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1. General considerations:
All the catalytic reactions were conducted under nitrogen atmosphere by 

using standard Schlenk technique. The solvents and chemicals were 

purchased from Aldrich and Chemtronica in Sweden. All glassware’s 

dried overnight at 120°C and if needed flame dried further. Column 

chromatography was performed on silica gel (Carlo Erba, 60Å). Thin 

layer chromatography was performed on a silica gel precoated on 

aluminum foils with fluorescence indicator (254 nm). Preparative thin 

layer chromatography was performed on plates available at Aldrich 

(Analtech, UV254 2020 cm, 500 micron).  Yields refer to isolated 

compounds and 1H NMR determined their purity. 

Nuclear magnetic resonance (NMR) spectroscopy was performed at 400 

MHz (1H NMR), 101 MHz (13C NMR), and 376 MHz (19F NMR) on 

Bruker Ascend 400 instrument. Chemical shifts () are provided in ppm 

and spectra referred to non-deuterated solvent signal.  

Mass spectra (HRMS) were obtained from Lund University Kemi 

Centrum Mass Spectrometry facility. Instrument: Waters XEVO-G2 

QTOF. ESI+: Capillary voltage3 kV, Cone voltage 35V, Ext 4, Source 

Temp 120, Des Temp 300, Cone gas 50, Des gas 400. Continuum 

resolution mode, m/z 100-1200, manual lock mass correction by Leucine 

Enkephalin (m/z 556.2771). 

Electrochemical reactions were carried out in undivided electrochemical 

cells (50 mL) using pre-dried glassware. RVC electrodes were obtained 

from SGL carbon, Wiesbaden, Germany and used with the following 

dimensions: (30 mm  5 mm). Platinum electrodes (99.9 %) were 
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obtained from ChemPur Karlsruhe, Germany and used with the following 

dimensions: (10 mm  6 mm).  Ni foam electrodes were obtained from 

RECEMAT BV, The Netherlands and used with the following 

dimensions (30 mm  6 mm). Electrocatalysis was conducted using 

GAMRY instruments Reference 600 & 600 plus potentiostat in constant 

current mode.

Substituted pyrazoles 1 were prepared according to the reported 

methods.1 Alkyne 2a, 4g-4k was commercially available and used as 

received. Alkynes 4a-f were synthesized according to the reported 

methods.2 

2. Description of electrochemical setup

Figure S1: Glassware setup for electrochemical reactions
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Figure S3: Final setup for reactions
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Figure S2: Arrangement of RVC and Ni electrodes

Figure S4: Electrochemical station with GAMRY 600 plus potentiostat



  

Figure S4: Electrochemical station with GAMRY 600 Plus potentiostat

  

Figure S5: Electrochemical station with GAMRY 600 potentiostat
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4. E-factor calculation
To evaluate the efficacy of this green methodology for the alkyne annulation with 

pyrazole, we undertook a study to calculate the E-factor associated with this 

reaction and found the total amount of 18.97, which is quite good, factor in 

comparison to the conventional methods.

Total amount of reactants: 0.5 g + 0.57 g + 0.0673 g + 0.68 g + 9.849 g = 11.663 g
Amount of final product: 0.584 g
Amount of waste: (11.663-0.584) g = 11.079 g
E-factor = Amount of waste/Amount of product = 11.079/0.584 = 18.97

5. Cyclic voltammetry studies
Cyclic voltammetry were recorded with a Gamry potentiostat at room temperature. A 

Ni foam plate was used as counter electrode, a RVC electrode was used as the 

working electrode, and Ag wire electrode was used as the reference. The 

measurements were carried out at a scan rate of 100 mV/s. 
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Figure S7: Cyclic voltammetry at 100 mV/s: nBu4NPF6 (100 mM in MeCN), 

concentration of substrates (KOAc 100 mM), Cp*RhCl22 catalyst - 5 mM, 2-phenyl 

pyrazole – 10 mM, diphenylacetylene – 10 mM.
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6. Copies of Spectra
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Compound 3a, 1H NMR, CDCl3, 400 MHz
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Compound 3a, 13C NMR, CDCl3, 101 MHz



HRMS spectra of 3a
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Compound 3b, 1H NMR, CDCl3, 400 MHz
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Compound 3b, 13C NMR, CDCl3, 101 MHz



HRMS spectra of 3b
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15

Compound 3c, 1H NMR, CDCl3, 400 MHz  
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Compound 3c, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 3c
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18

Compound 3d, 1H NMR, CDCl3, 400 MHz
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Compound 3d, 13C NMR, CDCl3, 101 MHz



HRMS spectra of 3d
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21

Compound 3e, 1H NMR, CDCl3, 400 MHz  
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Compound 3e, 13C NMR, CDCl3, 101 MHz  
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Compound 3e, 19F NMR, CDCl3, 375 MHz  



HRMS spectra of 3e
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25

Compound 3f, 1H NMR, CDCl3, 400 MHz  
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Compound 3f, 13C NMR, CDCl3, 101 MHz  
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Compound 3f, 19C NMR, CDCl3, 101 MHz  



HRMS spectra of 3f
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29

Compound 3g, 1H NMR, CDCl3, 400 MHz  
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Compound 3g, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 3g
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32

Compound 3h, 1H NMR, CDCl3, 400 MHz  
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Compound 3h, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 3h
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35

Compound 3i, 1H NMR, CDCl3, 400 MHz
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Compound 3i, 13C NMR, CDCl3, 101 MHZ  



HRMS spectra of 3i
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38

Compound 3J, 1H NMR, CDCl3, 400 MHz 
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Compound 3J, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 3j
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41

Compound 3K+3K’, 1H NMR, CDCl3, 400 MHZ  
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Compound 3K+3K’, 13C NMR, CDCl3, 101 MHZ  



HRMS spectra of 3K + 3K’
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44

Compound 5a, 1H NMR, CDCl3, 400 MHz  
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Compound 5a, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5a
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47

Compound 5b, 1H NMR, CDCl3, 400 MHz 
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Compound 5b, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5b

49



50

Compound 5c, 1H NMR, CDCl3, 400 MHz  
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Compound 5c, 13C NMR, CDCl3, 101 MHz  
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Compound 5c, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5c
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54

Compound 5d, 1H NMR, CDCl3, 400 MHz  
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Compound 5d, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5d
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57

Compound 5e, 1H NMR, CDCl3, 400 MHz  
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Compound 5e, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5e
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60

Compound 5f, 1H NMR, CDCl3, 400 MHz  
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Compound 5f, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5f
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63

Compound 5h, 1H NMR, CDCl3, 400 MHz  
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Compound 5h, 13C NMR, CDCl3, 101 MHZ  



HRMS spectra of 5h
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66

Compound 5i, 1H NMR, CDCl3, 400 MHz  
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Compound 5i, 13C NMR, CDCl3, 101 MHz  



68

Compound 5i, DEPT135, CDCl3 



HRMS spectra of 5i
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70

Compound 5j, 1H NMR, CDCl3, 400 MHz  
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Compound 5j, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5j
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73

Compound 5k, 1H NMR, CDCl3, 400 MHZ  
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Compound 5k, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5k
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76

Compound 5l, 1H NMR, CDCl3, 400 MHz  
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Compound 5l, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5l
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79

Compound 5l’, 1H NMR, CDCl3, 400 MHz  
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Compound 5l’, 13C NMR, CDCl3, 101 MHZ  



HRMS spectra of 5l’
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82

Compound 5m, 1H NMR, CDCl3, 400 MHz  
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Compound 5m, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5m
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85

Compound 5n, 1H NMR, CDCl3, 400 MHz  
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Compound 5n, 13C NMR, CDCl3, 101 MHz  



HRMS spectra of 5n
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