y,2-z
	N1-H1B•••O2A	0.91	1.91	2.793 (15)	162	1/2+x,3/2-y,2-z
FLR·AMN	N1-H1B•••O2B	0.91	1.83	2.686(19)	155	1/2+x,3/2-y,2-z
	N1-H1C•••O2A	0.91	1.90	2.782(14)	164	-1+x,y,z
	N1-H1C•••O1B	0.91	1.86	2.750 (2)	165	-1+x,y,z

Table S4: Hydrogen-bond data table for the single crystal of FLR·AMN salt:

Figure S34: Packing diagram of **FLR·AMN** multidrug salt as viewed along crystallographic *b* axes.

Figure S35: Comparative X-ray powder diffraction patterns of the gelator **FLR·AMN**; (a) simulated-bulk, (b) simulated-xerogel and (c) xerogel-bulk

Figure S36: Antibacterial zone inhibition assay different components of multidrug hydrogelator salt FLR·PHE·MAF studied herein against *E. coli* and *S. aureus* bacteria.

Figure S37: Antibacterial activity (turbidity assay at OD_{600}) of multidrug hydrogelator salt **FLR·PHE·MAF** against (a) *E. coli* and (b) *S. aureus* bacteria; and antibacterial activity (INT assay at OD_{480}) of multidrug hydrogelator salt **FLR·PHE·MAF** against (c) *E. coli* and (d) *S. aureus*. Data are represented considering mean \pm SD where *P < 0.05, **P < 0.01, ***P < 0.001, and ns represents not significant.

Figure S38: Optical images showing the activity of multidrug hydrogelator salt **FLR·PHE·MAF** (a) in haemolysis study to check cytocompatibility in living systems and (b) INT assay at different concentration of the multidrug to determine the MIC range against two bacteria.