Supporting Information

Content

1. General Information 2-2
2. General procedure for the synthesis of hydrazinylthiazole 2-2
3. Gram scale synthesis of hydrazinylthiazole 2-2
4. Mechanistic studies 2-9
5. Theoretical studies 9-19
6. Biological studies 18-19
7. Spectroscopic data of compounds 19-24
8. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR 25-54
9. Crystallographic experimental data 55-59

General information: All of the solvents and reagents used for the synthesis of hydrazinyl thiazole are purchased from commercial sources and has been used without any purification. Wipro 9W green LED is used as light source with wavelength range 400-700 nm. The distance from the light source to the reaction vessel is $\sim 6-8 \mathrm{~cm}$. Reaction has been performed in the oven dried borosilicate glasswares. Silica gel with mesh size 100-200 has been used for column chromatography. NMR has been recorded at $400 / 300 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and for ${ }^{13} \mathrm{C} 100 / 75 \mathrm{MHz}$ operating frequency in DMSO- $d 6, \mathrm{CDCl}_{3}$, where Tetramethylsilane(TMS) present as an internal standard. Chemical shift (δ) value reported in the NMR spectra in ppm. Coupling constant (J) value were given in Hertz (Hz). The term $\mathrm{m}, \mathrm{q}, \mathrm{t}, \mathrm{d}$, s referred to multiplet, quartet, triplet, doublet, singlet respectively. Exact mass (HRMS) were recorded on a high resolution mass spectrometer using electrospray ionization (ESI) techniques.

General procedure for the synthesis of hydrazinylthiazole: A mixture of carbonyl compound (1 mmol), thiosemicarbazide (1 mmol), phenacyl bromide (1 mmol) in ethanol : water mixture $(1: 2,5 \mathrm{~mL})$ stirred for 60 minutes under 9 W green LED irradiation at room temperature. Progress of the reaction was monitored by the thin layer chromatography (TLC). After completion of the reaction, the reaction mixture was worked up with water and extracted with ethyl acetate, thrice. Then the organic portion dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated and the pure product was separated by column chromatography. Formation of the product confirmed by ${ }^{1} \mathrm{H}$ and, ${ }^{13} \mathrm{C}$ NMR techniques.

Gram Scale Synthesis of hydrazinylthiazole: A mixture of p-dimethylaminobenzaldehyde (1a, 6.71 mmol), thiosemicarbazide ($2,6.71 \mathrm{mmol}$), p-nitrophenacyl bromide ($\mathbf{3 a}, 6.71 \mathrm{mmol}$) in ethanol: water mixture ($1: 2,10 \mathrm{~mL}$) stirred for 90 minutes under 9 W green LED irradiation at room temperature. Progress of the reaction was monitored by the thin layer chromatography (TLC). After completion of the reaction, the reaction mixture was worked up with water and extracted with ethyl acetate, thrice. Then the organic portion dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated and the pure product was separated by column chromatography. The isolated yield of the desired product $\mathbf{4 a}$ was found to be 87%.

Mechanistic Study:

(a) UV-Vis experiment:The UV-visible experiments were performed on Shimadzu UV1900i spectrophotometer with a quartz cuvette of 1.0 cm path length.At first, all the reacting components, i.e., p-dimethylaminobenzaldehyde (1a), thiosemicarbazide (2), p nitrophenacyl bromide (3a) were examined individually for their UV-Vis spectrum at concentration of $5 \times 10^{-4} \mathrm{M}$ in ethanol. From the absorption plot it was found that except thiosemicarbazide (2), rest of the components poorly absorbed in the visible region. After that binary mixtures of the reacting components(i.e., $\mathbf{1 a + 2}, \mathbf{2}+\mathbf{3 a}$, and $\mathbf{1 a} \mathbf{+ 3 a}$) were examined at the same concentration as previous. This time it was observed that mixture of $\mathbf{1 a + 2}$ and $\mathbf{2 + 3 a}$ showed a bathochromic shift with respect to their individual components.Finally, when the mixture of all the components $(\mathbf{1 a + 2 + 3 a})$ was investigated, further bathochromic shift was observed, with a hump around 600 nm . The bathochromic shifts in binary mixture and further bathochromic shift along with a shoulder in case of
all three components suggests the formation of ternary EDA complex formation between $\mathbf{1 a}, \mathbf{2}$, and 3a. This assumption is further supported by appearance of yellow coloration immediate after mixing all the components.

Figure S1:UV-Visible absorption spectra of different reacting components and their mixtures.
(b) Stoichiometry of the EDA complex in solution: To determine the stoichiometry of the ternary EDA complex formed between 1a, 2, and 3a a Job's plot was constructed. ${ }^{1}$ For this purpose, we measured the absorption at 450 nm of ethanol solution of 1a-3a (1:1) and 2 having a constant total concentration of 0.02 M , but different donor/acceptor ratios. All the absorption spectra were recorded in 1 cm path quartz cuvettes using Hitachi U2910 UV-Vis spectrophotometer. The difference in absorbance values are plotted against mole fraction of $\mathbf{2}$. The maximum absorbance was detected at 50% mole fraction of 2 suggesting 1:1 mixture of (1a-3a) and 2, indicating that this is the stoichiometry of the ternary EDA complex.

Figure S2: Job's plot for interaction between 1a-3a and 2.
(c) Determination of the association constant (KEDA): The association constant of the ternary EDA complex formed between 1a, 2, and 3a was determined spectrophotometrically in ethanol, employing the Benesi-Hildebrand methodology. ${ }^{2}$ We measured the absorption at 450 nm of solutions with constant concentration of 0.02 M of $\mathbf{1 a - 3 a}(1: 1)$ but increased donor/acceptor ratios, adding an excess of $\mathbf{2}$. All the absorption spectra were recorded in 1 cm path quartz cuvettes using a Hitachi U2910 UV-Vis spectrophotometer. According to the methodology a straightline is obtained by plotting reciprocal of the absorbance against the reciprocal of concentration of 2. The association constant $\left(\mathrm{K}_{\mathrm{EDA}}\right)$ is obtained by dividing the intercept by slope and found to be $\mathrm{K}_{\mathrm{EDA}}=1.03$ M^{-1}.

Figure S3: Plot for determination of association constant of the EDA complex ($\mathrm{K}_{\mathrm{EDA}}$) (d) Radical trapping experiment with TEMPO: To a mixture of pdimethylaminobenzaldehyde ($\mathbf{1 a}, 1 \mathbf{m m o l}$), thiosemicarbazide ($\mathbf{2}, 1 \mathrm{mmol}$) and phenacylbromide (3a, 1 mmol) in ethanol:water mixture ($1: 2,5 \mathrm{~mL}$), TEMPO (2eq) was
added and stirred the mixture for 60 minutes under 9 W green LED irradiation. The progress of the reaction was monitored by TLC and with completion of the reaction, the mixture was worked up with water and then extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The desired product was found in traces along with TEMPO adducts in HRMS. The aldehyde(1a)-TEMPO adduct was found as $[\mathrm{M}-\mathrm{OH}]^{+}$at m / z 289.2280, the thiosemicarbazide(2)-TEMPO adduct was found as $[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 245.1514$, and the phenacyl(3a)-TEMPO adduct was found as $[\mathrm{M}+\mathrm{H}]^{+}$ at $\mathrm{m} / \mathrm{z} 321.1814$. All these adducts not only suggest the radical mechanism for the desired product hydrazinylthiazole but also supports the EDA complex formed between 1a, 2, and 3a.

Figure S4: HRMS spectra of TEMPO-adducts of 1a, 2, and 3a.
(e) Quenching experiment with Hydroquinone: To a mixture of pdimethylaminobenzaldehyde ($\mathbf{1 a}, 1 \mathrm{mmol}$), thiosemicarbazide ($\mathbf{2}, 1 \mathrm{mmol}$) and p nitrophenacyl bromide ($\mathbf{3 a}, 1 \mathrm{mmol}$) in ethanol:water mixture ($1: 2,5 \mathrm{~mL}$), Hydroquinone (2eq) was added and stirred the mixture for 60 minutes under 9W green LED irradiation. The progress of the reaction was monitored by TLC and with completion of the reaction, the mixture was worked up with water and then extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The desired product was not detected.
(f) Cyclic voltametrymeasurements: The cyclic voltametry (CV) measurements were carried out on a PGLyte electrochemical workstation by a standard three-electrode system (working electrode: glassy carbon electrode; counter electrode: Pt, reference electrode: $\mathrm{Ag} / \mathrm{AgCl}$ electrode) using tetrapropylammonium perchlorate $(0.02 \mathrm{M})$ as the electrolyte in ethanol at $50 \mathrm{mV} / \mathrm{s}$ scan rate at room temperature. The concentration of 1a, 2, and 3a were kept constant throughout the study at 0.01 M . The voltammograms are shown in figure S5 .From the voltammograms it can be found that 1a and 3a showed irreversible reduction while 2 showed two irreversible oxidation. The reduction potential of $\mathbf{1 a}$ is $\left(\mathrm{E}_{\text {red }}\right)^{\mathbf{1 a}}=-1.35 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}$, oxidation potential of $\mathbf{2}$ is $\left(\mathrm{E}^{1}{ }_{o x}\right)^{2}=+1.23 \mathrm{~V}$ $v s \mathrm{Ag} / \mathrm{AgCl}$ and $+1.48 \mathrm{~V} v s \mathrm{Ag} / \mathrm{AgCl}$, and the reduction potential of $\mathbf{3 a}$ is $\left(\mathrm{E}_{\text {red }}\right)^{3 \mathrm{a}}=-1.40$ V vs $\mathrm{Ag} / \mathrm{AgCl}$. All these cyclic voltammograms support for ternary EDA complex formation between 1a, 2, and 3a and the successive electron transfer from $\mathbf{2}$ to both 1a and 3a.

Figure S5: Cyclic voltammograms of ${ }^{\mathrm{n}} \mathrm{Pr}_{4} \mathrm{NClO}_{4}$ (electrolyte), 1a, 2, and 3arespectively from top.
(g) Light On-Off experiment: A mixture of p-dimethylaminobenzaldehyde (1a, 1 $\mathbf{m m o l}$), thiosemicarbazide ($\mathbf{2}, 1 \mathrm{mmol}$), p-nitrophenacyl bromide ($\mathbf{3 a}, 1 \mathrm{mmol}$) in ethanol : water mixture ($1: 2,5 \mathrm{~mL}$) stirred for 60 minutes under 9 W green LED irradiation with a time interval of 10 minutes at room temperature. After every 10 minute interval a aliquot was taken out from the reaction mixture and worked up with water and extracted with ethyl acetate. Then the organic portion dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The yield of the product was obtained using ${ }^{1} \mathrm{H}$ NMR of the crude product in
each interval where 1,3,5-trimethoxybenzene was used as internal standard. The yield of the desired product at different time interval was shown in the figure.

Figure S6: Light on-off experiment

Theoretical Studies:

TD-DFT (Time-Dependent Density Functional Theory) calculations were performed for all three individual molecules, their binary compositions, and all three molecules together to reproduce the UVVisible spectrum. From the theoretical calculations, it was observed that for single molecules: 1a, 2, and 3a, there was no appreciable absorbance in the visible region, as observed from the experimental results. An absorbance of a higher wavelength was observed for the binary compositions: $\mathbf{1 a + 2}$ and $\mathbf{2}+\mathbf{3 a}$. However, there was no such absorption observed for 1a+3a at a higher wavelength.On the other hand, the mixture of all the components (i.e., $\mathbf{1 a + 2 + 3 a}$) showed an absorbance of further higher wavelength as to binary mixtures in the range of 600 nm . The results can be elucidated using the given TD-DFT-based UVVisible spectra (Figure S7).

Figure S7: Theoretical UV-Visible Absorption spectrum for the system 1a, 2, 3a, 1a+2, 2+3a, 1a+3a and $\mathbf{1 a}+\mathbf{2}+\mathbf{3 a}$

Co-ordinates of the reactant molecules

Compound 1a

22
$\begin{array}{lllll}\text { C } & -0.99476200 & -0.01554100 & -0.00004100\end{array}$
$\begin{array}{lllll}\text { C } & -0.17008400 & 1.14675000 & -0.00004300\end{array}$
$\begin{array}{lllll}\text { C } & 1.20382200 & 1.04061100 & -0.00002400\end{array}$
$\begin{array}{lllll}\text { C } & 1.84280500 & -0.21309600 & -0.00002800\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.03580500 & -1.36256500 & -0.00005000\end{array}$
$\begin{array}{lllll}\text { C } & -0.34345300 & -1.27907600 & -0.00006400\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.61780100 & 2.13129900 & -0.00006600\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.81465000 & 1.93739300 & -0.00002200\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.50411000 & -2.34328400 & -0.00008400\end{array}$
$\mathrm{H} \quad-0.92313100-2.19208300-0.00010500$
$\begin{array}{lllll}\mathrm{N} & -2.35570800 & 0.08299200 & 0.00001100\end{array}$
$\begin{array}{lllll}\text { C } & -3.18096400 & -1.11902200 & 0.00008300\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.99857800 & -1.73412900 & 0.88727800\end{array}$
H
$-4.22957900 \quad-0.83289900 \quad 0.00003000$
$\begin{array}{lllll}\mathrm{H} & -2.99852100 & -1.73425300 & -0.88701300\end{array}$
$\begin{array}{llll}\mathrm{C} & -3.00284500 & 1.38986800 & 0.00000800\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.73637500 & 1.97368800 & -0.88706800\end{array}$
$\begin{array}{lllll}\mathrm{H} & -4.08125500 & 1.25370000 & -0.00015200\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.73661000 & 1.97360800 & 0.88721000\end{array}$
$\begin{array}{lllll}C & 3.29516000 & -0.32947200 & 0.00004500\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.67381400 & -1.37348100 & 0.00008000\end{array}$
$\begin{array}{llll}\mathrm{O} & 4.08829100 & 0.60109400 & 0.00006400\end{array}$
Number of imaginary frequencies $=0$

Compound 2

10
$\mathrm{N} \quad 2.19661600-0.26608700-0.00002300$
$\begin{array}{llll}\mathrm{H} & 2.66842200 & -0.62690200 & -0.82337500\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.66838400 & -0.62692100 & 0.82334800\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.86278500 & -0.70118200 & -0.00002600\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.63271500 & -1.68500200 & 0.00024400\end{array}$
$\begin{array}{llll}\text { C } & -0.15111600 & 0.18785300 & 0.00002400\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.18690900 & 1.47908100 & 0.00007800\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.16516000 & 1.73279500 & -0.00011800\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.52749000 & 2.18536100 & -0.00021800\end{array}$
$\begin{array}{llll}\mathrm{S} & -1.77654100 & -0.35557100 & -0.00001400\end{array}$
Number of imaginary frequencies $=0$

Compound 3a

19
$\begin{array}{lllll}\text { C } & -0.81613400 & -1.00095800 & -0.00031900\end{array}$
$\begin{array}{lllll}\text { C } & -2.19475300 & -1.17755700 & -0.00024600\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.01013000 & -0.05212800 & 0.00001300\end{array}$
$\begin{array}{llll}\text { C } & -2.49364500 & 1.24073500 & 0.00023700\end{array}$
$\begin{array}{lllll}\text { C } & -1.11681000 & 1.40218000 & 0.00020700\end{array}$

C	-0.26567300	0.28791700	-0.00008600
H	-0.18664200	-1.88153500	-0.00056000
H	-2.63239300	-2.16585500	-0.00040100
H	-3.16002400	2.09192600	0.00043800
H	-0.68305800	2.39381800	0.00040100
N	-4.47666000	-0.23468900	0.00004700
O	-4.91150900	-1.37930300	0.00059700
O	-5.17770200	0.76913600	-0.00043800
C	1.21717300	0.54747100	-0.00016200
C	2.12138600	-0.67912600	-0.00021900
H	1.94590000	-1.29054900	0.88333000
H	1.94614200	-1.29022400	-0.88403800
O	1.64937500	1.67798400	-0.00011900
Br	4.02791200	-0.23338600	0.00010400

Number of imaginary frequencies $=0$

1a+2

32
$\begin{array}{llll}\mathrm{N} & -3.79342800 & 0.58570600 & 1.88843700\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.15401700 & 1.53518100 & 1.87146600\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.00898300 & 0.56214900 & 2.53274600\end{array}$
N
$\begin{array}{llll}\mathrm{H} & -2.62317600 & 0.82604100 & 0.15070500\end{array}$
$\begin{array}{lllll}\text { C } & -3.88438400 & -0.78475100 & -0.05915100\end{array}$
$\begin{array}{lllll}\mathrm{N} & -4.84352800 & -1.46510700 & 0.57609300\end{array}$
$\begin{array}{lllll}\mathrm{H} & -5.11425400 & -1.17901800 & 1.50664500\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.28058500 & -2.25215000 & 0.13055500\end{array}$
$\mathrm{S} \quad-3.35627500 \quad-1.19113900 \quad-1.64251700$
$\begin{array}{lllll}\mathrm{C} & 3.08167900 & -0.20361100 & 0.06539800\end{array}$
$\begin{array}{lllll}\text { C } & 1.73883400 & -0.65371000 & 0.23238600\end{array}$

C	0.67807000	0.21429300	0.10223100
C	0.87720700	1.57625500	-0.20067800
C	2.20020800	2.02536000	-0.36660500
C	3.27699700	1.17187100	-0.23990700
H	1.53835600	-1.69079800	0.46447100
H	-0.33212000	-0.15785500	0.23354100
H	2.38158700	3.07071700	-0.60093000
H	4.27507900	1.56453400	-0.37717000
N	4.13397200	-1.05869400	0.19319100
C	5.50031000	-0.57843900	0.01658000
H	5.74967400	0.20206900	0.74228600
H	6.19075100	-1.40508500	0.16191300
H	5.65992400	-0.17692000	-0.98922500
C	3.91161000	-2.46800000	0.50039500
H	3.31440200	-2.96029500	-0.27349600
H	4.87097300	-2.97535600	0.55747500
H	3.40353800	-2.59625200	1.46128500
C	-0.22144600	2.51119800	-0.34159200
H	0.08209300	3.54888600	-0.58206200
O	-1.41896600	2.26253000	-0.22100900

Number of imaginary frequencies $=0$
2+3a
29
$\mathrm{N} \quad-6.11040700-1.76085500 \quad-1.34144200$
H $\quad-6.63333500 \quad-1.13845100 \quad-1.94951800$
$\mathrm{H} \quad-6.68217500$-2.57782900 -1.15101800
$\mathrm{N} \quad-5.82332200-1.10226700-0.13638900$
$\begin{array}{llll}\mathrm{H} & -6.56196700 & -0.74004500 & 0.45021500\end{array}$
$\begin{array}{lllll}\text { C } & -4.54650800 & -0.92288300 & 0.26366000\end{array}$
$\mathrm{N} \quad-3.59295200 \quad-1.40211600 \quad-0.53238100$

H	-3.87036700	-1.85392100	-1.39329700
H	-2.61388700	-1.28686100	-0.30395800
S	-4.22343500	-0.11058200	1.74245800
C	2.11782100	-1.51761700	-0.27439300
C	3.49089200	-1.69661600	-0.33558200
C	4.31438600	-0.64827100	0.06568600
C	3.80773300	0.56253700	0.52248000
C	2.42929100	0.72730300	0.58178400
C	1.57334900	-0.30876400	0.18416100
H	1.44995800	-2.31313600	-0.57839900
H	3.92260500	-2.62410200	-0.68472500
H	4.47950000	1.35388700	0.82357600
H	2.03979200	1.67404500	0.93193100
N	5.78057500	-0.82855900	0.00413300
O	6.48740900	0.10801000	0.35322900
O	6.20762400	-1.90502000	-0.39273700
C	0.08194200	-0.19254800	0.23790000
C	-0.56738000	1.07214500	0.76927900
H	-1.60554900	0.87400900	1.02256900
H	-0.04401800	1.52026100	1.60831500
O	-0.62263800	-1.11717200	-0.12988300
Br	-0.59631900	2.43999400	-0.66706200

Number of imaginary frequencies $=0$
1a+3a
41
$\begin{array}{llll}\text { C } & -4.69949000 & -0.30356400 & -0.02340300\end{array}$
$\begin{array}{lllll}\text { C } & -5.35645900 & -1.52414100 & 0.30939100\end{array}$
$\begin{array}{lllll}C & -6.73090700 & -1.61877100 & 0.28449800\end{array}$
$\begin{array}{lllll}\text { C } & -7.53596400 & -0.51997000 & -0.06906300\end{array}$
$\begin{array}{lllll}\text { C } & -6.89504600 & 0.68564900 & -0.39893100\end{array}$

C	-5.51853600	0.80267400	-0.38041500
H	-4.77759300	-2.39413900	0.58844700
H	-7.21265000	-2.55626900	0.54219200
H	-7.49398800	1.54916700	-0.67627800
H	-5.06980200	1.75091800	-0.64311600
N	-3.34003500	-0.20247500	0.00106700
C	-2.68613800	1.05765700	-0.33396400
H	-2.99751200	1.86320400	0.33943300
H	-1.61017600	0.93622300	-0.24109100
H	-2.90852800	1.36720200	-1.36080900
C	-2.51603300	-1.35183400	0.35959300
H	-2.67462200	-2.19087300	-0.32595600
H	-1.46847800	-1.06769700	0.30861300
H	-2.72652800	-1.69799500	1.37704700
C	-8.98903000	-0.61556900	-0.09597500
H	-9.50681200	0.32202700	-0.38985800
O	-9.64709000	-1.61123100	0.17081600
C	4.39311300	0.31653700	0.73874000
C	5.55524900	-0.43047100	0.58888900
C	5.47460800	-1.66814800	-0.03821500
C	4.27356000	-2.18194100	-0.51958200
C	3.12189100	-1.42706800	-0.36112600
C	3.16802200	-0.17387600	0.26725700
H	4.46225000	1.28238300	1.22127800
H	6.50631700	-0.06427000	0.94899000
H	4.25088900	-3.14861000	-1.00280000
H	2.17234100	-1.79997300	-0.72273600
N	6.70788000	-2.46692900	-0.19944500
O	6.61772400	-3.54950200	-0.76396300
O	7.75199300	-2.00309600	0.24051100

C	1.88020900	0.57683900	0.42053700
C	1.87809400	1.96147900	1.04730400
H	0.86272000	2.23592100	1.31158900
H	2.53911800	2.06561200	1.90247400
O	0.82595800	0.09025600	0.05792000
Br	2.47961700	3.29453400	-0.29155000

Number of imaginary frequencies $=0$

$1 a+2+3 a$

51
$\mathrm{N} \quad-0.32518700 \quad 3.54973000-1.90803000$
$\begin{array}{lllll}\mathrm{H} & -0.58700100 & 4.46629200 & -2.25824200\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.91909600 & 2.86143800 & -2.36076300\end{array}$
$\begin{array}{lllll}\mathrm{N} & -0.55549700 & 3.50984600 & -0.51864500\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.50310600 & 3.61581900 & -0.15855700\end{array}$
$\begin{array}{lllll}\mathrm{C} & 0.46013600 & 3.24084500 & 0.32196400\end{array}$
$\begin{array}{lllll}\mathrm{N} & 1.66806500 & 3.06053100 & -0.22124700\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.73814600 & 3.05159900 & -1.23012300\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.43634100 & 2.72658200 & 0.34159900\end{array}$
S
$\begin{array}{lllll}\text { C } & -5.02739800 & -1.02116400 & -0.51979300\end{array}$
$\begin{array}{lllll}\text { C } & -3.71730600 & -0.46199900 & -0.44433200\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.53253300 & 0.89116400 & -0.26796500\end{array}$
$\begin{array}{lllll}\text { C } & -4.62590200 & 1.77390900 & -0.15641800\end{array}$
$\begin{array}{lllll}\text { C } & -5.92014800 & 1.22604000 & -0.22310800\end{array}$
$\begin{array}{lllll}\text { C } & -6.12717000 & -0.12669800 & -0.40062100\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.84966100 & -1.10346300 & -0.51559500\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.52450400 & 1.28699800 & -0.20905700\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.78111600 & 1.88344400 & -0.13896300\end{array}$
H
N

C	-6.56443300	-2.90480400	-0.79808100
H	-7.10455100	-2.50455200	-1.66300400
H	-6.50452600	-3.98452700	-0.90693400
H	-7.14840200	-2.68990200	0.10148500
C	-4.07606600	-3.24788800	-0.90931600
H	-3.39359000	-3.24428100	-0.05535100
H	-4.44055500	-4.26320400	-1.04282900
H	-3.50901500	-2.97169600	-1.80491800
C	-4.45908100	3.20390500	0.01549300
H	-5.40570800	3.77117200	0.11106600
O	-3.39735100	3.82123300	0.06104900
C	3.17351500	-2.10122000	0.38928600
C	2.08741100	-2.96725900	0.42645500
C	0.87419200	-2.49150600	0.91136200
C	0.71395000	-1.18534000	1.36373900
C	1.80117600	-0.32753100	1.30761800
C	3.03741200	-0.77301100	0.81767600
H	4.11407400	-2.47118100	0.00247600
H	2.17411000	-3.98898500	0.08451600
H	-0.24160300	-0.85226300	1.74396000
H	1.68990500	0.69404500	1.64879500
N	-0.28964300	-3.40049900	0.94043200
O	-1.33772900	-2.96803000	1.40835800
O	-0.15060000	-4.52992600	0.49217200
C	4.16478500	0.21027500	0.76995400
C	5.58164600	-0.27655500	0.51418500
H	6.28643500	0.46113600	0.88250100
H	5.79834200	-1.25951800	0.92054200
O	3.97671600	1.39977400	0.95195700
Br	5.88852100	-0.39498900	-1.44195300

Biological Studies:

Materials and Methods:

Total Phenolic content:

The Folin-Ciocalteu method was used to evaluate total phenolic content of individual samples. In brief, 0.4 mL of sample $(50-800 \mu \mathrm{~g} / \mathrm{mL})$ solution was mixed with 0.4 mL of $10 \%(\mathrm{w} / \mathrm{v})$ FolinCiocalteu reagent and 1.0 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}(7 \%)$ to the mixture after 5 min , and incubated at $50{ }^{\circ} \mathrm{C}$ for 10 min . UV-VIS Spectrophotometer (Shimazu, UV-1780) was used to measure the absorbance at 765 nm against a blank without sample. The final data were expressed as mg / g of gallic acid equivalents in milligrams per gram ($\mathrm{mg} \mathrm{GAE} / \mathrm{g}$) of dry extract.

Total flavonoid content

The total flavonoid content was estimated by following the previously described method. Total 1 mL of sample and standard (quercetin) solution ($25-200 \mu \mathrm{~g} / \mathrm{mL}$) were added with 0.2 mL of 10% $(\mathrm{w} / \mathrm{v}) \mathrm{AlCl}_{3}$ solution in methanol, $0.2 \mathrm{~mL}(1 \mathrm{M})$ potassium acetate and 5.6 mL distilled water. After 30 min incubation at room temperature, absorbance of the mixture was taken at 415 nm against the blank. The results were expressed as mg / g of quercetin equivalents in milligrams per gram ($\mathrm{mg} \mathrm{QE} / \mathrm{g}$) of dry extract.

DPPH radical scavenging assay

Radical scavenging activity (RSA) of different samples was measured by using the DPPH method to evaluate the antioxidant activity The sample solution of $2 \mathrm{~mL}(10-100 \mu \mathrm{~g} / \mathrm{mL})$ in methanol was mixed into 1 mL of $\operatorname{DPPH}(0.3 \mathrm{mM})$ solution. The combined solutions were stored in a dark area for 30 min and the absorbance was recorded at 517 nm against blank. Ascorbic acid was used as a positive control. The percentage of DPPH• scavenging activity (RSA \%) was measured using the following equation:

$$
\% \text { Scavenging of DPPH• }=\left[\left(\mathrm{A}_{0}-\mathrm{A}_{1}\right) / \mathrm{A}_{0}\right] \text { X } 100
$$

$\mathbf{A}_{\mathbf{0}}=$ absorbance of the control and $\mathbf{A}_{\mathbf{1}}=$ absorbance of the test samples. After determining the $\%$ scavenging of $\mathrm{DPPH} \cdot$ of the different concentrations, the IC_{50} values were determined for the ascorbic acid and samples.

Reducing power assay

The Fe^{3+} reducing power of the sample was measured by following the method available in the literature. The different concentrations (100 to $300 \mu \mathrm{~g} / \mathrm{ml}$) of samples were mixed with phosphate buffer ($0.2 \mathrm{M}, \mathrm{pH} 6.6$) with potassium hexacyanoferrate (0.1%) followed by incubation at $50^{\circ} \mathrm{C}$ for 20 min . Further 10% tricarboxylic acid (TCA), distilled water (2.5 ml), and FeCl_{3} solution (0.01%) were added for reaction mixture and incubated at room temperature for 10 min for color development. The absorbance of the final solution was recorded at 700 nm . Ascorbic acid was used as a positive control.
α-Amylase Inhibitory Assay

Following the literature, the reaction mixture was prepared by adding 25 ml sample solution ($100-400 \mu \mathrm{~g} / \mathrm{mL}$), $50 \mu \mathrm{~L}$ of α-amylase ($10 \mu \mathrm{~g} / \mathrm{mL}$) solution in phosphate buffer (pH 6.9) and 50 $\mu \mathrm{L}$ of starch solution (0.05%). The reaction was stopped by adding $25 \mu \mathrm{~L}$ of 1 M HCl followed by adding up 100 mL of iodine-potassium iodide solution. The solution mixture was incubated for 10 min at $37{ }^{\circ} \mathrm{C}$ followed by measuring the absorbance at 630 nm . Acarbose was used as a positive control. The following formula was used to calculate the α-amylase inhibitory activity.

$$
\% \text { Inhibitory activity }=\left[\left(\mathrm{A}_{0}-\mathrm{A}_{1}\right) / \mathrm{A}_{0}\right] \times 100
$$

$\mathrm{A}_{0}=$ absorbance of the control and $\mathrm{A}_{1}=$ absorbance of the test samples. After determining the α-amylase inhibitory activity of the different concentrations, the IC_{50} values were determined for the acarbose and samples.

Spectroscopic Data of Synthesized Compounds:

(E)-N,N-dimethyl-4-((2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazono)methyl)aniline(4a) yield: $98 \%(360 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 11.96$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.28-8.25 (m, 2H, aromatic $\mathrm{H}), 8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, aromatic H), $7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.65(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$), 7.48(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 2.96\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{NMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 169.30,151.57,148.95,146.58,143.35,141.29,128.12,126.75$, $124.55,122.18,112.38,108.38,39.98$. HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 368.1181$, found368.1181.
(E)-4-(4-bromophenyl)-2-(2-(2-nitrobenzylidene)hydrazinyl)thiazole (4b) yield: 92\% (370 mg) ${ }^{1}$ H NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 8.03-8.01(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.81-7.75(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.62-7.58(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.45(\mathrm{~s}, 1 \mathrm{H}$, thiazole $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 170.55,152.11,150.08,139.05,136.33,136.16,134.20$, 132.44, 131.10, 130.20, 130.16, 127.34, 123.27, 107.94, HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN4O} 2 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 402.9864$, found 402.9865 .
(E)-4-(4-bromophenyl)-2-(2-(4-methoxybenzylidene)hydrazinyl)thiazole (4c) ${ }^{3 \mathrm{a}}$ yield: 95\% (368 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 7.99 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 7.81-7.79 (m, 2 H , aromatic H$), 7.61-7.59(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.37(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $)$: $\delta 168.95,160.76,149.83$, 141.93, 134.42, 131.99, 128.30, 128.00, 127.44, 120.93, 114.83, 104.74, 55.74.
(E)-4-(4-bromophenyl)-2-(2-(4-chlorobenzylidene)hydrazinyl)thiazole (4d) ${ }^{3 \mathrm{~b}}$ yield: 92\% (361 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.25(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}$), $8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 7.79(d, J=8.0 $\mathrm{Hz}, 2 \mathrm{H}$, aromatic H$), 7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, aromatic H$), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.48(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), 7.41(s, 1 H , thiazole H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.68$, 149.92, 140.52, 134.31, 134.11, 133.78, 132.02, 129.40, 128.34, 128.01, 121.02, 105.25.
(E)-4-(4-bromophenyl)-2-(2-(4-methylbenzylidene)hydrazinyl)thiazole (4e) ${ }^{3 \mathrm{c}}$ yield: 92\% (342 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.09$ (s, 1H, NH), 7.99 (s, 1H, H-C=N-), 7.79(d, 2H, $J=8.0 \mathrm{~Hz}$, aromatic H), $7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$ aromatic H$), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H),
7.37 (s, 1H, thiazole H), 7.23(d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), 2.31 (s, $3 \mathrm{H},-\mathrm{CH} 3)$) ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 168.86,149.82,142.03,139.50,134.38,132.11,132.00,129.91,128.00$, 126.74, 120.96, 104.92, 21.48.
(E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4f) ${ }^{3 \mathrm{~d}}$ yield: 93% (323 mg) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.55$ (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 8.07 (s, 1H, aromatic H), $7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 7.78(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H), 7.68-7.61 (m, 3H, aromatic H), 7.47-7.38 ($\mathrm{m}, 5 \mathrm{H}$, aromatic H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.19$, 159.22, $152.79,144.47$, 142.18, 138.65, 134.75, 132.18, 129.87, 129.33, 129.32, 126.79, 125.19, 121.01, 119.66, 116.37, 111.15.
(E)-3-(2-(2-(4-methoxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one ($\mathbf{4 g})^{3 \mathrm{~d}}$ yield: $94 \% ~(354 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 8.53 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 8.01 $(\mathrm{s}, 1 \mathrm{H}$, aromatic H$), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.75(\mathrm{~s}, 1 \mathrm{H}$, thiazole H$), 7.65-7.60(\mathrm{~m}$, 3 H , aromatic H), $7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.00(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.26$, $160.80,159.22,152.77,144.41,142.21,138.57,132.13,129.28,128.34,127.37,125.17,121.03$, 119.67, 116.36, 114.83, 110.83, 55.74.
(E)-4-(4-bromophenyl)-2-(2-(furan-2-ylmethylene)hydrazinyl)thiazole ($\mathbf{4 h})^{3 e}$ yield: 92\% (320 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d 6): $\delta 12.13$ (s, 1H, NH), 7.91 (s, 1H, H-C=N), 7.79$7.77(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 7.38(\mathrm{~s}, 1 \mathrm{H}$, aromatic H,$) 6.80-$ $6.79(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 6.60-6.58(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $)$: δ $168.51,149.75,145.02,134.31,132.17,132.00,128.00,121.00,112.78,112.54,105.02$.
(E)-4-(4-nitrophenyl)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)thiazole (4i) ${ }^{3 \mathrm{fl}}$ yield: 94\% (305 $\mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.58(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}$, aromatic H), 8.29-8.26(m, 2 H , aromatic H), 8.12-8.07 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$ and two aromatic H), 7.87-7.85 (m, 2 H , aromatic H), $7.77(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H), 7.38-7.35 (m, 1 H , aromatic H$) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d6): $\delta 168.72,153.50,149.95,149.07,146.74,142.50,140.98,137.36,126.83,124.61$, 124.26 119.75, 109.53.

4-(4-nitrophenyl)-2-((E)-2-((E)-3-phenylallylidene)hydrazinyl)thiazole (4j) yield: 91\% (318 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.26$ (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), $8.09(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}$, olefenic H$), 7.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4 \mathrm{H}$, aromatic H$), 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-)$, $7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), 7.38-7.34 (m, 3H, aromatic H and thiazole H), 6.99-6.97 ($\mathrm{m}, 2 \mathrm{H}$, olefenic H and aromatic H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.64,149.01$, 146.67, 145.01, 141.11, 137.62, 136.57, 129.26, 129.01, 127.43, 126.80, 125.53, 124.59, 108.96. HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 351.0915$, found 351.0916 .
(E)-2-(2-benzylidenehydrazinyl)-4-phenylthiazole ($\mathbf{4 k})^{3 \mathrm{~g}}$ yield: 93% (259 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.19$ (s, 1H, NH), 8.04 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 7.87-7.85 (m, 2H, aromatic H), 7.67-7.65 (m, 2H, aromatic H), 7.46-7.39 (m, 5H, Thiazole H and aromatic H), 7.39-7.30 (m, 2 H , aromatic H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): $\delta 168.64,151.07,141.63,135.15,134.85$, 129.67, 129.25, 129.02, 127.95, 126.68, 125.95, 104.12.
(E)-2-methoxy-4-((2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazono)methyl)phenol (4l) yield: 93\% (344 mg) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d \sigma$): $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.29-8.26(\mathrm{~m}$, 2 H , aromatic H), 8.12-8.09 (m, 2H, aromatic H), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.69(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$)$, $7.24(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, aromatic H$), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), $3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 169.26,148.86,148.41$, $146.64,142.88,141.23,126.77,126.19,124.58,120.98,116.12,109.77,108.67,55.98$, HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 371.0814$, found 371.0809.
(E)-2-methoxy-5-((2-(4-(4-nitrophenyl)thiazol-2-yl)hydrazono)methyl)phenol (4m) yield: 93\% (344 mg) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d \sigma$): $\delta 12.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.28(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}$, aromatic H), $8.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.70(\mathrm{~s}, 1 \mathrm{H}$, thiazole H$), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}$, aromatic H$), 7.02-6.93(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 3.80(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3}); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 178.00,150.03,147.10,146.88,143.26,127.47$, $126.79,124.59,120.54,120.19,113.70$, 112.41, 112.19, 108.72, 56.11. HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 371.0814$, found 371.0810 .
(E)-4-(4-bromophenyl)-2-(2-((5-bromothiophen-2yl)methylene)hydrazinyl)thiazole ($\mathbf{4 n})^{3 \mathrm{c}}$ yield: $93 \% ~(412 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), $7.78(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), $7.40(\mathrm{~s}, 1 \mathrm{H}$, thiazole H$)$, 7.22-7.19 (m, 2H, aromatic H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.25,157.94,141.31$, $136.29,134.24,132.02,131.72,130.07,127.99,121.04,113.76,105.27$.
(E)-2-(2-(2-nitrobenzylidene)hydrazinyl)-4-(p-tolyl)thiazole (40) ${ }^{3 \mathrm{~h}}$ yield: $94 \% ~(318 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.55$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.43 (s, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 8.07-8.04 (m, 2 H , aromatic H), 7.83-7.75 (m, 3 H , aromatic H), 7.65-7.60 (m, 1 H , aromatic H$), 7.33(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H), 7.23 (d, 2H, $J=8.0 \mathrm{~Hz}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $): \delta$ $168.07,147.92,137.39,136.81,133.98,132.18,130.18,129.67,129.04,127.95,125.97,125.17$, 103.80, 21.29.
(E)-2-(2-(2-nitrobenzylidene)hydrazinyl)-4-phenylthiazole (4p) $)^{3 i}$ yield: 90% (291 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), $8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-$), 8.06-8.03 (m, 2H, aromatic $\mathrm{H})$, 7.87-7.77 (m, 3 H , aromatic H), 7.64-7.59 $(\mathrm{m}, 1 \mathrm{H}$, aromatic H$), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}$, Thiazole H and aromatic H), 7.33-7.29 (m, 1 H , aromatic H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): δ 168.19, 162.76, 147.92, 136.62, 134.99, 134.00, 130.21, 129.12, 129.02, 128.11, 127.97, 126.02, 125.18, 104.88. HRMS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 325.0759$, found 325.0759 .
(E)-2-(2-(4-nitrobenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (4q) $)^{3 f}$ yield: $96 \%(354 \mathrm{mg})^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.30-8.27(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $8.13(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.92-7.87(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.48(\mathrm{~m}, 3 \mathrm{H}$, Thiazole H and aromatic H$) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6): $\delta 167.88,147.84,140.79,138.95,133.44,132.09,128.53,127.25,127.25$. 126.96, 123.97, 105.15.
(E)-4-(4-chlorophenyl)-2-(2-(2-nitrobenzylidene)hydrazinyl)thiazole (4r) ${ }^{3 j}$ yield: 93% (333 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 12.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.88-7.86 (m, 2H, aromatic H), 7.81-7.77 (m, 1H, H-C=N-), 7.63-7.59 (m, 1 H ,
aromatic H), 7.48-7.45 (m, 3H, aromatic H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 168.54$, 147.80, 137.10, 133.96, 133.56, 132.64, 130.42, 129.14, 129.14, 128.59, 128.22, 127.69, 125.06, 105.61.
(E)-2-(2-(4-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole ($\mathbf{4 s})^{3 \mathrm{a}}$ yield: 97% (343 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 8.29-8.26 (m, 2H, aromatic H), 8.11 $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.70(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.0 Hz , aromatic H), $7.01(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 169.23,160.84,149.00,146.66,142.31,141.21,128.37,127.36,126.79$, 124.57, 114.84, 108.76, 55.75.
(E)-2-(2-(1-(4-iodophenyl)ethylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (6a) yield: 95\% (441 $\mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d σ): $\delta 11.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.29(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), $8.13(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 7.80-7.74(\mathrm{~m}, 3 \mathrm{H}$, aromatic H and thiazole H$), 7.57(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}$, aromatic H), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): $\delta 170.52$, 149.15, $146.62,141.24,138.08,137.75,137.68,130.36,128.15,126.77,124.59,109.61,14.29$. HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{IN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 464.9882$, found 464.9877.
(E)-3-(2-(2-(1-phenylethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one ($\mathbf{6 b})^{3 \mathrm{~d}}$ yield: 93% $(336 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.58(\mathrm{~s}, 1 \mathrm{H}$, thiazole H), 7.84$7.78(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}$, aromatic H$), 2.34$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 169.79,159.24,152.78,147.39,138.53$, $138.26,132.18,129.28,128.92,126.18,125.24,121.15,119.65,116.39,111.54,14.54$.
(E)-4-(4-bromophenyl)-2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazole ($\mathbf{6 c})^{3 \mathrm{k}}$ yield: $92 \% ~(415 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 11.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.84-7.82(\mathrm{~m}, 2 \mathrm{H}$, aromatic $\mathrm{H})$, 7.73-7.71 ($\mathrm{m}, 2 \mathrm{H}$, aromatic H), 7.63-7.59 (m, 4 H , aromatic H), $7.42(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$), 2.31$ (s, $3 \mathrm{H},-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta 170.25,149.89,146.08,137.45,134.32$, 132.02, 131.84, 128.13, 128.02, 122.59, 120.99, 105.54, 14.27.
(E)-2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)-4-(p-tolyl)thiazole (6d) ${ }^{31}$ yield: 93\% (359 $\mathrm{mg})^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 11.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 7.79-7.72 (m, 4H, aromatic H), 7.63 $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$, aromatic H$), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.32(\mathrm{~s}, 3 \mathrm{H},-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): $\delta 169.98$, 150.95, 145.98, 137.7, 137.17, 132.56, 131.69, 129.48, 128.03, 125.94, 122.35, 103.48, 21.09, 14.10.
(E)-2-(2-(1-phenylethylidene)hydrazinyl)-4-(p-tolyl)thiazole ($6 \mathbf{e})^{3 \mathrm{~m}}$ yield: $92 \%(282 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta 11.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.80-7.76(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), 7.45-7.35 (m, 3 H , aromatic H$), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}$, aromatic H and thiazole H$), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta 170.22,146.78,138.42,137.20,132.62,129.65,129.13,128.89$, 126.13, 125.95, 103.63, 21.27, 14.46.
(E)-4-(4-nitrophenyl)-2-(2-(1-(4-nitrophenyl)ethylidene)hydrazinyl)thiazole (6f) yield: 96\% (368 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 11.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 8.32-8.27 (m, 4H, aromatic H), 8.15$8.14(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.80(\mathrm{~s}, 1 \mathrm{H}$, Thaizole H$), 2.39(\mathrm{~s}, 3 \mathrm{H},-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 170.21,149.28,147.60,145.28,144.73,141.15$,
127.15, 126.85, 124.64, 124.19, 110.08, 14.46, HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 384.0766$, found 384.0769 .
(E)-4-phenyl-2-(2-(1-phenylethylidene)hydrazinyl)thiazole ($\mathbf{6 g})^{3 \mathrm{~g}}$ yield: $90 \%(264 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.27$ (s, 1H, NH), 7.90-7.80 (m, 2H, aromatic H), 7.79-7.77 (m, 2 H , aromatic H), $7.45-7.35(\mathrm{~m}, 6 \mathrm{H}$, Thiazole H and six aromatic H$), 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$)$, 2.33 (s, 3H, - CH_{3}); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): $\delta 170.29,151.02,146.90,138.39,135.25$, 129.09, 129.02, 128.84, 127.89, 126.10, 125.96, 104.48, 14.44.

4-(4-chlorophenyl)-2-(2-(diphenylmethylene)hydrazinyl)thiazole (6h) yield: 92% (358 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 10.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.82$ (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), 7.58$7.55(\mathrm{~m}, 3 \mathrm{H}$, thiazole H and aromatic H$), 7.45-7.32(\mathrm{~m}, 10 \mathrm{H}$, aromatic H$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 169.56,149.95,149.11,137.89,134.05,133.18,132.38,129.74,129.27,129.05$, $128.93,128.24,127.67,127.15,105.62$, HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 390.0832, found 390.0830.
(E)-4-(4-bromophenyl)-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)thiazole (6i) ${ }^{3 n}$ yield: 93\% $(347 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.57(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H$), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.84-7.81(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.46(\mathrm{~s}, 1 \mathrm{H}$, Thiazole H$), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 2.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): $\delta 169.97,155.31,150.01,149.06,147.59,137.02,134.43,132.03$, 128.03, 123.93, 121.00, 120.02, 105.89, 12.75.

4-(4-bromophenyl)-2-(2-(propan-2-ylidene)hydrazinyl)thiazole ($\mathbf{6 j})^{30}$ yield: $90 \%(279 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 10.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.58-7.55 (m, 2 H , aromatic H), $7.29(\mathrm{~s}, 1 \mathrm{H}$, Thaizole H$), 1.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.92\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, DMSO-d6): $\delta 170.53,150.39,149.70,134.62,131.95,127.98,120.78,104.61,25.34$, 18.17.
(E)-4-(4-bromophenyl)-2-(2-(1-(4-nitrophenyl)ethylidene)hydrazinyl)thiazole ($\mathbf{6 k})^{3 \mathrm{p}}$ yield: 95% (396 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), $8.25-8.24(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 8.00-7.99 (m, 2H, aromatic H), $7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), 7.60-7.59 (m, 2H, aromatic H), 7.46(s, 1H, Thiazole H), 2.36 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d 6$): δ 169.91, $147.47,144.45,134.30,132.04,131.74,128.04,127.03,125.77,124.16,121.06,106.06,14.36$.

2-(2-cyclohexylidenehydrazinyl)-4-(4-nitrophenyl)thiazole (6l) ${ }^{3 \mathrm{q}}$ yield: 92% (291 mg) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 10.98$ (s, 1H, NH), 8.28-8.25 (m, 2H, aromatic H), 8.11-8.08 (m, 2H, aromatic H), $7.62(\mathrm{~s}, 1 \mathrm{H}$, thiazole H$), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}$, cyclohexane ring), 2.27-2.24 (m, 2 H , cyclohexane ring), $1.65-1.57$ (m, 6 H , cyclohexane ring); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d): δ $170.98,156.17,146.53,141.44,126.72,124.57,108.61,35.23,27.68,27.31,26.01,25.55$.
(E)-4-(4-nitrophenyl)-2-(2-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-
ylidene)hydrazinyl)thiazole $(\mathbf{6 m})$ yield: $92 \%(340 \mathrm{mg}){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta 10.72$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.28-8.24(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 8.11-8.07(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.61(\mathrm{~s}, 1 \mathrm{H}$, thiazole H), 2.04-1.82 (m, 2H, camphor H), 1.81-1.68 (m, 2 H , camphor H), 1.36-1.29 (m, 3H, camphor H), 1.28-1.18 (m, 6H, camphor H), $0.75(\mathrm{~s}, 3 \mathrm{H}$, camphor H$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): δ
$170.88,165.38,148.87,146.50,141.46,126.69,124.54,108.55,52.60,48.10,43.91,35.25$, 32.92, 27.34, 19.69, 18.97, 11.65. HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 371.1542$, found 371.1539 .
(E)-2-(4-(dimethylamino)benzylidene)hydrazinecarbothioamide (G) ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 9.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}=\mathrm{N}-), 7.53$, (d, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, aromatic H), $7.20(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{NH}_{2}\right), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}$, aromatic H$), 6.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right) 3.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.90,151.76,144.14,128.46,120.15,111.40,39.47$, HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$223.1017, found 223.1016.

References:

1. P. Job, Ann. Chem. 1928, 9, 113.
2. H. A. Benesi, and J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703.
3. (a) G. T. Reddy, G. Kumar, and N. G. Reddy, Adv. Synth.Catal., 2018, 360, 995; (b) M. S. Alam, J. U. Ahmed, and D. U. Lee, Chem. Pharm. Bull., 2014, 62, 1259; (c) P. A. Channar, A. Saeed, S. Afzal, D. Hussain, M. Kalesse, S. A. Shehzadi, and J. Iqbal, Mol. Divers., 2021, 25, 1; (d) K. Godugu, T. R. Gundala, R. Bodapati, V. D. S. Yadala, S. S. Loka, and C. G. RNallagondu, New J. Chem., 2020,44, 7007; (e) D. Secci, A. Bolasco, S. Carradori, M. D'Ascenzio, R. Nescatelli, and M. Yáñez, Eur.J. Med.Chem., 2012, 58, 405; (f) A. Rauf, M. K. Kashif, B. A. Saeed, N. A. Al-Masoudi, and S. Hameed, J. Mol. Struc., 2019, 1198, 126866; (g) J. Tiwari, S. Singh, F. Tufail, D. Jaiswal, J. Singh, and J. Singh, ChemistrySelect, 2018, 3, 11634; (h) M. H. Abdellattif, M. A. Hussien, and E. Alzahrani, IJPSR. 2018, 9, 5060; (i) K. M. Khan, M. Irfan, M. Ashraf, M. Taha, S. M. Saad, S. Perveen, and M. I. Choudhary, Med. Chem. Res., 2015, 24, 3077; (j) F. Rahim, H. Ullah, M. T. Javid, A. Wadood, M. Taha, M. Ashraf, A. Shaukat, M. Junaid, S. Hussain, W. Rehman, R. Mehmood, M. Sajid, M. N. Khan, and K. M. Khan, Bioorganic chemistry, 2015, 62, 15; (k) Y. Zhang, X. Fu, Y. Yan, and J. Liu, J. Heterocycl. Chem., 2020, 57, 991; (1) M. S. Solanki, and J. P. Trivedi, J. Ind. Chem. Soc. 1972,49, 37; (m) R. Pundeer, V. Kiran, O. P. Sushma, and S. C. Bhatia, Der Pharma Chemica, 2011, 3, 109; (n) R. E. Khidre, S. R. El-Gogary, and M. S. Mostafa, J. Heterocycl. Chem, 2017, 54, 2511; (o) S. Carradori, D. Secci, M. D'Ascenzio, P. Chimenti, and A. Bolasco, J. Heterocycl. Chem, 2014, 51, 1856; (p) K. K. Bansal, D. Sharma, R. Archana, H. Rajak, and P. C. Sharma, Indian J. Heterocycl. Chem. 2018, 28, 305; (q) R. Meleddu, S. Distinto, A. Corona, E. Maccioni, A. Arridu, C. Melis, G. Bianco, P. Matyus, F. Cottiglia, A. Sanna, and A. De Logu, J Enzyme Inhib Med Chem, 2016; 31, 1672-1677.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 d

210	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0	-10
210	200	190	180	170	160	150	140	130	120	110	f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 f$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 g}$

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 10 \\ \mathrm{f}_{1}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 h$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 i

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 41

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 m}$

$\begin{aligned} & 8 \\ & \stackrel{e}{e} \\ & \stackrel{1}{1} \end{aligned}$		A8tig

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 n$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 40

40

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 p

${ }^{1}$ H NMR spectra of $\mathbf{4 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 s

${ }^{1} \mathbf{H}$ NMR spectra of $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 b}$

か

6b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 c}$

$6 c$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 d}$

6d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 e}$

6

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 f}$

${ }^{1} \mathbf{H}$ NMR spectra of $\mathbf{6 g}$

$6 g$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 h

${ }^{1} \mathbf{H}$ NMR spectra of $\mathbf{6 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 k}$

$\stackrel{\text { ¢ }}{\stackrel{+}{1}}$	M	¢ M N

6k

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 61

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 m}$

$6 m$

$6 m$

${ }^{1} \mathrm{H}$ NMR spectra of G

Crystallographic experimental data

Table 1. Crystal data and structure refinement for 4a

Identification code	KSK-SD 16
Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{51} \mathrm{~N}_{15} \mathrm{O}_{6} \mathrm{~S}_{3}$
Formula weight	1102.28
Temperature/K	298
Crystal system	monoclinic
Space group	P2 $1 / \mathrm{c}$
a/Å	17.3937(2)
b/Å	15.73990(10)
c/Å	21.0535(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	112.6080(10)
γ°	90
Volume/ A^{3}	5321.00(9)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.376
μ / mm^{-1}	1.820
$\mathrm{F}(000)$	2304.0
Crystal size/mm ${ }^{3}$	$0.002 \times 0.002 \times 0.001$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	5.504 to 136.378
Index ranges	$-19 \leq \mathrm{h} \leq 20,-17 \leq \mathrm{k} \leq 18,-25 \leq 1 \leq 23$
Reflections collected	36668
Independent reflections	$9658\left[\mathrm{R}_{\text {int }}=0.0285, \mathrm{R}_{\text {sigma }}=0.0220\right]$
Data/restraints/parameters	9658/0/709
Goodness-of-fit on F^{2}	1.050
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0373, \mathrm{wR}_{2}=0.1025$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0431, \mathrm{wR}_{2}=0.1070$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.23

Table 2. Bond Lengths for 4 a
Atom Atom Length/Å Atom Atom Length/Å

Table 2. Bond Lengths for 4a

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C10	$1.7400(14)$	C3	C4	$1.391(2)$
S1	C12	$1.7166(15)$	C3	C8	$1.403(2)$
N1	C3	$1.3803(19)$	C5	C4	$1.375(2)$
N1	C2	$1.43100(2)$	C6	C9	$1.453(2)$
N1	C1	$1.44300(2)$	C6	C7	$1.391(2)$
N2	N3	$1.3777(16)$	C6	C5	$1.386(2)$
N2	C9	$1.2724(19)$	C7	C8	$1.373(2)$
N3	C10	$1.3555(19)$	C11	C13	$1.47118)$
N4	C10	$1.2973(17)$	C11	C12	$1.355(2)$
N4	C11	$1.3871(17)$	C13	C18	$1.395(2)$
N5	C16	$1.4565(19)$	C13	C14	$1.392(2)$
N5	O00H	$1.2167(19)$	C14	C15	$1.380(2)$
N5	O00Z	$1.21700(2)$	C16	C15	$1.379(2)$
			C16	C17	$1.383(2)$

Table 3. Crystal data and structure refinement for $\mathbf{4 r}$

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters

KSK-SD 33
$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$
718.60

293(2)
monoclinic
P2 1 /c
18.3410(2)
7.29160(10)
25.2962(2)

90
106.6970(10)

90
3240.36(6)

4
1.473
3.446
1476.0
$0.002 \times 0.002 \times 0.001$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
5.03 to 136.366
$-22 \leq \mathrm{h} \leq 22,-8 \leq \mathrm{k} \leq 6,-29 \leq 1 \leq$
30
22215
$5884 \quad\left[\mathrm{R}_{\text {int }}=0.0278, \quad \mathrm{R}_{\text {sigma }}=\right.$
0.0225]

5884/0/434

Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
1.067
$\mathrm{R}_{1}=0.0337, \mathrm{wR}_{2}=0.0958$
$\mathrm{R}_{1}=0.0383, \mathrm{wR}_{2}=0.0992$
0.26/-0.53

Table 3. Bond Length for 4r

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C124	C4	1.7419(17)	C1	C2	1.390(3)
S33	C34	$1.7225(17)$	C1	C6	1.396(2)
S33	C32	1.7167(17)	C7	C11	1.354(2)
S10	C9	1.7291(17)	C31	C32	1.351(2)
S10	C11	1.7208(18)	C14	C15	1.465(2)
C148	C28	1.7431(18)	C44	C39	1.398(2)
N8	C7	1.396(2)	C44	C43	1.387(3)
N8	C9	1.302(2)	C15	C20	1.400(2)
N35	C31	1.393(2)	C15	C16	1.393(3)
N35	C34	1.298(2)	C39	C38	1.463(2)
N13	N12	1.360(2)	C39	C40	1.396(3)
N13	C14	1.278(2)	C26	C27	1.384(3)
O47	N45	1.223(2)	C2	C3	1.382(2)
N12	C9	1.363(2)	C4	C5	1.372(3)
N37	N36	1.360(2)	C4	C3	1.383(2)
N37	C38	1.272(2)	C5	C6	1.375(3)
O46	N45	1.223(2)	C30	C29	1.379(3)
N36	C34	$1.365(2)$	C20	C19	1.385(3)
N45	C44	$1.465(2)$	C29	C28	1.373(3)
O23	N21	1.222(3)	C16	C17	1.375(3)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C25	C31	$1.471(2)$	C28	C27	$1.375(3)$
C25	C26	$1.389(3)$	C43	C42	$1.367(3)$
C25	C30	$1.393(2)$	C19	C18	$1.360(3)$
N21	C20	$1.465(3)$	C40	C 41	$1.373(3)$
N21	O22	$1.215(2)$	C 42	C 41	$1.381(3)$
C1	C7	$1.472(2)$	C 18	C 17	$1.382(3)$

Table 4. Crystal data and structure refinement for 6c

Identification code	KSKSD10066
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{~S}$
Formula weight	451.18
Temperature/K	298
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	9.61780(10)
b/A	12.12040 (10)
c/Å	14.86240(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.5390(10)
γ°	90
Volume/ ${ }^{3}$	1708.58(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.754
μ / mm^{-1}	7.170
F(000)	888.0
Crystal size/mm ${ }^{3}$	$0.002 \times 0.002 \times 0.001$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 9.324$ to 136.402	
Index ranges	$-10 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 14,-17 \leq 1 \leq 17$
Reflections collected	16387
Independent reflections	$3078\left[\mathrm{R}_{\text {int }}=0.0276, \mathrm{R}_{\text {sigma }}=0.0199\right]$
Data/restraints/parameters	3078/0/209
Goodness-of-fit on F^{2}	1.050
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0330, \mathrm{wR}_{2}=0.0849$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0355, \mathrm{wR}_{2}=0.0864$
Largest diff. peak/hole / e \AA^{-3}	0.78/-0.77

Table 5. Bond Lengths for 6c

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br2	C 8	$1.899(3)$	C 5	C 6	$1.389(4)$
Br 1	C 14	$1.901(3)$	C 11	C 12	$1.386(4)$
S 1	C 1	$1.725(3)$	C 11	C 16	$1.392(4)$
S 1	C 3	$1.720(3)$	C 4	C 17	$1.500(4)$
N 1	C 2	$1.392(3)$	C 12	C 13	$1.387(4)$
N 1	C 1	$1.295(3)$	C 8	C 9	$1.379(4)$
N 3	N 2	$1.363(3)$	C 8	C 7	$1.366(4)$
N 3	C 4	$1.287(3)$	C 13	C 14	$1.367(4)$
N 2	C 1	$1.367(3)$	C 10	C 9	$1.371(4)$
C 2	C 11	$1.466(4)$	C 14	C 15	$1.379(5)$
C 2	C 3	$1.354(4)$	C 6	C 7	$1.388(4)$
C 5	C 4	$1.477(4)$	C 16	C 15	$1.371(5)$
C 5	C 10	$1.393(4)$			

