**Supporting Information** 

## Functional Nanoparticles-driven Self-assembled Diblock Copolymer Hybrid Nano-Patterns

Coste Mawélé Loudy <sup>1,2</sup>, Joachim Allouche <sup>1</sup>, Antoine Bousquet <sup>1</sup>, Laurent Billon <sup>1,2</sup>\*, Hervé Martinez <sup>1</sup>\*

<sup>1</sup> Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM-UMR 5254 Hélioparc, 2 avenue Président Angot, 64053 Pau, France

<sup>2</sup> Bio-inspired Materials Group: Functionalities & Self-assembly, E2S UPPA, 2 avenue Président Angot, 64053 Pau, France

This supporting information contains

-Total number of pages: 6 pages

-Total number of figures: 5 figures

SEM, TGA, UV-visible spectra and SAXS pattern of the block copolymers and NPs used in this work

-Total number of schemes: 7 Tables

XPS data of the block copolymers and NPs used in this work

Values of the dispersion, polar and hydrogen bonding parameters for the calcul of the interaction parameter  $\chi_{12}$ 



Figure SI1. a) SEM images of the section of the hybrid film with GNPs@PS 31 v%. b) is a magnification image of a)



**Figure SI2.** TGA thermograms of PS macro-initiator (black curve), PS-*b*-PVBN<sub>3</sub> (blue curve) and PS-*b*-PVBEG (red curve).



**Figure SI3.** (a) UV-vis spectrum, (b) photo of a suspension and (c) size distributions by Dynamic Light Scattering of polystyrene-thiol-capped gold nanoparticles.

$$Grafting \ density = \left[\frac{\left(\frac{W_{\% shell}}{100 - W_{\% shell}}\right) \times 100 - W_{\% core}}{M_{Ligand} \times S \times 100}\right] 10^{6} [\mu mol/m^{2}]$$
Equation SI1

Where  $M_{Ligand}$  is the molar mass of polystyrene thiol PS-thiol (6000 g.mol<sup>-1</sup>), S is the specific surface area of gold nanoparticles (62 m<sup>2</sup>.g<sup>-1</sup>, calculated from the hypothesis of a non-porous smooth spherical nanoparticle), and W % the weight loss percentage of the gold core and PS shell, due to its degradation (*shell*) and to the NPs (*W*%<sub>core</sub>), *i.e.* before grafting ( $\approx$ 3%). The specific surface area required for this equation, if not calculated by Brunauer–Emmett–Teller (BET) analysis, can also be calculated from Gao equation described below:

Surface area (S) = 
$$\frac{\sigma}{d\rho}$$
 Equation SI2

where  $\sigma$  is the shape factor of the nanoparticles, equals to 6 for spherical nanoparticles; *d* is the diameter of the nanoparticles ( $\approx$ 5 nm) and  $\rho$  is the density of the material (NP) and is equal to 19.32 g/cm<sup>3</sup>.

| Table SII. At 5 data of 1 5-0-1 V De min |                          |         |           |               |  |
|------------------------------------------|--------------------------|---------|-----------|---------------|--|
| Orbitals                                 | Components               | BE (eV) | FWHM (eV) | At. Conc. (%) |  |
| C 1s                                     | C=C                      | 284.5   | 0.9       | 67.1          |  |
|                                          | С-С/С-Н                  | 285.0   | 0.9       | 22.3          |  |
|                                          | C-Cl                     | 286.6   | 0.9       | 1.9           |  |
|                                          | π-π*                     | 291     | 0.9       | 3.5           |  |
| Cl 2p                                    | Cl 2p <sub>3/2-1/2</sub> | 200/202 | 1.1       | 1.7           |  |

Table SI1. XPS data of PS-*b*-PVBC film

BE: Binding Energy FWHM: Full Width at Half Maximum At. Conc.: Atomic Concentration

| I able SI2. XPS data of PS-D-PVBN3 film |                     |         |           |               |  |  |
|-----------------------------------------|---------------------|---------|-----------|---------------|--|--|
| Orbitals                                | Components          | BE (eV) | FWHM (eV) | At. Conc. (%) |  |  |
|                                         | C=C (cycle)         | 284.5   | 0.9       | 67.5          |  |  |
|                                         | C-C/C-H             | 285.0   | 0.9       | 24.2          |  |  |
| C 1s                                    | C–N                 | 286.2   | 1.1       | 2.6           |  |  |
|                                         | $\pi$ - $\pi^*$     | 291     | 1.3       | 3.7           |  |  |
| N 1s                                    | N <sup>-</sup> /N-R | 400.5   | 1.1       | 1.4           |  |  |
|                                         | $\mathbf{N}^+$      | 404.3   | 1.1       | 0.7           |  |  |

Table SI3. XPS data of PS-b-PVBEG film BE (eV) FWHM (eV) At. Conc. (%) Orbitals Components C=C 51.1 284.5 1 С-С/С-Н 285.0 1.017.2 C 1s С-N/С-О 286.6 1.0 14.6 π-π\* 291 1.6 1.8 N (Triazole) 399.6/401.7 N 1s 2.9 1.2-1.2 O 1s 0-С 532.8 1.7 12.4

Table SI4. Values of the dispersion, polar and hydrogen bonding parameters.

| Polymer           | $\delta_d(MPa^{1/2})$ | $\delta_p(MPa^{1/2})$ | $\delta_h(MPa^{1/2})$ | $\delta_{tot}(MPa^{1/2})$ |
|-------------------|-----------------------|-----------------------|-----------------------|---------------------------|
| PS                | 17.6                  | 18.5                  | 19.1                  | 17.7                      |
| PVBC              | 2.3                   | 5                     | 11                    | 7                         |
| PVBN <sub>3</sub> | 3                     | 3.7                   | 9.5                   | 5.5                       |
| PVBEG             | 18                    | 19.5                  | 23.9                  | 19.8                      |

Since Flory Huggins interaction parameters ( $\chi_{12}$ ) between PS and PVBN<sub>3</sub> or PVBEG are not available, they were calculated from pure component data. First, Hansen Solubility Parameters (HSPs) were determined using HSPiP software (5<sup>th</sup> edition 4.2.02). Then the relation described by Lindvig et *al.*<sup>63</sup> was used (Equation 2). This formula gives the Flory-Huggins interaction parameters using HSPs that combine the contribution due to dispersion (van der Waals,  $\delta_d$ ), the contribution due to polar forces ( $\delta_p$ ) and the contribution due to hydrogen-bonding forces ( $\delta_h$ ). The values of the dispersion, polar and hydrogen bonding parameters are reported in Table SI4. Using  $\alpha = 1$  in equation 2 and HSP parameters reported in Table SI4, the Fluory-Huggins parameters ( $\chi_{12}$ ) in PS-*b*-PVBC, PS-*b*-PVBN<sub>3</sub> and PS-*b*-PVBEG were calculated and were equal to 0.11, 1.27 and 0.28, respectively.

$$\chi_{12} = \alpha \frac{V_1}{RT} \left[ \left( \delta_{d1} - \delta_{d2} \right)^2 + 0.25 \left( \delta_{p1} - \delta_{p2} \right)^2 + 0.25 \left( \delta_{h1} - \delta_{h2} \right)^2 \right]$$
: Equation 2

 $V_1$  is the molar volume, *R* the gas constant, *T* the absolute temperature,  $\delta_d$  van der Waals contribution,  $\delta_p$  the contribution due to polar forces and  $\delta_h$  the contribution due to hydrogenbonding forces,  $\alpha$  is a constant equal to 1.

|          | nanoparticles            |             |           |               |  |
|----------|--------------------------|-------------|-----------|---------------|--|
| Orbitals | Components               | BE (eV)     | FWHM (eV) | At. Conc. (%) |  |
| Au 4f    | Au 4f <sub>7/2-5/2</sub> | 83.8-87.7   | 1.1       | 0.3           |  |
| C 1s     | C=C                      | 284.5       | 1.0       | 55.9          |  |
|          | С-С/С-Н                  | 285.0       | 1.0       | 21.0          |  |
|          | С-N/С-О                  | 286.2       | 1.2       | 8.4           |  |
|          | π-π*                     | 291.0       | 1.7       | 2.4           |  |
| N 1s     | N Triazole               | 399.5/401.8 | 2.2       | 1.4           |  |
| O 1s     | O–C                      | 532.7       | 1.5       | 7.0           |  |
|          |                          |             |           |               |  |

 Table SI5. XPS data of PS-b-PVBEG film containing 8 v% of polystyrene-capped gold nanoparticles

|          | nanoparticles            |             |           |               |  |
|----------|--------------------------|-------------|-----------|---------------|--|
| Orbitals | Components               | BE (eV)     | FWHM (eV) | At. Conc. (%) |  |
| Au 4f    | Au 4f <sub>7/2-5/2</sub> | 84-87.5     | 1.1       | 0.8           |  |
| C 1s     | C=C                      | 284.5       | 0.9       | 61.9          |  |
|          | С-С/С-Н                  | 285.0       | 0.9       | 21.6          |  |
|          | С-N/С-О                  | 286.2       | 1.3       | 5.5           |  |
|          | π-π*                     | 291         | 1.3       | 4.3           |  |
| N 1s     | N (Triazole)             | 399.5/401.8 | 1.1       | 1.1           |  |
| O 1s     | O–C                      | 532.9       | 1.7       | 4.7           |  |
|          |                          |             |           |               |  |

 Table SI6. XPS data of PS-b-PVBEG film containing 19 v% of polystyrene-capped gold nanoparticles

 Table SI7. XPS data of PS-b- PVBEG film containing 31 v% of polystyrene-capped gold nanoparticles

|          | nanoparticles            |             |           |               |  |
|----------|--------------------------|-------------|-----------|---------------|--|
| Orbitals | Components               | BE (eV)     | FWHM (eV) | At. Conc. (%) |  |
| Au 4f    | Au 4f <sub>7/2-5/2</sub> | 83.8-87.7   | 1.38      | 1.1           |  |
| C 1s     | C=C                      | 284.5       | 1         | 65.6          |  |
|          | С-С/С-Н                  | 285.0       | 1         | 19.8          |  |
|          | C-N/C-O                  | 286.4       | 1.4       | 2.3           |  |
|          | π-π*                     | 291         | 1.5       | 5.1           |  |
| N 1s     | N (Triazole)             | 399.5/401.7 | 1.3       | 0.8           |  |
| O 1s     | O–C                      | 532.6       | 1.5       | 2.8           |  |



Figure SI4. SAXS pattern of the PS-*b*-PVBEG.

![](_page_7_Figure_0.jpeg)

Figure SI5. An overview of the evolution of atomic composition the constituents of the hybrid film with the addition of GNPs@PS