Electronic Supplementary Information

Functional pH-responsive polymers containing dynamic enaminone linkages for the release of active organic amines

Spyridon Efstathiou,^a Congkai Ma,^a Despina Coursari,^a Georgios Patias,^a Lucas Al-Shok,^a Ahmed M. Eissa ^{a,b*} and David M. Haddleton ^{a*}

 ^α Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
^b Department of Polymers, Chemical Industries Research Division, National Research Centre, EI Bohouth St. 33, Dokki, Giza 12622, Cairo, Egypt

Contents

1	Exp	erimental2
	1.1	Materials2
	1.2	Instrumentation
	1.3	Experimental Procedures
2	Sup	plementary analysis and experimental data11
	2.1	Characterisation of synthesised mPEG _x -BPA ($x = 43$ or 113) macroinitiators11
	2.2 Cu(II)-	Optimisation experiments for the synthesis of pAEMA homopolymers by photoinduced mediated RDRP
	2.3	$Characterisation \ of \ pAEMA \ homopolymers \ synthesised \ by \ photoinduced \ Cu(II)-RDRP \dots 16$
	2.4 Cu(II)-	Characterisation of mPEG _x - <i>b</i> -pAEMA _y block copolymers synthesised by photoinduced RDRP19
	2.5	Polymerisation Kinetic studies
	2.6	Modification results of pAEMA homopolymers with propylamine23
	2.7	Hydrolysis experiment and proposed mechanism24
	2.8 with be	Modification results of pAEMA _x homopolymers and mPEG _x - <i>b</i> -pAEMA _y block copolymers enzocaine
	2.9	Thermal Characterisation of synthesised products
	2.10	Stability studies, DLS and Zeta potential data of block copolymers29
	2.11	Benzocaine release UV data at different pH environments
3	Refe	rences

1 Experimental

1.1 Materials

2-(Acetoacetoxy)ethyl methacrylate (AEMA, 95%, passed through a column of activated basic alumina prior use), methyl α -bromophenylacetate (MBPA, 97%), propylamine (PR, 98%), α bromophenyl acetic acid (98%), copper(II) bromide (Cu(II)Br₂, 99%), benzocaine (BNZ, HPLC, \geq 99%), *p*-Toluenesulfonic acid monohydrate (*p*-TsOH ACS reagent, \geq 98.5%), 2-(hydroxy)ethyl methacrylate (HEMA, 98%) and Celite[®] S were purchased from Sigma-Aldrich. Poly(ethylene glycol) monomethyl ether (mPEG₁₁₃-OH, M_n = 5,000 g.mol⁻¹) was also purchased from Sigma-Aldrich. Poly(ethylene glycol) monomethyl ether (mPEG₄₃-OH, M_n = 1,900 g.mol⁻¹), *N*, *N*'-dicyclohexylcarbodiimide (DCC, 99%), and dimethyl sulfoxide were purchased from Alpha Aesar by Thermo Fisher Scientific. 4-(Dimethylamino)pyridine (DMAP, \geq 99%) was purchased from ReagentPlus[®] while *tris*(2-(dimethylamino)ethyl)amine (Me₆TREN) was synthesised according to previously reported literature.¹ Regenerated cellulose dialysis membranes were purchased from Specta/Por[®] with a MWCO cut-off of 2 kDa and 1 kDa. Phosphate buffers 0.2 M pH 4.4, 3.5 and 6.6 were purchased from Alfa Aesar. All materials were used as received unless otherwise stated.

1.2 Instrumentation

Size exclusion chromatography (SEC) analysis was performed on an Agilent Infinity II MDS instrument equipped with differential refractive index (DRI) and dual ultraviolet (UV) detectors. The mobile phase was DMF + 5mM NH₄BF₄ at 50 °C with a flow rate of 1 mL min⁻¹ and an injection volume of 100 μ L, while poly(methyl methacrylate) (PMMA) standards (purchased from Agilent EasyVials) were used as calibrants. The instrument was equipped with 2 x PolarGel Mixed D columns (300 x 7.5 mm) and a PLgel 5 μ m guard column. Polymers were dissolved in DMF and filtered through a GVHP nylon membrane (0.22 μ m pore size) before analysis. Experimental molar mass ($M_{n, SEC}$) and dispersities (D) were calculated using Agilent GPC/SEC software.

¹H-NMR, ¹³C-NMR, and DOSY-NMR spectra were recorded in a Bruker DPX-400 or 500 MH_z instrument using deuterated dimethyl sulfoxide (DMSO-d₆) as a solvent. Chemical shifts are given as δ in parts per million (ppm). For the kinetic experiments, the monomer percent conversions were determined using the above equation:

Conv. (%) =
$$(1 - \int I_{6.04ppm}) \times 100$$

Where $\int I_{6.04ppm}$ corresponds to the integral of a monomer vinyl proton after referencing the -CH₂CH₂ of the side chain as $\int I_{4.00-4,50ppm} = 4$.

All spectra were analysed using ACD/NMR Processor software.

Infrared spectroscopy was performed in a Bruker ALPHA II Fourier transform infrared (FTIR) spectrometer fitted with a crystal plate and a pressure tower running at 65 scans per sample with a speed of 0.5 cm s⁻¹.

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS) was performed on a Bruker Autoflex Speed MALDI-ToF mass spectrometer, equipped with a nitrogen laser delivering 2 ns laser pulses at 337 nm with positive ion ToF detection with an accelerating voltage of 25 kV. Solutions were prepared as follows: *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene] malononitrile as the matrix (40 mg mL⁻¹) and the polymer sample (10 mg mL⁻¹) were each dissolved in THF containing sodium iodide as a cationizing agent (1 mg mL⁻¹). 20 μ L of matrix and sample were mixed and 0.5 μ L of the final solution was applied on the target plate. Spectra recording was made in reflective mode calibrating with PEG 5,000 Da.

Differential scanning calorimetry (DSC) was carried on a TA DSC 2500 instrument under nitrogen flow (50 mL min⁻¹) with a heating rate of 10 °C min⁻¹. Samples were loaded in 40 μ L aluminum pans and heated for two cycles in total between -100 and 200 °C. All presented data concern the 2nd cycle thermograms.

UV-Vis spectra were recorded on an Agilent Technologies Cary 60 UV-Vis spectrometer in the range of 200-500 nm using HPLC graded water as a solvent. A glass cuvette (from HELLMA) with a 10 mm optical length was used for all measurements.

Gas chromatography flame ionization detection (GC-FID) was performed on a Shimadzu GC2014 equipped with a Shimadzu AO20i autosampler. The instrument had a polar Stabilwax-DA column (length 30 m, 0.32 mm ID and 0.25 µm film thickness) with hydrogen as the carrier

gas. An injection volume of 1 μ L was used with a 39-split ratio. The injection temperature was 250 °C and the flame temperature was 300 °C. The heating profile was 60 – 200 °C at a rate of 10 °C min⁻¹ and 200-240 °C at a rate of 15 °C min⁻¹ held for 3 min. Samples were prepared by dissolving few drops in CHCl₃.

Transmission Electron Microscopy (TEM) images were obtained using a Jeol 2100 plus microscope, operated at 200 kV, and fitted with a Gatan Orius 11 megapixel digital camera. Samples were prepared by drop-casting a few milliliters of sample dispersions after ultrasonication onto holey carbon grids, allowing the solvent to evaporate and leaving the sample to rest for 24 h at ambient temperature.

Dynamic Light Scattering (DLS) was used to determine the hydrodynamic diameter (D_h) and the size distribution (PD) of the nano-assemblies using an Anton-Paar Litesizer 500 equipped with a 40 mW - 658 nm laser diode source. Experiments were conducted at 25 °C with a 175 ° measurement angle (backscatter), an equilibration time of 12 min, and polystyrene latex as the reference material (RI = 1.585, Abs. coefficient = 0.0010). All determinations were carried out in triplicates with a maximum number of 60 runs per measurement. Solvents were filtered through a 0.45 µm *Fisher brand* nylon syringe filter prior use to remove undesirable dust particles.

Zeta Potential Analysis took place on an Anton-Paar Litesizer 500 at room temperature using distilled water (pH = 7) as the analysis media while applying a voltage of 10 V. The reported zeta potential data were an average of three runs with 40 measurements recorded per run.

UV photo polymerisations: Small scale photo polymerisations were conducted under a *Mylee* UV nail gel curing lamp equipped with four 9 W bulbs emitting at $\lambda_{max} \sim 365$ nm. For bigger scale reactions, a custom-made UV box with $\lambda_{max} \sim 360$ nm was used.

Figure S1. UV curing lamp equipped with four 9 W bulbs emitting at $\lambda_{max} \sim 365$ nm for small scale

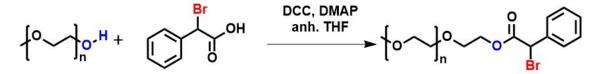

photo polymerisations.

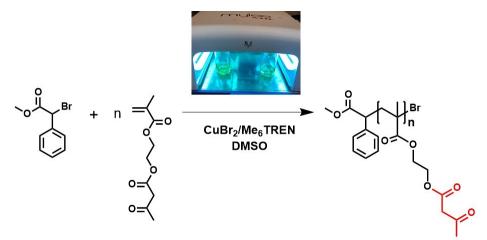
Figure S2. Custom-made UV box set up with $\lambda_{max} \sim 360$ nm used for higher scale photo polymerisations.

1.3 Experimental Procedures

Poly(ethylene glycol) monomethyl ether-2-bromo-2-phenylacetate macroinitiator synthesis by DCC coupling

mPEG₁₁₃-OH (20.0 g, 4.0 mmol, 1 eq.) was dissolved in anhydrous THF (150 mL) in a dry two-neck round bottom flask equipped with a magnetic stir bar. After complete dissolution of the polymer flakes, the flask was immersed in an ice bath and sealed with a rubber septum under nitrogen flow. DMAP (0.1 g, 0.8 mmol, 0.2 eq.), DCC (1.65 g, 8.0 mmol, 2 eq.) and α -bromophenyl acetic acid (3.4 g, 16.0 mmol, 4 eq.) were added successively. The reaction was let at 0 °C for 2 h and at room temperature for another 24 h until a second addition of DMAP (0.65 g, 5.3 mmol, 1 eq.) and DCC (2.19 g, 10.6 mmol, 2 eq.) was followed by cannulating a degassed mixture of them in anhydrous THF (6 mL) leaving the reaction for additional 24 h. The resulting mixture was filtered to remove most insoluble impurities and concentrated at a lower volume. The concentrated solution was left at -20 °C for at least 2 h and filtered (\times 2)

through Celite[®] S to receive a clear yellow solution. The resulting solution was finally concentrated and precipitated (× 2) in cold diethyl ether. Solids were filtered and dried under vacuum for 24 h to receive a pale-yellow solid (70 % yield) referred as mPEG₁₁₃-BPA. The modification efficiency was found to be > 99% based on ¹H-NMR (400 MHz, DMSO-d₆) integrations in combination with the complete disappearance of the –OH peaks at δ = 4.56 ppm.

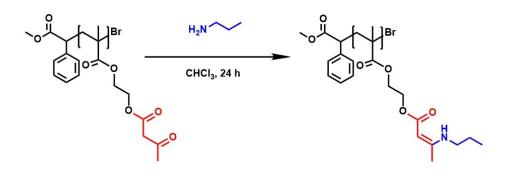

¹**H-NMR** (400 MHz, DMSO-d₆), *δ* (ppm): 3.25 (s, 3H, -O-CH₃), 3.51 (s, 168H, -O-CH₂-CH₂), 4.27 (m, 2H, -CH₂-O-CH₂-CH₂-O-CO), 5.95 (s, 1H, CH-Br), 7.40 (m, 3H, aromatic ring) and 7.57 (d, 2H, J = 6.72, aromatic ring).

¹³C-NMR (400 MHz, DMSO-d₆), δ (ppm): 47.3 (C-Br), 58.5 (CH₃-O-), 65.9 (CH₂-CH₂-O-CO), 68.4 (CH₂-CH₂-O-CO), 70.3 (-O-CH₂-CH₂), 71.8 (CH₃-O-CH₂-), 127.1 (=CH-CH=CH-), 129.2 (=CH-CH=CH-), 129.6 (=CH-C-(CBr)=CH-), 136.7 (=CH-C-(CBr)=CH-) and 168.5 (O-CO-CBr-).

FT-IR (v, cm⁻¹): 698 (C-Br stretch), 1,750 (C=O)

mPEG₁₁₃-**BPA** : $M_{n, SEC} = 8,800 \text{ g.mol}^{-1}$ ($\mathbf{D} = 1.05$) and **mPEG**₄₃-**BPA** : $M_{n, SEC} = 4,400 \text{ g.mol}^{-1}$ ($\mathbf{D} = 1.06$)

Synthesis of pAEMA homopolymers via photoinduced Cu-RDRP

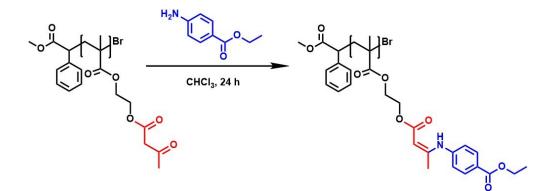

For a targeted $DP_{n, target} = 80$, an aluminum foiled vial was charged with Cu(II)Br₂ (1.5 mg, 0.05 eq.), Me₆TREN (12.6 µL, 0.36 eq.) and DMSO (2 mL) following sonication for ~ 1 min until complete dissolution of the copper complex. AEMA (2 mL, 0.02 mol, 80 eq.), MBPA (20.6 µL, 1 eq.) along with a magnetic stir bar were added and the vial was sealed with a rubber septum and degassed for 20 min with nitrogen. The aluminum foil was removed and the degassed reaction mixture was immediately exposed to UV light ($\lambda_{max} \sim 365$ nm) for the polymerisation to commence. The reaction was UV irradiated for 12 h to reach > 99 % conversion based on ¹H-NMR. After the pass of polymerisation, the mixture was diluted with

THF and passed through an activated alumina column to remove copper. Finally, polymers were precipitated (\times 3) in a mixture of cold H₂O: MeOH (2:1) to remove potential unreacted substances following freeze-drying to yield purified **pAEMA**₈₀ homopolymers. Products were finally analysed by NMR and SEC to determine the degree of polymerisation (DP_n) and dispersity (*D*).

Synthesis of mPEG_x-b-pAEMA_y block copolymers via photoinduced Cu-RDRP

For a chain extension using mPEG₄₃-BPA macroinitiator targeting DP_{n, target} = 80, Cu(II)Br₂ (1.5 mg, 0.05 eq.), Me₆TREN (12.6 µL, 0.36 eq.), DMSO (0.5 mL) and a magnetic stir bar were charged in an aluminum foiled vial which was sonicated for ~ 1 min until complete dissolution of the copper complex. In a second vial, synthesised mPEG₄₃-BPA macroinitiator ($M_{n, NMR} = 2,097$ g mol⁻¹, 0.26 g, 1 eq.) was dissolved in DMSO (1.5 mL) following addition of AEMA (2 mL, 0.01 mol, 80 eq.). The mixture was carefully transferred to the first vial which was sealed with a rubber septum and degassed for 20 min with nitrogen. The polymerisation mixture was immediately exposed to UV light ($\lambda_{max} \sim 365$ nm) for 12 h reaching > 99 % conversion. The reaction was diluted with THF and passed through activated alumina to remove the remaining copper salts. Polymers were then precipitated (× 3) in a mixture of cold EtOH: MeOH (2:1) to remove any unreacted monomer and unconsumed macroinitiator. The blocks were finally dried under vacuum to yield purified **mPEG₄₃-b-pAEMA_y** block copolymers. The same protocol was followed using mPEG₁₁₃-BPA macroinitiator with the difference of using a [Cu(II)Br₂] : [Me₆TREN] = [0.1] : [0.72] ratio yielding **mPEG₁₁₃-b-pAEMA_y** block copolymers.

Functionalisation of pAEMA₄₂ homopolymers with propylamine



In a typical modification procedure, purified pAEMA₄₂ (0.1 g, $n_{pol.} = 0.01$ mmol, $M_{n, NMR} = 9,200$ g mol⁻¹, D = 1.33, $n_{-acet.} = 0.42$ mmol, 1 eq.) was charged in a vial and dissolved in CHCl₃ (4.0 mL). Propylamine (69 µL, 2 eq. to the moles of acetoacetate groups (n_{-acet}) was added and the reaction was let for 24 h at ambient temperature. The reaction mixture was concentrated under suppressed air and precipitated once in cold MeOH. The precipitate was collected after centrifugation and dried under vacuum at 40 °C for 24 h to remove the remaining solvents and the excess propylamine (b.p. = 48 °C). The modified **pAEMA₄₂/PrA** was analysed by NMR and FT-IR to determine the modification efficiency (%).

Acid hydrolysis of pAEMA₄₂/PrA modified homopolymers

Modified **pAEMA**₄₂/**PrA** (0.1 g, $n_{-PR.} = 0.36$ mmol, $M_{n, NMR} = [MW_{MBPA} + (DP_{acet.} \times MW_{AEMA})] + [DP_{PR} \times (MW_{AEMA} + MW_{PR} - 18)] = 10,800$ g mol⁻¹, 93 % modification based on ¹H-NMR) was dissolved in 4 mL of THF. Excess of H₃PO₄ 85 wt% (38 µL, 0.72 mmol, 2 eq.) was added and the hydrolysis was let for 24 h. After 24 h, white propylamine salt appeared and removed by centrifugation while the supernatant was dialyzed against THF (MWCO = 2 kDa dialysis membrane) to remove any excess acid. Finally, the solvent was removed *in vacuo* and the hydrolysed polymers were dried under vacuum at 40 °C.

Functionalisation protocol of homopolymers and block copolymers with benzocaine

In a typical modification, purified pAEMA₄₂ (0.5 g, $n_{pol.} = 0.05$ mmol, $M_{n, NMR} = 9,200$ g mol⁻¹, D = 1.33, $n_{-acet.} = 2.1$ mmol, 1.0 eq.) was dissolved in ~ 7.0 mL of CHCl₃. Benzocaine (2.1 g, 12.6 mmol, 6 eq. to the moles of acetoacetate groups) and a stir bar were added and the reaction was let for 24 h at 40 °C. The modified polymers were precipitated (× 3) in cold diethyl ether under fast stirring and dried under vacuum at 25 °C to yield purified **pAEMA₄₂/BNZ**

(modification efficiency %) modified polymers. A similar protocol was followed for the modification of mPEG_x-*b*-pAEMA_y block copolymers. The temperature, solvent, and eq. of BNZ were altered depending on the desired degree of modification while p-TsOH was included in the recipe to boost modification when required. Finally, polymers were characterised by NMR and FT-IR to determine the modification efficiency (%).

Nanoparticles formation via the direct dilution method

2 mg of mPEG_x-*b*-pAEMA_y block copolymer were dissolved in 4 mL of previously filtered DI water at ambient temperature. This solution was sonicated for 10 min until complete dissolution of the blocks leading to a 0.5 mg mL⁻¹ opaque solution of nanoparticles. A similar procedure was used for the benzocaine modified blocks. Nanoparticles were characterised by DLS and TEM.

Stock and working solutions of benzocaine

A 200 μ M stock solution of benzocaine was initially prepared by transferring 3.3 mg of BNZ in a 100 mL volumetric flask and dissolving in 1 mL of absolute ethanol. Then, the volume was made up to 100 mL with Milli-Q[®] water following 5 min sonication. Working solutions of different concentrations were then prepared (between 0.5 and 16.5 μ g mL⁻¹) by diluting the stock solution appropriately.

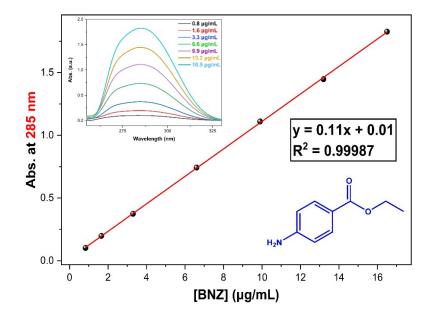


Figure S3. Calibration curve of benzocaine molecule in water recorded at $\lambda_{max} = 285$ nm.

In vitro release study of benzocaine modified mPEG₁₁₃-b-pAEMA₂₈/BNZ(70 %) NPs

A more accurate determination of benzocaine's dosage (μ g) in the studied NPs was conducted using ¹H-NMR spectroscopy with a known amount of DCM as the internal standard. It was found that 2.5 mg of block copolymers contained 700 μ g of benzocaine. A 100 mg mL ⁻¹ stock solution of mPEG₁₁₃-*b*-pAEMA₂₈/BNZ(70 %) NPs was prepared in DMF keeping it in the freezer to avoid amine release. As an example, 25 μ L from the stock were injected into 5 mL of DI water giving a solution of 0.5 mg mL ⁻¹ (containing 0.5 % of DMF). The solution of NPs was transferred to a 1 kDa dialysis bag, immersed in a 50 mL falcon tube containing 40 mL of the desired phosphate buffer (pH = 3.5, 4.4, and 6.6) and incubated under gentle agitation at 37 °C. At designated time points, 2 mL of buffer solution were collected and replaced with 2 mL of fresh benzocaine-free buffer. The collected samples were analysed by UV-Vis and the concentration of benzocaine at it each time point was calculated by fitting with benzocaine's calibration curve recorded at $\lambda_{max} = 285$ nm, Figure S3. The cumulative percent release was determined using the formula :²

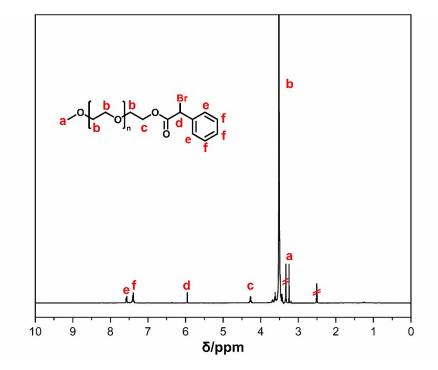
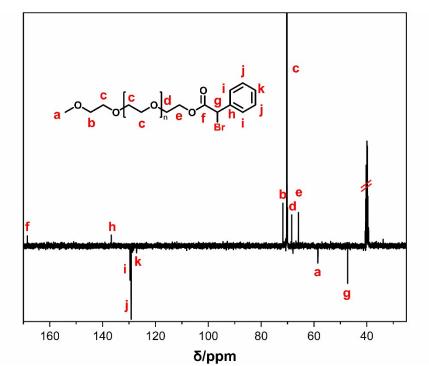
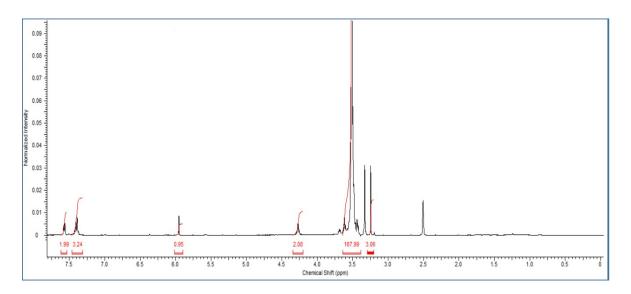
$$Cumulative Release \% = \frac{V_{total} \times C_j + V_{sample} \times \sum_{n=1}^{n-1} C_n}{m_{drug}}$$

where V_{total} stands for the total volume of buffer (40 mL), V_{sample} the sampling volume (2 mL), m_{drug} the initial mass of benzocaine in the NPs (µg) and C_n and C_j the benzocaine concentration at j and n sampling times (µg mL⁻¹).

Stability study of amphiphilic block copolymers in water

In three separate vials, 10 mg of mPEG₄₃-b-pAEMA₂₅ were loaded along with 2 mL of DI H₂O creating micellar solutions of 5 mg mL⁻¹. The first vial was left for 1 day, the second for 5 days and the third for 14 days. Water was removed by freeze drying and a ¹H-NMR spectra of the remaining block copolymers was attained monitoring the -CH₂ peak of HEMA unit at δ = 3.91 ppm.

- 2 Supplementary analysis and experimental data
- 2.1 Characterisation of synthesised mPEG_x-BPA (x = 43 or 113) macroinitiators

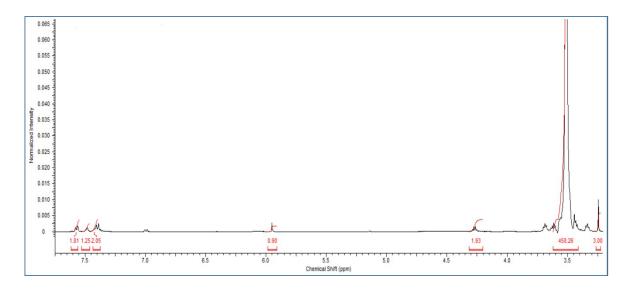

Figure S4. ¹H-NMR (400 MHz, DMSO-d₆) spectrum of mPEG₄₃-BPA macroinitiator.

Figure S5. ¹³C-NMR (400 MHz, DMSO-d₆) spectrum of the synthesised mPEG₄₃-BPA macroinitiator.

Figure S6. Integrated ¹H-NMR (400 MHz, DMSO-d₆) peaks of mPEG₄₃-BPA synthesised macroinitiator.

Figure S7. Integrated ¹H-NMR (400 MHz, DMSO-d₆) peaks of mPEG₁₁₃-BPA synthesised macroinitiator.

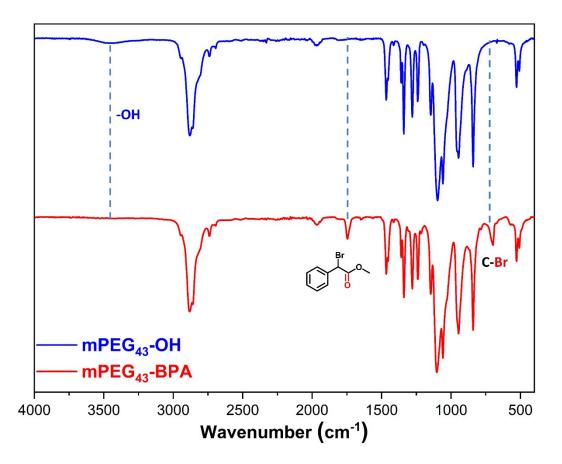
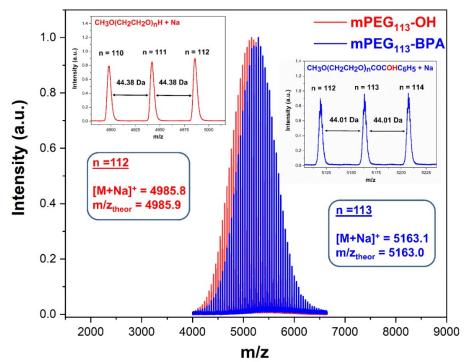
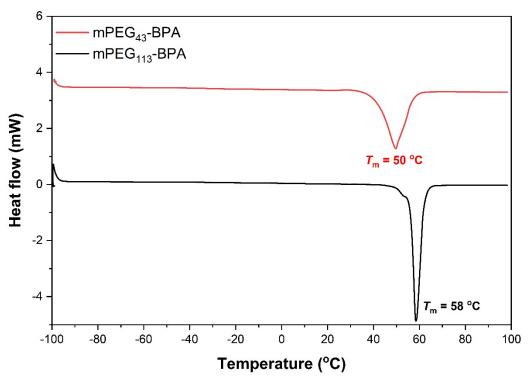




Figure S8. FT-IR spectrum of the synthesised mPEG₄₃-BPA macroinitiator using mPEG₄₃-OH as a precursor.

Figure S9. MALDI-ToF MS spectra comparison of mPEG₁₁₃-OH and mPEG₁₁₃-BPA macroinitiator.

Figure S10. DSC analysis of mPEG_x-BPA (x = 43 or 113) synthesised macroinitiators.

2.2 Optimisation experiments for the synthesis of pAEMA homopolymers by photoinduced Cu(II)-mediated RDRP

Entry	[AEMA]:[I]:[Cu ^{II}]:[L]	Conv. (%)	Ð	M _{n,SEC} (g mol ⁻¹)	M _{n,th} (g mol ⁻¹)	M _{n,NMR} (g mol ⁻¹)	DP _{n, NMR}
1	40:1: 0.10:0.18	20	2.16	10,260	8,800	1,900	8
2	40:1: 0.03:0.21	1	-	-	8,800	-	-
3	40:1: 0.04:0.29	87	1.44	17,900	8,800	9,800	45

Table 1. Polymerisation data from the optimisation reactions of the photoinduced Cu(II)-mediated RDRP of AEMA in DMSO using as I : MBPA and L : Me_6TREN . Polymerisation time for all reactions was 12 h.

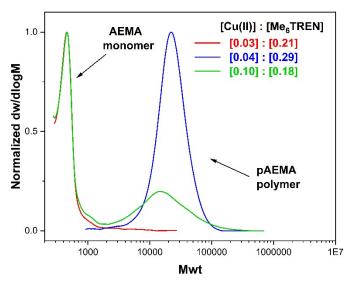
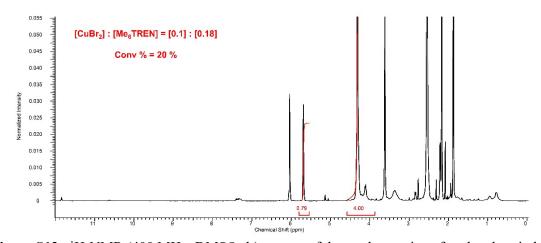



Figure S11. Molecular weight distribution traces from the crude optimisation reactions of AEMA using photoinduced Cu(II)-RDRP as measured by SEC in DMF.

Figure S12. ¹H-NMR (400 MHz, DMSO-d₆) spectra of the crude reaction after the photoinduced Cu(II)-RDRP polymerisation of AEMA using a ratio of $[CuBr_2]$: $[Me_6TREN] = [0.1]$: [0.18] after 12 h.

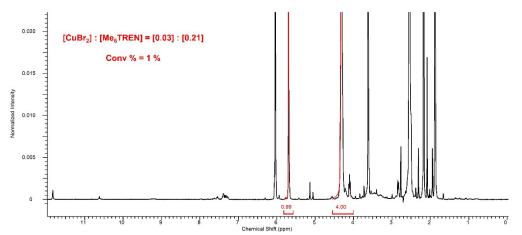


Figure S13. ¹H-NMR (400 MHz, DMSO-d₆) spectra of the crude reaction after the photoinduced Cu(II)-RDRP polymerization of AEMA using a ratio of $[CuBr_2] : [Me_6TREN] = [0.03] : [0.21]$ after 12 h.

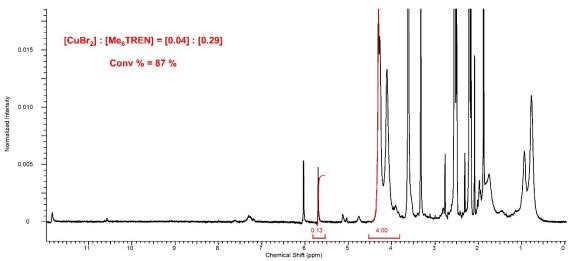


Figure S14. ¹H-NMR (400 MHz, DMSO-d₆) spectra of the crude reaction after the photoinduced Cu(II)-RDRP polymerisation of AEMA using a ratio of $[CuBr_2]$: $[Me_6TREN] = [0.04]$: [0.29] after 12 h.

2.3 Characterisation of pAEMA homopolymers synthesised by photoinduced Cu(II)-RDRP

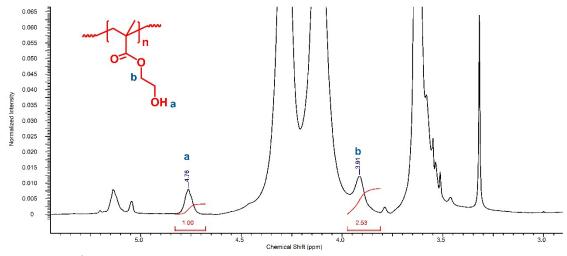


Figure S15 . ¹H-NMR (400 MHz, DMSO-d₆) spectra of a synthesised pAEMA₃₈ homopolymer proving the existence of pHEMA units.

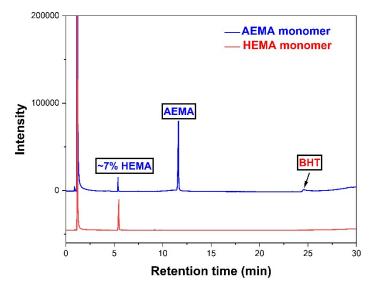


Figure S16 . GC-FID analysis of AEMA commercial monomer in CHCl₃ and comparison with HEMA monomer.

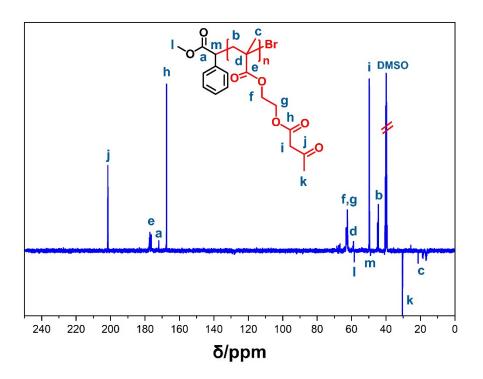


Figure S17. ¹³C-NMR (500 MHz, DMSO-d₆) spectra of a synthesised pAEMA₃₈ homopolymer.

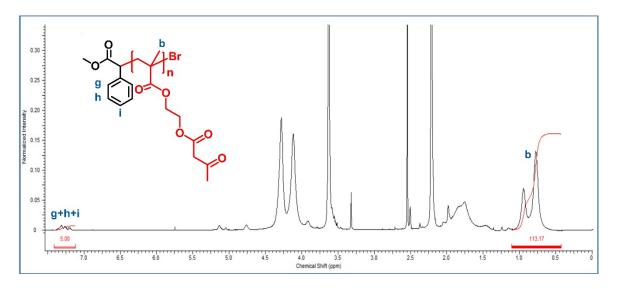
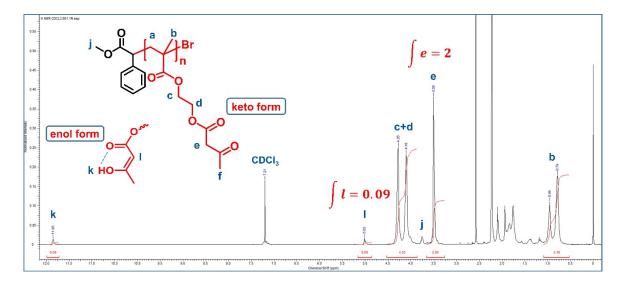
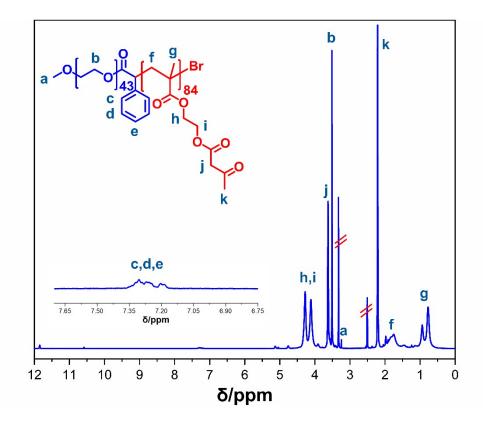




Figure S18. Integrated ¹H-NMR (400 MHz, DMSO-d₆) peaks of purified pAEMA₃₈ after targeting $DP_{target} = 40$.

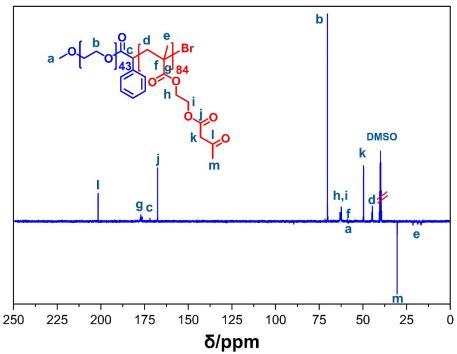


Figure S19. Integrated ¹H-NMR (400 MHz, CDCl₃) spectra of purified pAEMA₃₈ showing the percent ratio composition between keto and enol form. Based on the integrals, 92% of units exist as a keto form.

2.4 Characterisation of mPEG_x-*b*-pAEMA_y block copolymers synthesised by photoinduced Cu(II)-RDRP

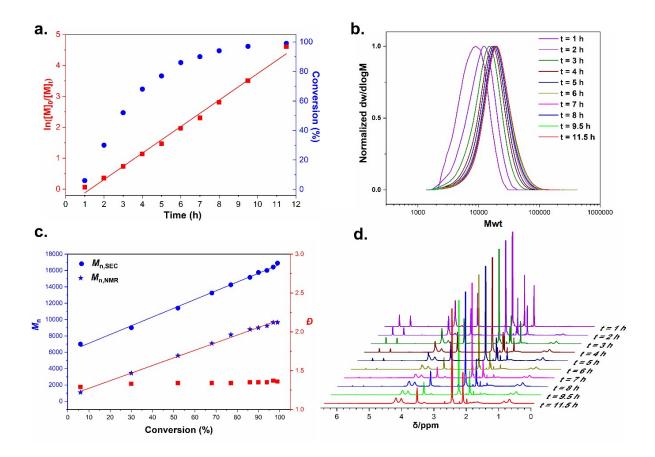


Figure S20. ¹H-NMR (400 MHz, DMSO-d₆) spectra of a synthesised mPEG₄₃-*b*-pAEMA₈₄ block copolymer.

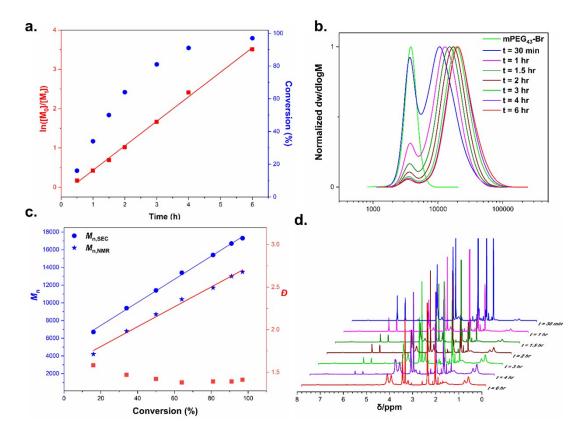
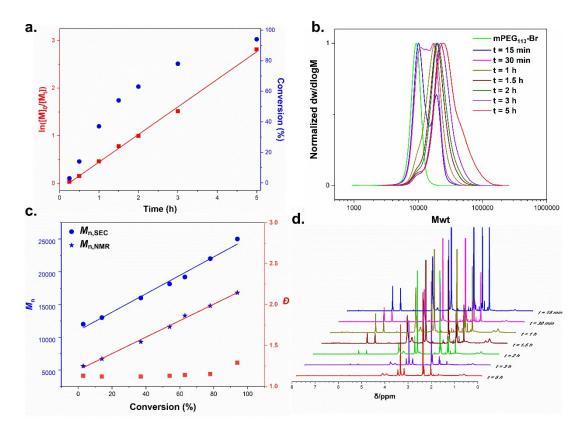


Figure S21. ¹³C-NMR (500 MHz, DMSO-d₆) spectra of a synthesised mPEG₄₃-*b*-pAEMA₈₄ block copolymer.


2.5 Polymerisation Kinetic studies

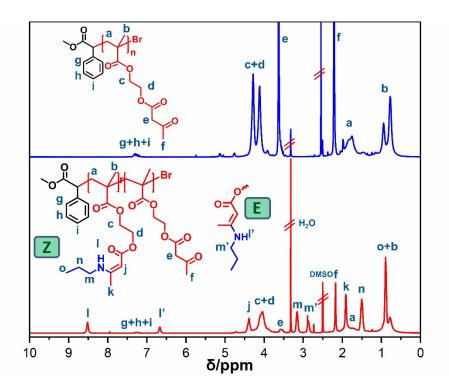

Figure S22. Polymerisation kinetics of the homopolymerisation of AEMA monomer *via* photo Cu-RDRP using MBPA initiator (a) kinetic plots of conversion and $\ln([M]_0/[M]_t)$ vs time (b) SEC traces at different times intervals (c) molecular weight evolution and dispersity against time (d) respective ¹H-NMR spectra in DMSO-d₆ at different time intervals. Conditions: [AEMA]:[Cu(II)Br₂]:[Me₆TREN] = [40]:[0.05]:[0.36].

Figure S23. Polymerisation kinetics of the chain extension of AEMA with mPEG₄₃-BPA macroinitiator *via* photo Cu-RDRP (a) kinetic plots of conversion and $\ln([M]_0/[M]_t)$ vs time (b) SEC traces at different times intervals (c) molecular weight evolution and dispersity against time (d) respective ¹H-NMR spectra in DMSO-d₆ at different time intervals. Conditions: [AEMA]:[Cu(II)Br₂]:[Me₆TREN] = [55]:[0.05]:[0.36].

Figure S24. Polymerisation kinetics of the chain extension of AEMA with mPEG₁₁₃-BPA macroinitiator *via* photo Cu-RDRP (a) kinetic plots of conversion and $ln([M]_0/[M]_t)$ vs time (b) SEC traces at different times intervals (c) molecular weight evolution and dispersity against time (d) respective ¹H-NMR spectra in DMSO-d₆ at different time intervals. Conditions: [AEMA]:[Cu(II)Br₂]:[Me₆TREN] = [55]:[0.1]:[0.72].

2.6 Modification results of pAEMA homopolymers with propylamine

Figure S25. Assigned ¹H-NMR (400 MHz, DMSO-d₆) spectra of purified pAEMA₄₂/PrA with 93% modification efficiency.

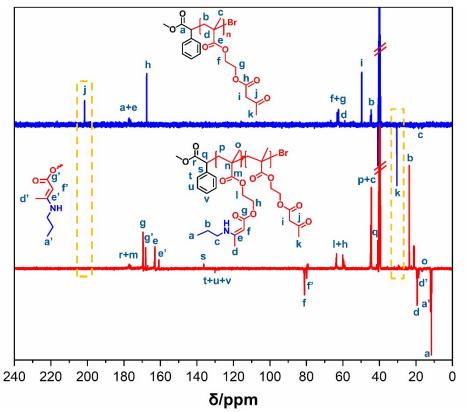


Figure S26. Assigned ¹³C-NMR (500 MHz, DMSO-d₆) spectra of purified pAEMA₄₂/PrA with 93% modification efficiency.

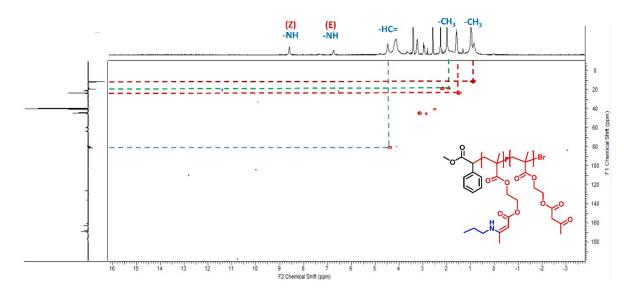
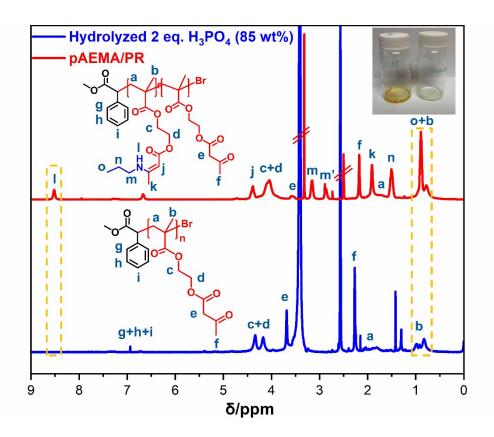
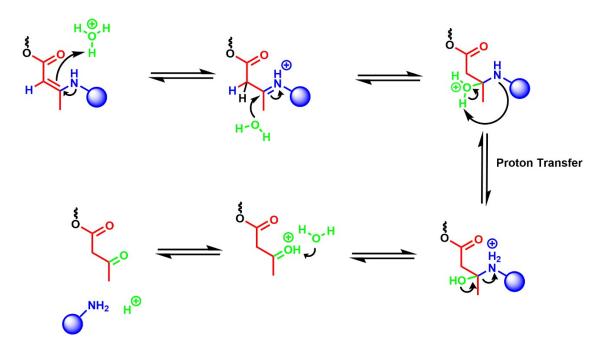
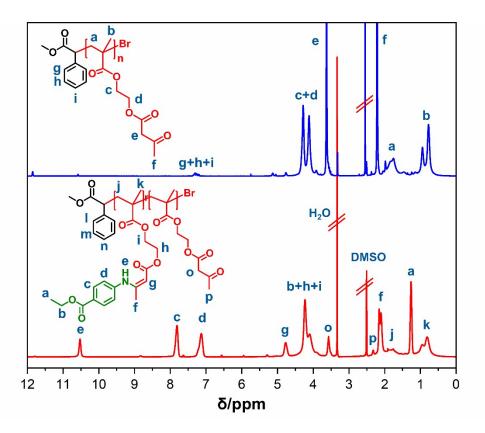



Figure S27. HSQC (400 MHz, DMSO-d₆) spectra of purified pAEMA₄₂/PrA with 93% modification efficiency.

2.7 Hydrolysis experiment and proposed mechanism

Figure S28. ¹H-NMR (400 MHz, DMSO-d₆) comparison before and after hydrolysis of the enaminone bond by 2 eq. of H₃PO₄ (85 wt %).




Figure S29. Proposed mechanism of enaminone hydrolysis under acidic conditions.³

2.8 Modification results of pAEMA_x homopolymers and mPEG_x-*b*-pAEMA_y block copolymers with benzocaine

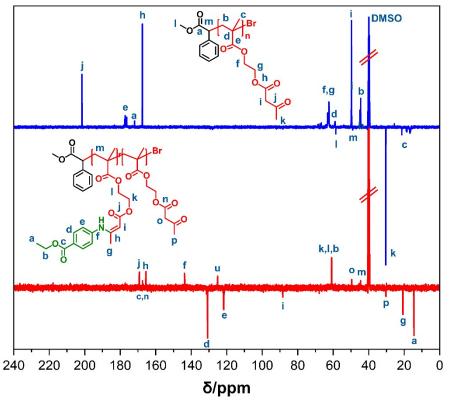

Entry ¹	pAEMA _x	Benzocaine (eq.)	T (°C)	DP _{BNZ,NMR}	IMR Mod (%)	
1	42	0.5	25	~ 5	13	
2	42	1.0	25	~ 6	15	
3	42	2.0	25	~ 20	50	
4	42	6.0	25	~ 22	55	
5	42	2.0	30	~ 25	63	
6	42	6.0	30	~ 33	83	
7	42	2.0	40	~ 31	78	
8	42	6.0	40	~ 36	85	
9	61	6.0	40	~ 52	87	

Table S2. Tabulated results from the modifications of $pAEMA_x$ (where x denotes the degree of polymerisation) with benzocaine.

¹All modifications were conducted in CHCl₃ at a solid content of 0.22.

Figure S30. ¹H-NMR (400 MHz, DMSO-d₆) spectroscopy comparison of pAEMA₆₁ homopolymer against the modified pAEMA₆₁/BNZ(87%).

Figure S31. ¹³C-NMR (400 MHz, DMSO-d₆) spectroscopy comparison of pAEMA₆₁ homopolymer against the modified pAEMA₆₁/BNZ(87%).

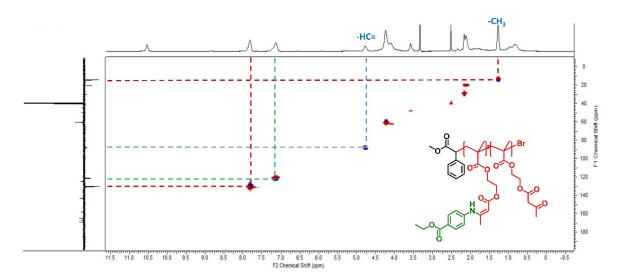
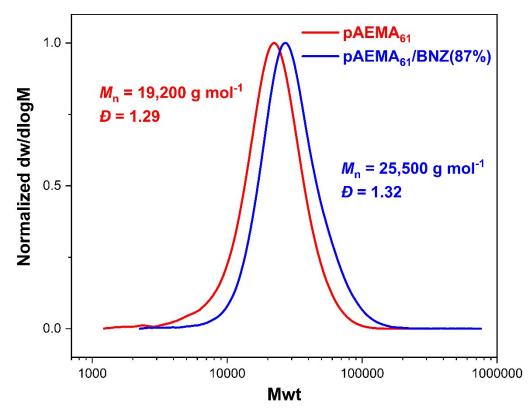



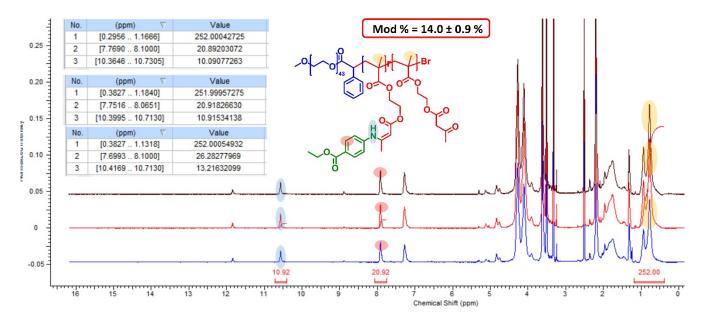
Figure S32. HSQC (400 MHz, DMSO-d₆) spectra of the modified pAEMA₆₁/BNZ(87%).

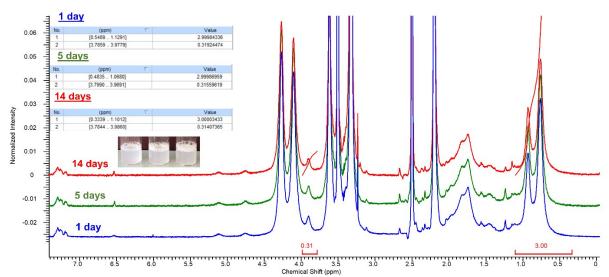
Figure S33. Molecular weight distribution traces before and after modification of pAEMA₆₁ homopolymers with benzocaine yielding pAEMA₆₁/BNZ(87%) *via* SEC in DMF.

Blocks	Benzocaine (eq.)	<i>p</i> -TsOH (mol %)	Solvent	T (°C)	DP _{BNZ,NMR}	Mod (%)
mPEG ₄₃ - <i>b</i> -pAEMA ₈₄	1	-	CHCl ₃	25	~ 7	8
mPEG ₄₃ -b-pAEMA ₈₄	2	-	CHCl ₃	25	~ 13	15
mPEG ₁₁₃ -b-pAEMA ₅₂	2	-	CHCl ₃	40	-	-
mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	6	-	CHCl ₃	40	-	-
mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	6	-	THF	60^{*}	-	-
mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	6	5	THF	40	~ 20	38
mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	6	5	CHCl ₃	40	~ 24	47
mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	6	5	DMSO	40	~ 30	58
mPEG ₁₁₃ - <i>b</i> -pAEMA ₂₈	3	-	CHCl ₃	40	-	-
mPEG ₁₁₃ - <i>b</i> -pAEMA ₂₈	6	-	CHCl ₃	40	-	-
mPEG ₁₁₃ - <i>b</i> -pAEMA ₂₈	6	5	DMSO	40	~ 20	70

Table S3. Tabulated results from the modifications of $mPEG_x$ -*b*-pAEMA_y (x =43 or 113) block copolymers with benzocaine.

* Performed under reflux conditions




Figure S34. Combined ¹H-NMR spectra from the reproducibility study of the block copolymer modification with benzocaine along with the appropriate integrations. Data are presented as mean \pm SD (n =3).

2.9 Thermal Characterisation of synthesised products

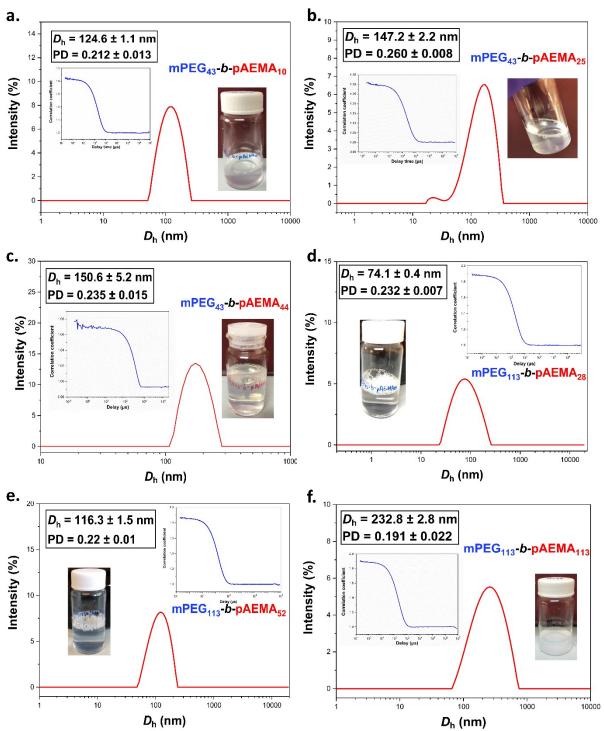
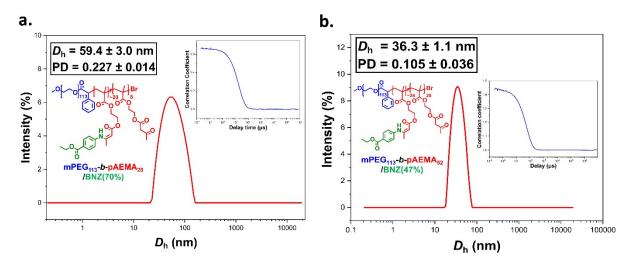
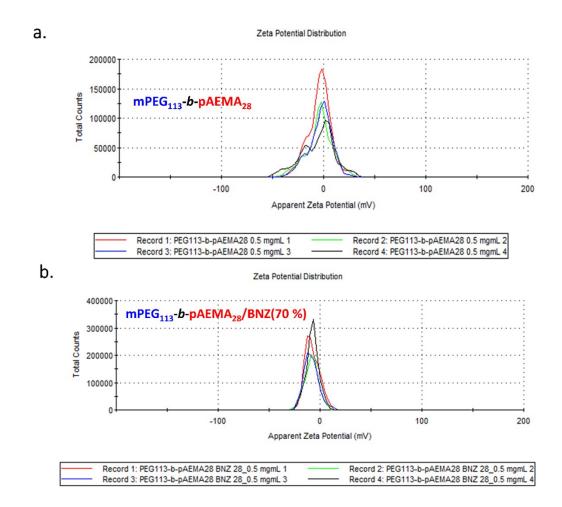

Entry	Polymers	$T_{g,onset}$ (°C)	T _{g,midpoint} (°C)
1	pAEMA ₂₂	- 3	7
2	pAEMA ₄₂	- 4	6
3	pAEMA ₆₁	- 3	6
4	pAEMA ₄₂ /BNZ(55%)	31	36
5	pAEMA ₄₂ /BNZ(85%)	48	54
8	mPEG ₄₃ - <i>b</i> -pAEMA ₈₄	- 4	2
9	mPEG ₄₃ - <i>b</i> -pAEMA ₈₄ /BNZ(15%)	4	9
10	mPEG ₁₁₃ - <i>b</i> -pAEMA ₂₈	- 27	- 18
11	mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂	- 21	- 15
12	mPEG ₁₁₃ -b-pAEMA ₁₁₀	- 13	- 7
13	mPEG ₁₁₃ - <i>b</i> -pAEMA ₂₈ /BNZ(70%)	- 33	-21
14	mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂ /BNZ(38%)	11	20
15	mPEG ₁₁₃ - <i>b</i> -pAEMA ₅₂ /BNZ(58%)	11	25

Table S4. DSC tabulated results from the synthesised homopolymers, block copolymers and their benzocaine modified analogues as determined from their 2nd thermal cycle.


2.10 Stability studies, DLS and Zeta potential data of block copolymers


Figure S35. Overlayed ¹H-NMR (400 MHz, DMSO-d₆) spectra from the stability study performed on mPEG₄₃-b-pAEMA₂₅ micelles in H₂O (5 mg mL⁻¹) over a period of two weeks.

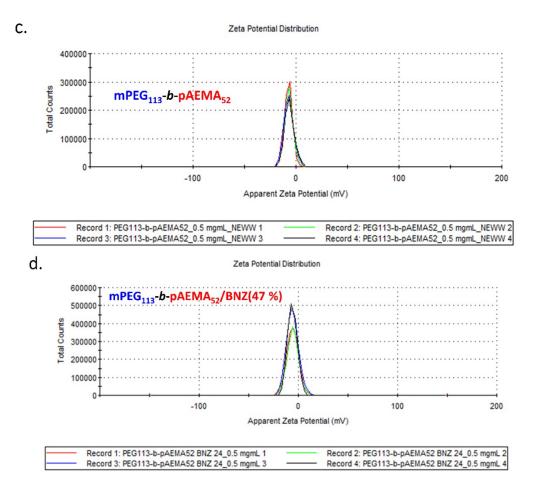


Figure S36. Intensity-weighted size distributions along with their collerograms obtained by DLS at a concentration of 0.5 mg mL⁻¹ for a) mPEG₄₃-*b*-pAEMA₁₀ in water b) mPEG₄₃-*b*-pAEMA₂₅ in water c) mPEG₄₃-*b*-pAEMA₄₄ in methanol d) mPEG₁₁₃-*b*-pAEMA₂₈ in water e) mPEG₁₁₃-*b*-pAEMA₅₂ in water and f) mPEG₁₁₃-*b*-pAEMA₁₁₃ in methanol.

Figure S37. Intensity-weighted size distributions along with their collerograms obtained by DLS at a concentration of 0.5 mg mL⁻¹ in water for a) mPEG₁₁₃-*b*-pAEMA₂₈/BNZ(70%) and b) mPEG₁₁₃-*b*-pAEMA₅₂/BNZ(47%).

Figure S38. Zeta potential analysis of pristine and modified with benzocaine block copolymer assemblies in DI water (pH = 7) at a concentration of 0.5 mg mL⁻¹ for a) mPEG₁₁₃-*b*-pAEMA₂₈ b) mPEG₁₁₃-*b*-pAEMA₂₈/BNZ(70%) c) mPEG₁₁₃-*b*-pAEMA₅₂ and d) mPEG₁₁₃-*b*-pAEMA₅₂/BNZ(47%).

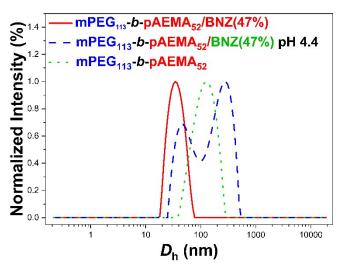
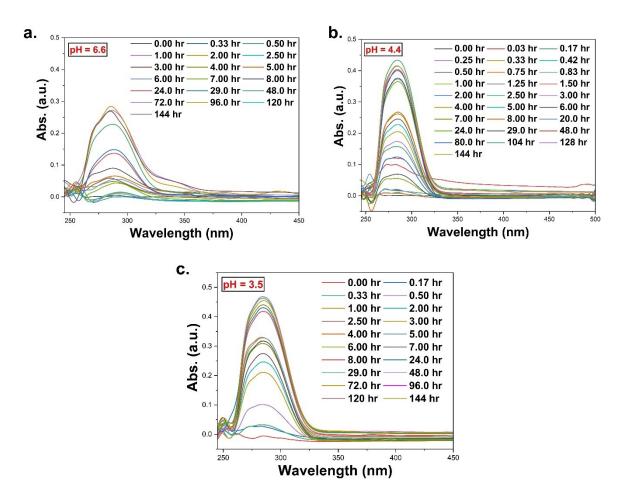



Figure S39. DLS comparison of mPEG₁₁₃-*b*-pAEMA₂₈/BNZ(47%) NPs after hydrolysis for 2 days in pH = 4.4.

2.11 Benzocaine release UV data at different pH environments

Figure S40. UV spectra during the release of BNZ at different time intervals at a) pH 6.6 (initial dose : 1400 µg BNZ), b) pH 4.4 (initial dose : 700 µg BNZ) and c) pH 3.5 (initial dose : 500 µg BNZ).

3 References

- 1. M. Ciampolini and N. Nardi, *Inorg. Chem.*, 1966, 5, 41-44.
- 2. A. M. Eissa, A. Abdulkarim, G. J. Sharples and N. R. Cameron, *Biomacromolecules*, 2016, **17**, 2672-2679.
- 3. P. Y. Sollenberger and R. B. Martin, J. Am. Chem. Soc., 1970, 92, 4261-4270.