Catalyst-Free Transesterification Vitrimers: activation via α - difluoroesters

Supporting Information

Florian Cuminet, ^a Dimitri Berne, ^a Sébastien Lemouzy, ^a Éric Dantras, ^b Christine Joly-Duhamel, ^a Sylvain Caillol, ^a Éric Leclerc ^a and Vincent Ladmiral*^a

a ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

b CIRIMAT, Université Toulouse 3 Paul Sabatier, Physique des Polymères, 118 Route de Narbonne, 31062 Toulouse, France

*Corresponding author: Vincent Ladmiral, email: vincent.ladmiral@enscm.fr

Table of Contents

Catalyst-Free Transesterification Vitrimers: activation via α -difluoroesters	1
Supporting Information	1
I. TPE-TE characterizations	3
Figure S1. ¹ H NMR spectrum of the triester TPE-TE in CDCl ₃	3
Figure S2. ¹⁹ F NMR spectrum of the triester TPE-TE in CDCl ₃	4
Figure S3. ¹³ C NMR spectrum of the triester TPE-TE in CDCl ₃	4
Figure S4. 1 H NMR spectrum of the disubstituted byproduct in CDCl $_3$	5
Figure S5. ¹⁹ F NMR spectrum of the disubstituted byproduct in CDCl ₃	6
Figure S6. ¹³ C NMR spectrum of the disubstituted byproduct in CDCl ₃	7
Figure S7. COSY ¹ H NMR spectrum of the disubstituted byproduct in CDCl ₃	8
Figure S8. HSQC ¹ H- ¹³ C NMR spectrum of the disubstituted byproduct in CDCl ₃	9
II. TPE-TAF characterizations	.10
Figure S9. ¹ H NMR spectrum of the triacid TPE-TAF in acetone-d ₆	.10
Figure S10. ¹⁹ F NMR spectrum of the triacid TPE-TAF in acetone-d ₆	.11
Figure S11. 13 C NMR spectrum of the triacid TPE-TAF in acetone-d $_6$.12
Figure S12. FTIR spectrum of the triacid TPE-TAF	.13
Figure S13. TGA thermogram of the triacid TPE-TAF (air, 20 °C.min ⁻¹)	.14
III. BDGE characterizations	.15
Figure S14. ¹ H NMR spectrum of the commercial BDGE in CDCl ₃	.15
Figure S15. ¹³ C NMR spectrum of the commercial BDGE in CDCl ₃	.16
Figure S16. FTIR spectrum of the commercial BDGE	.17
A. Experimental procedure for the determination of BDGE epoxy equivalent weight (EEW) by ¹ NMR in CDCl ₃	H 18
B. Experimental procedure for the determination of BDGE epoxy equivalent weight (EEW) by DSC	.19

IV. TPE-TAF / BDGE vitrimer characterizations2	20
Figure S17. Determination of the gel time of the TPE-TAF/BDGE mixture at 20 °C by rheology2	20
Figure S18. DSC thermogram of the TPE-TAF/BDGE material after curing 3 h at 150 °C (nitrogen, 20 °C.min ⁻¹)2	, 21
Table S1. Gel content of the pristine TPE-TAF/BDGE material after curing 3 h at 150 °C in various solvents2	s 22
Figure S19. DMA thermogram of the pristine TPE-TAF/BDGE material after curing 3 h at 150 $^\circ$ C2	22
Figure S20. TGA thermogram of the pristine TPE-TAF/BDGE material after curing 3 h at 150 °C (air, 20 °C min ⁻¹)2	23
Table S2. Equation and fitting parameters of the Kohlrausch-Williams-Watts stretched exponential model for the stress relaxation experiments	23
Figure S21. FTIR spectrum of the cured TPE-TAF/BDGE material2	24
Figure S22. Stacked FTIR spectra of TPE-TAF, BDGE, material after gelation 4 days at room temperature and TPE-TAF/BDGE material after curing 3 h at 150 °C	25

I. TPE-TE characterizations

Figure S1. ¹H NMR spectrum of the triester TPE-TE in CDCl_3

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1 Figure S2. ¹⁹F NMR spectrum of the triester TPE-TE in CDCl₃

Figure S3. ^{13}C NMR spectrum of the triester TPE-TE in CDCl_3

Figure S4. ¹H NMR spectrum of the disubstituted by product in CDCl_3

Figure S6. ¹³C NMR spectrum of the disubstituted byproduct in CDCl₃

Figure S8. HSQC ¹H-¹³C NMR spectrum of the disubstituted byproduct in CDCl₃

II. TPE-TAF characterizations

Figure S9. ¹H NMR spectrum of the triacid TPE-TAF in acetone- d_6 . Very small signals at 1.30 and 4.39 ppm corresponds to residual ester functions (which amount to less than 2mol% compared to the acid groups).

Figure S10. ¹⁹F NMR spectrum of the triacid TPE-TAF in acetone- d_6

Figure S11. $^{\rm 13}{\rm C}$ NMR spectrum of the triacid TPE-TAF in acetone-d_6

Figure S12. FTIR spectrum of the triacid TPE-TAF

Figure S13. TGA thermogram of the triacid TPE-TAF (air, 20 °C.min⁻¹)

Figure S14. ¹H NMR spectrum of the commercial BDGE in CDCl_3

Figure S15. $^{13}\mathrm{C}$ NMR spectrum of the commercial BDGE in CDCl_3

Figure S16. FTIR spectrum of the commercial BDGE

A. Experimental procedure for the determination of BDGE epoxy equivalent weight (EEW) by ^1H NMR in CDCl_3

50 to 70 mg of BDGE and 50 to 80 mg of benzophenone were dissolved in deuterated chloroform. ¹H NMR spectra were integrated in the 7.87-7.28 ppm range for benzophenone protons (10 H), in the 3.19-2.97 ppm range for CH oxirane and in the 2.82-2.45 range for CH₂ oxirane. EEW was calculated as follows :

$$EEW_{CH} = \frac{m_{BDGE} \times \int_{7.28}^{7.87} benzophenone \times M_{benzophenone}}{10 \times m_{benzophenone} \times \int_{2.97}^{3.19} CH \text{ oxirane}}$$

$$EEW_{CH_2} = \frac{2 \times m_{BDGE} \times \int_{7.28}^{7.87} benzophenone \times M_{benzophenone}}{10 \times m_{benzophenone} \times \int_{2.45}^{2.82} CH_2 \text{ oxirane}}$$

m _{BDGE} (mg)	m _{benzophenone} (mg)	$\int_{7.28}^{3.19} CH \text{ oxirane}$	$\int_{7.28}^{2.82} CH_2 \text{ oxirane}$ $\frac{2.45}{7.87}$ benzophenone	EEW _{CH}	EEW _{CH2}	
73.3	80.9	0.157	0.324	117	113	
54.6	80.0	0.117	0.241	118	115	
57.8	50.7 0.197		0.406	117	114	
			Average EEW	115 ± 4 g/eq		

B. Experimental procedure for the determination of BDGE epoxy equivalent weight (EEW) by DSC

To confirm the EEW value obtained by NMR, a DSC study was performed. Thermosets of BDGE and succinic acid were made with different stoichiometric ratios. The T_g of the thermosets was measured by DSC, the maximum value corresponding to a acid/epoxy function ratio of 1:1, allowing to calculate the corresponding EEW, knowing the acid HEW (hydrogen equivalent weight). HEW of succinic acid is 59 g/eq.

The coarse acid powder was first crushed in a mortar to obtain a powder as thin as possible. Then it was mixed manually with the right amount of BDGE in a tube. The tube was sealed with a septum and cured overnight at 200 °C in an oven. The thermosets obtained were analysed by DSC (-100 to + 150 °C at 20 °C/min). The Tg was determined upon second heating ramp. The optimal ratio was 1:1, which confirmed the EEW determined by NMR.

m _{succinic} acid (mg)	m _{BDGE} (mg)	Ratio (based on NMR EEW)	<i>T_g</i> (° <i>C</i>)
66.9	119	0.91	7.9
70.1	134.5	0.99	8
81.6	158.6	1.00	9.4
76.1	156	1.05	7.7
82.8	178.4	1.11	3.7
86.9	206.9	1.22	3.3

Figure S17. Determination of the gel time of the TPE-TAF/BDGE mixture at 20 °C by rheology

Figure S18. DSC thermogram of the TPE-TAF/BDGE material after curing 3 h at 150 °C (nitrogen, 20 °C.min⁻¹)

various solvents									
<u>Solvent</u>	Acetone	THF	Toluene	Cyclohexane	DMSO	CH_2Cl_2	Acetonitrile		
<u>GC (%)</u>	94	94	99	99	96	97	96		

Table S1. Gel content of the pristine TPE-TAF/BDGE material after curing 3 h at 150 °C in various solvents

Figure S19. DMA thermogram of the pristine TPE-TAF/BDGE material after curing 3 h at 150 $^{\circ}\mathrm{C}$

Figure S20. TGA thermogram of the pristine TPE-TAF/BDGE material after curing 3 h at 150 °C (air, 20 °C min⁻¹)

Table S2. Equation and fitting parameters of the Kohlrausch-Williams-Watts stretched exponential model for the stress relaxation experiments

G	$\gamma = (-t)\beta$	T (°C)	170	180	190	200	210
<u> </u>	$-\rho\left(\frac{-\iota}{\tau}\right)^{\prime}$	τ (s)	79692	43025	30376	20772	13097
C	- 6 \ / /	β	0.57	0.58	0.58	0.53	0.56
G_0		R ²	0.99513	0.99975	0.99906	0.99804	0.99923

Note: for β = 1 the KWW expression become the Maxwell equation

Figure S21. FTIR spectrum of the cured TPE-TAF/BDGE material

Figure S22. Stacked FTIR spectra of TPE-TAF, BDGE, material after gelation 4 days at room temperature and TPE-TAF/BDGE material after curing 3 h at 150 $^\circ C$