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1. Simulation of bulk methyl acrylate PLP at 25 C.

1.1. The FM-PREDICI model

The free-radical polymerization of methyl acrylate (MA) at 25 C is modeled in the PREDICI 

package[1] combining the basic set of reactions presented in Scheme S1 ((i)-(iii), (vi), (viii) 

and (xi)), with the additional mechanisms ((iv)-(v), (vii), (ix)-(x), (xii)-(xiii)) associated with 

the formation of midchain radicals (MCRs) arising from backbiting (iv) that results in a short 

chain branch (+SCB). As presented in Scheme S1, I and M are the initiator and the monomer, 

 is the initiation efficiency, R0 are the primary radicals,  and  are the secondary and s
iR t

iR

midchain (or tertiary) radicals with chain length i, and  is dead polymer with chain length i. iP

The model is referred to as the full model-PREDICI (FM-PREDICI) in this publication.
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Scheme S1. Mechanisms of methyl acrylate polymerization at 25 C.  

Initiation (i)0I 2 Rhv 

(ii)i s
0 1R + M Rk

Propagation (iii)s s
i i+1R + M Rk

i
p

Backbiting (iv)bbs t
i iR Rk

Addition to midchain radical (v)
t
pt s

i i+1R + M R ( SCB)k 

Chain transfer 

to monomer (vi)
s
tr,Ms s

i i 1R + M P Rk
 

(vii)
t
tr,Mt s

i i 1R + M P Rk 

Termination by combination

(viii)
ss
tc (i, j)s s

i j i+ jR + R  Pk

(ix)
st
tc (i, j)s t

i j i+ jR + R  Pk

(x)
tt
tct t

i j i+ jR + R  Pk

Termination by disproportionation

(xi)
ss
td (i, j)s s

i j i jR + R  P P k

(xii)
st
td (i, j)s t

i j i jR + R  P P k

(xiii)
tt
tdt t

i j i jR + R  P P k

The kinetic parameters for MA polymerization at 25 C presented in Table S1 are taken 

primarily from Kattner and Buback,[2] with the fraction of termination by combination vs. 

disproportionation assumed to be the same as for butyl acrylate (BA) bulk polymerization.[3] 

Designating the fraction of termination by disproportionation as , the values are ss = 0.1 

(for termination of secondary radicals), st = 0.7 (for cross-termination between secondary 

and tertiary radicals), and tt = 0.9 ( for termination of tertiary radicals). The rate coefficient 

of termination for tertiary radicals (kt
tt) of MA polymerization at 25 C is assumed not to be 

chain-length dependent, and set at a value twice higher than that for BA,[3] as the termination 

rate coefficient of secondary radicals for MA polymerization is higher than that of BA 
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polymerization at the same conditions.[2] For the same reason, the initiation rate coefficient 

for MA polymerization ( ) is chosen to be higher than the one for BA polymerization ik

presented in.[4] The CLD propagation rate coefficient for short and long radicals is described 

according to Equations (1) and (2) in the manuscript.

Table S1. Kinetic rate coefficients used for the FM-PREDICI simulation of MA 
polymerization at 25 C 

Coefficients Values
L·mol1·s1 or s1 Reference

ik 3105 this work

i1/2 1 [5]

C1 10 [5], Equation (1)p
Lk

pk 13 130 [6]
0
pk 26 000

, Equation (2)p
Lk

β 0.1
this work

t
pk 18

kbb 229

(1,1)ss
tck 1.55  109

(1,1)ss
tdk 1.72  108

s 0.8

L 0.21

(i,j) =ss
tk

 0.5ss ss
t t(i, i) ( j, j)k k

Lf 36

(1,1)st
tck 2.0  108

(1,1)st
tdk 4.64  108

s 0.8

L 0.21

(i,j) =st
tk

 0.5st st
t t(i, i) ( j, j)k k

Lf 36

[2]

tt
tck 3.8  105

tt
tdk 3.4  106

this work
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1.2. The 3D model

As previously summarized,[7] the kinetic scheme assumed for the 3D simulation consists of 

reactions (i)-(iii), (viii) and (xi) of Scheme S1, without consideration of CLD kinetic 

parameters. However, the variation of temperature, and initiator and monomer concentrations 

with time and in space are accounted for when calculating the resulting polymer molar mass 

distribution (MMD). The additional parameters required by the 3D model applied to the 

simulation of MA polymerization are presented in Table S2.

Table S2. The parameters used for the 3D simulation of MA polymerization at 25 °C

Parameter Value Reference

Heat of polymerization, ˗Hp
kJmol-1 81 790 [8]

Specific heat, Cp
M

J·kg-1·C-1 2 000 [8]

Conductivity, M
Wm-1·K-1 0.159 [9]

Density, μТ
gcm-3 0.9471 [9]

Activation energy for kp, Ea(kp)
kJmol-1 17.3 [6]

Pre-exponential factor for kp, A(kp)
Lmol-1s-1 1.41107 [6]

Activation energy for kt, Ea(kt)
kJmol-1 9.0 [10]

Pre-exponential factor for kt, A(kt)
Lmol-1s-1 3.51010 this work

1.3. Analytical expressions for classical scheme (AECS) of free radical 

polymerization
Analytical expressions derived previously[11] for the classical (ideal) scheme of 

polymerization (i.e., consisting of reactions (i)-(iii), (viii) and (xi) of Scheme S1) have been 

used to simulate MMDs produced by PLP-SEC (AECS model). The mode of termination was 

chosen to be  = 0.1. The values of y =kp[M]td and x =(kttd)0.5 (where kp and kt are the chain-

length independent propagation and termination rate coefficients, [M] is the monomer 

concentration, td is the pulse separation time,  is the concentration of radicals produced by a 

pulse) are known[12] to control the shape of distribution under pseudostationary 

polymerization; kp and x are varied to fit distributions calculated by the 3D simulation.
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Table S3. Output values of  and kp
0 estimated using Approaches 1 and 3 after using the 

AECS model to fit MMDs calculated by the 3D simulation of bulk MA PLP at 25 C with 
different pulse repetition rates (p.r.r.) and numbers of pulses (Np). In addition, the chain length 
corresponding to the maximum of the first peak in MMD ( ),  ratios, SEC max

1L inf max
2 1/h h

broadening parameters (), and mode of termination () used in the AECS model fit are 
systematically varied, and an additional fit is made using the FM-PREDICI model.

Figure Approach p.r.r. 
Hz

Varied
parameter  kp

0

Lmol-1s-1

 Np = 100 0.00033 13 270500

 200 0.001 13 530

100 0.0033 13 560

1

250

200 0.0043 13 860

100, 100 0.0070 13 870

100, 200 0.0088 14 020

200, 100 0.0057 13 920

Figure 2

3 500,
 250

200, 200 0.0076 14 090

= 229max
1L 0.001  13 200

     332 0.00033 13 270

Figure S3 1 500

     364 0.0 13 290

= 0.707inf
2

max
1

h
h

0.0020 13 360

          0.672  0.00033 13 270

Figure S4 1 500

          0.641 0.0017 13 140

 = 0.035 0.0074 13 660

     0.04 0.00033 13 270

Figure S5 1 500

       0.045 0.0059 12 980

 = 0.0 0.00922 12 690

      0.1 0.00033 13 270

      0.2 0.0084 13 810

      0.5 0.0251 14 980

Figure S6 1 500

             1.0 0.0351 15 690

AECS 0.00033 13 270Figure S7 1 500

FM-PREDICI 0.0169 14 740
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Table S4. Parameters determined from analysis of the MMDs calculated for bulk MA PLP at 
25 C for different pulse repetition rates (p.r.r.) by the AECS and FM-PREDICI models 
assuming different extents of CLD kp of long chain radicals (β and ). Tabulated values 0

pk
include logM1 and logM2 corresponding to the first two maxima from the MMD first 
derivative, the chain length ratio (  = M1/M0 and = M2/M0, M0 is monomer LIP LIP

1 2/L L LIP
1L LIP

2L

molar mass), the values of  (the chain length corresponding to the maximum of the first max
1L

peak) and  (described in the text) used to characterize the shape of the distribution, inf max
2 1h h

and correction factors  and  estimated from the simulated distribution.c
1g c

2g

p.r.r

Hz
Simulation β 0

pk
Lmol-1s-1

logM1 logM2
LIP
1

LIP
2

L
L

max
1L inf

2
max

1

h
h

c
1g c

2g

FM-PREDICI 0.00 15860 4.4618 4.7486 0.517 388 0.745 0.0473 0.0726

FM-PREDICI 0.05 20290 4.4505 4.7342 0.532 387 0.742 0.0486 0.0730

FM-PREDICI 0.10 26000 4.4600 4.7212 0.547 386 0.743 0.0487 0.0717

FM-PREDICI 0.15 33390 4.4599 4.7109 0.561 386 0.743 0.0482 0.0700

500

AECS 0.00 15350 4.4526 4.7390 0.517 387 0.743 0.0248 0.0571

FM-PREDICI 0.00 15860 4.7537 5.0337 0.525 748 0.598 0.0617 0.1034

FM-PREDICI 0.05 20290 4.7388 5.0051 0.542 723 0.597 0.0633 0.1044

FM-PREDICI 0.10 26000 4.7262 4.9801 0.557 702 0.602 0.0625 0.1030

FM-PREDICI 0.15 33390 4.7143 4.9572 0.572 682 0.602 0.0627 0.1018

250

AECS 0.00 15230 4.7271 5.0118 0.519 714 0.600 0.0308 0.0665

Table S5. The output values of β estimated by Approach 1 by analysis of the simulated 
MMDs calculated at 500 and 250 Hz (Figure S9) after using the AECS or FM-PREDICI 
model (with varying levels of CLD-propagation) to fit the main features of the distribution. 
The input values of β used to generate the simulated data are provided in the header row.    

FM-PREDICI AECS
p.r.r.
(Hz)

Fitting Distribution Input β: 0.0 0.05 0.10 0.15 0.0

FM-PREDICI, β = 0.00 0.0085 0.0548 0.1003 0.1459 0.0098
FM-PREDICI, β = 0.05 0.0099 0.0563 0.1019 0.1477 0.0112
FM-PREDICI, β = 0.10 0.0121 0.0587 0.1046 0.1506 0.0135
FM-PREDICI, β = 0.15 0.0141 0.0609 0.1069 0.1532 0.0155

500

AECS (β = 0.0) .0013 0.0441 0.0886 0.1333 0
FM-PREDICI, β = 0.00 0.0042 0.0523 0.1000 0.1461 0.0113
FM-PREDICI, β = 0.05 0.0050 0.0532 0.1009 0.1471 0.0105
FM-PREDICI, β = 0.10 0.0061 0.0544 0.1023 0.1486 0.0094
FM-PREDICI, β = 0.15 0.0085 0.0570 0.1051 0.1516 0.0072

250

AECS (β = 0.0) 0.0159 0.0651 0.1140 0.1612 0.0000
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Table S6.  The output values of β estimated by Approach 2 by analysis of the simulated 
MMDs calculated at 500 and 250 Hz (Figure S9) after using the AECS or FM-PREDICI 
model (with varying levels of CLD-propagation) to fit the main features of the distribution. 
The input values of β used to generate the simulated data are provided in the header row.       

p.r.r.
(Hz) Fitting Distribution Input β: 0 0.05 0.1 0.15

FM-PREDICI, β = 0.00 0.0000 0.0484 0.0956 0.1426
FM-PREDICI, β = 0.05 0.0015 0.0500 0.0973 0.1445
FM-PREDICI, β = 0.10 0.0038 0.0525 0.1000 0.1474
FM-PREDICI, β = 0.15 0.0058 0.0547 0.1024 0.1500

500

AECS (β = 0.0) 0.0103 0.0373 0.0836 0.1297
FM-PREDICI, β = 0.00 0.0000 0.0492 0.0977 0.1445
FM-PREDICI, β = 0.05 0.0008 0.0500 0.0986 0.1454
FM-PREDICI, β = 0.10 0.0019 0.0513 0.1000 0.1470
FM-PREDICI, β = 0.15 0.0043 0.0539 0.1028 0.1500

250

AECS (β = 0.0) 0.0117 0.0620 0.1117 0.1597

Table S7. The output values of β estimated by Approach 3 by analysis of the simulated 
MMDs calculated at 500 and 250 Hz (Figure S9) after using the AECS or FM-PREDICI 
model (with varying levels of CLD-propagation) to fit the main features of the distribution. 
The input values of β used to generate the simulated data are provided in the header row.

FM-PREDICI
  

  AECS
Fitting simulation Input β: 0.0 0.05 0.10 0.15    0.0

FM-PREDICI, β = 0.00 0.0000 0.0499 0.0998 0.1463 0.0341
FM-PREDICI, β = 0.05 0.0001 0.0500 0.0999

1
0.1464 0.0341

FM-PREDICI, β = 0.10 0.0002 0.0501
8

0.1000 0.1465 0.0342
FM-PREDICI, β = 0.15 0.0029 0.0480 0.1032 0.1500 0.0315

AECS (β = 0.0) 0.0336 0.0869 0.1403 0.1905 0.0000
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2. Figures

Figure S1. The dependencies of peak-normalized MMDs (left) and values of their 
characteristic features (right)  (blue curves) and Lmax (red curves) on x and y values, inf max

2 1h h
set by varying concentration of radicals produced by a pulse, , and kp in the AECS 
simulation of MMDs produced by PLP of MA in bulk at 25 C. The value of y is set to 290.2 
and the value of x is set to 2.62 for the variation in x (top plots) and in y (bottom plots), 
respectively. Other parameters used for calculation are fixed at  = 0.1,  = 0.04, td = 0.002 s, 
[M] = 11.0 molL1. 
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Figure S2. The results from the estimation of  (c) by fitting peak widths at height h = (hmax  
h) for the experimental distributions w(logM) (a) and w(logM)M (b) by the FM-PREDICI 
simulation. The principal MMD peak obtained at p.r.r. = 250 Hz and the two peaks observed 
at p.r.r. 500 Hz are used to estimate  .  

Figure S3. Peak-normalized MMDs simulated by the AECS model (a) and corresponding 
first derivative curves (b) for PLP of bulk MA at 25C with varying values of kp and x (kp = 
11 940, 13 290 and 14 600 Lmol1s1 for black, red and blue curves, respectively; x = 2.480, 
2.471 and 2.464 for black, red and blue curves, respectively) that lead to the same value for 

 = 0.672. These distributions are considered as fits to the MMD (with  = 0.672 inf max
2 1h h inf max

2 1h h
and L1

max = 332) calculated by the 3D simulation with [I] = 3 mmolL1, Ep = 3 mJ and Np = 
100. All simulations were conducted with  = 0.1,  = 0.04 and p.r.r. = 500 Hz. 
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Figure S4. Peak-normalized MMDs simulated by the AECS model (a) and corresponding 
first derivative curves (b) for PLP of bulk MA at 25 C with kp = 13 290 Lmol1s1 and 
varying values of x (x = 2.585 (black curve), 2.475 (red curve) and 2.360 (blue curve)) that 
influence the  ratio, as indicated by the legend. These distributions are considered as inf max

2 1h h
fits to the MMD calculated by the 3D simulation with [I] = 3 mmolL1, Ep = 3 mJ and Np = 
100. All simulations were conducted with  = 0.1,  = 0.04 and p.r.r. = 500 Hz. 

Figure S5. Peak-normalized MMDs simulated by the AECS (a) and corresponding first 
derivative curves (b) for PLP of bulk MA at 25 C calculated using different values of the 
SEC broadening parameter () with kp = 13 290 Lmol1s1, x = 2.512 (black curve), 2.475 

(red curve) and 2.429 (blue curve) set to maintain  = 0.672. These distributions are inf max
2 1h h

considered as fits to the MMD calculated by 3D simulation with [I] = 3 mmolL1, Ep = 3 mJ, 
Np = 100 and  = 0.04. All simulations were conducted with  = 0.1 and  p.r.r.  = 500 Hz.   
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Figure S6. Peak-normalized MMDs simulated by the AECS (a) and corresponding first 
derivative curves (b) for PLP of bulk MA at 25 C calculated for varying values of the mode 
of termination () with kp = 13 290 Lmol1s1, x = 2.606 (blue curve), 2.475 (red curve), 2.34 
(black curve), 1.96 (magenta curve) and 1.474 (dark yellow curve) set to maintain  = inf max

2 1h h
0.672. These distributions are considered as fits to the MMD calculated by the 3D simulation 
with [I] = 3 mmolL1, Ep = 3 mJ,  = 0.1 and Np = 100. All simulations were conducted with  
p.r.r. = 500 Hz and  = 0.04.

Figure S7. Peak-normalized MMDs (a) with corresponding first derivative curves (b) 
calculated by the FM-PREDICI (blue curve) and the AECS (black curve) models to fit 
distribution calculated by 3D simulation (red curve) for PLP of bulk MA at 25 C with  = 
0.04,  = 0.1 and p.r.r. = 500 Hz. The kinetic parameters used for the AECS calculation were 
kp = 13 290 Lmol1s1 and x = 2.475 and for the FM-PREDICI simulation kp

0 = 
22 350 Lmol1s1,  = 0.10, and  = 3.310-5 molL1, with other parameters given in Table 
S1. For the 3D simulation the kinetic parameters from Table S2 are used with [I] = 
3 mmolL1, Ep = 3 mJ and Np = 100. 
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Figure S8. Peak-normalized MMDs (a,c) calculated by the FM-PREDICI simulation (black 
curve) for PLP of bulk MA at 25 C with corresponding first derivative curves (b,d). The fits 
by the AECS representation (red curve) reach correspondence in the values of L1

max and 
 through selection of input values kp and x. Kinetic parameters for the FM-PREDICI inf max

2 1/h h
simulation are given in Table S1 with  = 4.0  105 molL−1, kp

0 = 13 190 Lmol1s1 and  = 
0 (i.e., no chain length dependence) with the value of kbb set to 229 (a) and 458 s1 (c). The 
kinetic parameters set to achieve correspondence by the AECS representation were kp = 
12 380 Lmol1s1, with x = 2.464 (a) and 2.725 (c). All simulations were conducted with  = 
0.04,  = 0.1 and  p.r.r. = 500 Hz.



13

Figure S9. MMDs (a,c) and their derivatives (b,d) obtained by the FM-PREDICI and AECS 
simulations calculated for p.r.r 500 (a,b) and 250 Hz (c,d) to have near-identical  and max

1L
 at each repetition rate. To reach such correspondence for FM-PREDICI calculations, inf max

2 1h h
 is chosen to be 2.7105, 2.95105, 3.05105 and 3.1105 molL1 and kp

0 to be 15 860, 
20 290, 26 000 and 33 390 Lmol1s1 for β = 0, 0.05, 0.1 and 0.15, respectively; other kinetic 
parameters are given in Table S1. For MMDs calculated by the AECS simulation, x = 2.243 
and kp

 = 15 350 Lmol1s1 at 500 Hz, x =2.684 and kp
 = 14 530 Lmol1s1 at 250 Hz were 

selected. All simulations were conducted with  = 0.04 and  = 0.1.

3. Details of the in silico simulations

3.1. Analysis by the 3D simulation

The validity of Approaches 1 and 3 to evaluate CLD kp parameters is first checked by analysis 

of the MMDs presented in Figure 2 of the manuscript. Approach 2 could not be used for this 

check as the 3D simulation is based on analytical expressions,[11] such that  = 0 p0t
L L




(Equation (9)). The fitted kp values determined by fitting the AECS simulations to MMDs 

generated using the 3D model for 500 Hz (see Figure 2 of manuscript) are found to be 13 290 

and 13 430 Lmol1s1 for Np = 100 and 200, respectively, and 13 330 and 13 530 Lmol1s1 

for Np = 100 and 200, respectively, at 250 Hz. These output values increase with Np and 



14

decrease with p.r.r. and are slightly higher than the input kp value of 13 130 Lmol1s1 used 

in the 3D simulation. The small difference is associated with the slight increase of 

temperature in the medium predicted by the 3D simulation that results in an increase of kp.[7] 

The estimated increase in kp is not high, no more than 3 %, and does not influence the 

estimation of  as it influences L1 and L2 values equally. However, the application of an 

increased Np above 200 is undesirable, as it may result in reduced accuracy in the estimates of 

kp
0 values due to spatial inhomogeneities and possible temperature increase due to increased 

conversion.

With this initial verification of the fitting procedure, additional variations were 

examined, in each case using the AECS model to fit the output MMD from the 3D simulation 

calculated with p.r.r. = 500 Hz and Np = 100. For the base case distribution plotted in Figure 2 

of manuscript, values of  = 332,  = 0.672,  = 0.04, and the fraction of max
1L inf max

2 1/h h

termination by disproportionation,  = 0.1, were assumed. Fitting of MMDs generated with 

variations in these values allows the evaluation of the influence of possible systematic error in 

the determination of β and kp
0, with the discussion particularly focused on β. To simplify 

presentation of the results, only Approach 1 is considered, as systematic errors in estimation 

of the CLD parameters introduced by this approach are found to be of similar magnitude as 

for Approach 3.

An insignificant change in the estimated output value of  ( 0.001) is observed even if 

the value of  is purposely poorly fitted by a deviation of 10 % from the input value used max
1L

in the 3D simulation (Table S3). As shown in Figure S3, the variation in  shifts the entire max
1L

distribution (and thus the estimate of kp
0) but does not influence the shape. Simulations also 

show (Figure S4, Table S3) that a  5% deviation in the fitted  values does not inf max
2 1/h h

greatly influence the output estimate of , which remains equal or less than 0.002, very close 

to the input value of 0. Based on this result, our experimental MMDs having values of 

 within  5% from each other are grouped together, without any adverse influence on inf max
2 1/h h

the estimation of . Furthermore, varying the Gaussian broadening parameter  from 0.035 to 

0.045 does not significantly bias the output value of , which varies from 0.0074 to 0.0059 

(Figure S5, Table S3). 

However, it is found that the mode of termination for secondary radicals can influence 

markedly the estimated CLD parameters for propagation. Figure S6 shows distributions 
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calculated by the AECS varying  between zero and unity, but otherwise representing the 

same 3D distribution (thus all having the value  = 0.672 with  deviating from inf max
2 1/h h max

1L

332 not more than 1 %) calculated using  = 0.1. For the higher values of  = 0.5 and 1.0 (i.e., 

50 and 100% termination by disproportionation), the output value of  increases to 0.025 and 

0.035, respectively, indicating weak CLD-propagation even though the input value of  was 

set to zero. However, for  = 0.5 and 1.0, it is observed that the third peak in the derivative 

plot calculated from the simulated MMD is more evident than for the curve calculated with  

≤ 0.2. Moreover, a fourth peak is even seen for  = 1.0. Such features are not observed in the 

experimental distributions obtained in this study (Figure 3 of main manuscript), with the 

shape of the experimental derivative curves very close to the ones obtained for  ≤ 0.2 in our 

simulation. Therefore, it is expected that termination of secondary acrylate radicals occurs 

predominantly by combination, in accord with recent literature.[13] With  ≤ 0.2 for MA 

polymerization, the systematical error introduced in the estimate of  is less than 0.01. 

This series of simulations has considered the possible influence of various factors on the 

accuracy of estimating the value of β, including the effect of instationary processes, spatial 

inhomogeneities and small temperature increases on the PLP-generated MMDs, SEC 

broadening, uncertainty in the mode of termination, and accuracies in the  and  max
1L inf max

2 1/h h

values estimated by the fitting procedure. According to our analysis, none of these factors 

adversely influence the estimation procedures we have developed; i.e., in all cases they 

recovered the correct result of no chain-length dependence. However, this analysis is carried 

out using the classical scheme of polymerization that does not include actual CLD of 

propagation and termination, and does not consider the reactions associated with backbiting 

for methyl acrylate polymerization. The potential effect of these factors on the estimation 

procedures are considered in the following section. 

3.2. Analysis by FM-PREDICI simulation

The MMD generated by the 3D model (fitted in Figures 2 and S3-S6) have been refit using 

the FM-PREDICI model, to determine whether the choice of the model used to fit the 

distribution can lead to a systematic misrepresentation of CLD-propagation. The kinetic 

parameters required to fit the MMD simulated at 500 Hz and 100 pulses (Figure 2) were kp = 

13 290 Lmol1s1 and x = 2.475 when the AECS model was used. In contrast to this simple 
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representation of PLP, the FM-PREDICI simulation includes both backbiting and CLD-

termination, with associated rate coefficients set to literature values (Table S1). The FM-

PREDICI simulation also assumes CLD-propagation according to Equation (2), with  set to 

0.10 for chain length L  5, with the CLD of short chains (L  5) represented by Equation (1). 

The cross-over chain length Lc = 5 is chosen in accordance with the procedure outlined in 

Section 4.2 below. Values of kp
0 = 22 350 Lmol1s1 and  = 3.3105 molL1 are required 

for the FM-PREDICI model to match the L1
max (= 332) and  (= 0.672) values of the inf max

2 1/h h

distribution simulated with the 3D model, as shown in Figure S7. This fit is then used to 

estimate correction factors according to the procedures in Section 4 of the manuscript, before 

applying Approach 1 to examine for CLD-propagation features of the input distribution 

generated by the 3D simulation. Although the FM-PREDICI fitting model assumes CLD-

propagation with  = 0.10, an output value of 0.016 is estimated for  from analysis of the 

MMD simulated using the 3D model. Thus, even though the AECS and FM-PREDICI fitting 

models vary greatly in kinetic complexity, forcing them to match the L1
max and  inf max

2 1/h h

features of the input distribution (i.e., generated by the 3D model) leads to a reasonable 

estimation of the importance of CLD-propagation. We have chosen to apply the FM-

PREDICI model to fit our MA experimental data, as it takes into account all the important 

reactions of this polymerization. 

In addition, we use simulation to investigate how the presence of backbiting affects the 

estimation of  by Approach 1. As a first step, the “input” MMDs are calculated by the FM-

PREDICI model shown by Scheme S1 and using kinetic parameters from Table S1 without 

consideration of CLD of kp of long radicals (i.e.,  = 0 is used in simulation) for different 

values of kbb. These simulated MMDs, shown in Figure S8, are then fitted by the AECS 

model to match L1
max and , after which the output value of  is estimated by inf max

2 1/h h

Approach 1. The values are found to be 0.02 and 0.007 for kbb = 229 and 458 s1, 

respectively. Thus, the reactions associated with backbiting have only a minor influence on 

the estimation of , even though the two-fold increase in kbb results in a marked change of the 

shape of distribution, especially at chain lengths below L1 (Figure S8c). Once again, achieving 

correspondence in the L1
max and  values in the input and fitting distributions provides inf max

2 1/h h

a robust means to estimate CLD parameters for kp, even in the presence of backbiting.

To complete the in silico analysis, both the FM-PREDICI and AECS models have been 

used to calculate MMDs at p.r.r. values of 250 and 500 Hz, as shown in Figure S9. Four 
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levels of CLD-propagation are implemented in the FM-PREDICI calculations with β = 0, 

0.05, 0.10, and 0.15. For these  values, setting  to 2.7105, 2.95105, 3.05105 and 

3.1105 molL1 and kp
0 to 15 860, 20 290, 26 000 and 33 390 Lmol1s1, respectively, 

leads to simulated MMDs with identical  (387, with deviation less than 0.4%) and max
1L

 (0.743, with deviation no greater than 0.3%) values for p.r.r. 500 Hz, with the inf max
2 1h h

MMDs and corresponding derivative plots shown in Figure S9a and S9b. The same kinetic 

parameters are used to simulate the MMDs for p.r.r. 250 Hz presented in Figure S9c, with 

derivative curves shown in Figure S9d; once again, identical  values (0.600, with inf max
2 1h h

deviation no greater than 0.5%) and  values (714, with deviation less than 5 %) are max
1L

obtained from analysis of the MMDs simulated using the FM-PREDICI model with varying 

levels of CLD propagation. In addition, the AECS is used to calculate input MMDs without 

considering any chain-length dependencies or backbiting, with x = 2.243 and kp
 = 15 350 

Lmol1s1 for p.r.r. 500 Hz (Figure S9a) and x =2.684 and kp
 = 14 530 Lmol1s1 for p.r.r.  

250 Hz (Figure S9c). These kinetic parameters result in  and  values that are the max
1L inf max

2 1h h

same as the mean values from the MMDs simulated with the FM-PREDICI model with p.r.r 

of 250 and 500 Hz (Table S4).

An examination of the MMDs plotted in Figure S9a indicates that the position of the 2nd 

inflection point shifts to lower molar masses with increasing  for p.r.r 500 Hz. The 

distributions calculated for p.r.r. 250 Hz (Figure S9c) also show a minor shift in the position 

of the first inflection point, with the shifts of the 2nd inflection point markedly stronger. The 

resulting increase in the L1
LIP/L2

LIP ratio (see Table S4) is a qualitative indication of the slight 

decrease in kp with increasing chain length. For all of the FM-PREDICI simulated 

distributions, the slight differences between the input Li values, calculated according to 

Equation (7a), and the Li
LIP values obtained by differentiating the calculated MMD are used to 

calculate the correction factors  and , also reported in Table S4 for each distribution. c
1g c

2g

Correction factors are also determined from the MMD calculated by the AECS simulation, 

with Li =ikp[M]td. 

Consider the MMDs calculated for p.r.r. 500 Hz shown in Figure S9a. As these 

distributions all have near-identical values of  and , each can be considered as a max
1L inf max

2 1h h

suitable representation of the others. For example, the AECS representation (calculated with 

no backbiting and chain-length dependencies) can be used to fit the FM-PREDICI distribution 
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calculated with backbiting and strong CLD propagation (with β = 0.15), and vice versa. Thus, 

the  and  factors determined from each of the simulated distribution are applied to c
1g c

2g

estimate β and kp
0 values from the others, to determine if the input chain-length dependencies 

are correctly recovered. The results of such a check for Approach 1 (i.e., applying Equation 

(8)) are presented in Table S5, with the input β values indicated as column headers. The rows 

summarize the corresponding values estimated using a particular application of the model. 

For the FM-PREDICI distribution calculated without any CLD (i.e., β = 0), Approach 1 yields 

β estimates ranging between 0.0013 (fit by AECS) and +0.0141 (fit by FM-PREDICI model 

that assumes strong chain-length dependency). For the majority of the combinations 

examined, the largest mismatches between input and estimated β values occur when the 

AECS representation is used to fit the MMDs calculated by the FM-PREDICI model, and 

when the FM-PREDICI model (that includes backbiting and CLD-termination) is used to fit 

the MMDs calculated with the AECS model. In the former case, the systematic error in the 

estimation of β increases to 0.016 as the input value of β increases (i.e., an output value of 

0.1333 is calculated for the 0.15 input), and for the latter case the error increases to ~+0.016. 

For all other cases (i.e., when the more realistic FM-PREDICI representation of MA 

polymerization is used), the magnitude of the simulated CLD-propagation is recovered using 

Approach 1, with an error of less than 0.01 in the estimations of β. As also summarized in 

Table S5, the values of β estimated from the distributions calculated and fit by the FM-

PREDICI model with p.r.r. 250 Hz (Figure S9c) exhibit even lower error, although the error 

for the AECS simulations is slightly increased (and in the opposite direction) compared to the 

500 Hz cases.

A closer examination of Table S5 indicates that the value of β is not exactly recovered 

even when the fitting distribution uses the same level of CLD-dependency for propagation as 

the simulation. For example, a β value of 0.0563 is estimated when the FM-PREDICI model 

with β = 0.05 is used to fit the distribution generated with β = 0.05 at 500 Hz. The reason for 

this small error is that Approach 1 assumes that the chain length Lp defined by Equation (6) is 

negligible when deriving Equation (8), whereas the correction factors  and  are c
1g c

2g

estimated taking into account the CLD of kp for short radicals (Equation (1), with parameters 

in Table S1). This minor discrepancy found by the in silico analysis should disappear when 

applying Approach 2, which explicitly accounts for CLD of short radicals. For distributions 

calculated by the FM-PREDICI simulation with β = 0, 0.05, 0.10 and 0.15 the values of Lp are 

found to be 4.103, 3.657, 3.233 and 2.761, respectively, according to the procedure described 
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in Section 4.2. Numerical solutions of Equation (9a) for these values of Lp lead to the exact 

recovery of the input value of β for the entries along the diagonal of Table S6 for both 500 

and 250 Hz, with values on the off-diagonal indicating an error of less than 0.005 in the value 

of β, that are less than errors found when applying Approach 1. 

Finally, as this series of simulations was done for p.r.r. of both 250 and 500 Hz, the 

MMDs can also be used to test Approach 3 as a method to estimate β and  according to 0
pk

Equation (10). In this test, the pair of MMDs calculated at 250 and 500 Hz by the FM-

PREDICI simulation with a particular value of  (or by the AECS simulation) are used to fit 

the distributions calculated with all other values of  (or by the AECS simulation). The results 

from this exercise are presented in Table S7, with the input β values indicated as column 

headers. The accuracy in the estimations are very similar to those found for Approach 2 

applied to the 500 Hz distributions, with the maximum error occurring when the AECS model 

is used to fit distributions generated by the FM-PREDICI model or vice versa, and the error in 

β estimations less than 0.004 if the FM-PREDICI simulation with any β is applied to fit data 

generated with backbiting and CLD-termination. Note that the accuracy of Approach 3, which 

uses distributions generated at two different p.r.r., was also found to match that of Approach 1 

in Section 4.1.

4. Theoretical Section

4.1. Derivations of the Three Approaches

4.1.1. Consideration for Approach 1

Condition  results in the following simplified version of Equation (7a):1+
p 0 d(1+ )L U t  

(S1a)1+
1 0 d(1+ )  L U t

. (S1b)1+
2 0 d2(1+ )  L U t

The ratio of  to  is 2, resulting in Equation (8a). In addition, substitution of 1+
2

L 1+
1

L

U0 = [M] 0
pk  into Equation (S1a) and (S1b) leads to Equation (8b).
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4.1.2. Consideration for Approach 2

One could rewrite Equation (7a) as follows

(S2a)1+ 1+
1 p 0 d(1+ )   L L U t

. (S2b)1+ 1+
2 p 0 d2(1+ )   L L U t

Consideration of the difference 2    results in Equation (9a), and Equation (9b) is thus 1+
1

L 1+
2

L

determined from Equation (S2a) and (S2b).

4.1.3. Consideration for Approach 3

For chain lengths (j =1 and 2), the following can be derived,j L

 (S3)1 1 1
p 1 22L L L      

as done above for chain length Li (i =1 and 2) for Approach 2. Combining Equations (9b) and 

(S3) leads to Equation (10a). Considering the difference of  and   from Equations (S2) 1+
2

L 1+
1

L

leads to the following expression:

. (S4)1+ 1+
2 1 0 d(1+ )   L L U t

which is the basis for Equation (10b). The same procedure is repeated for chain lengths 

(j =1 and 2).j L

4.2. Estimation of Lp for Approach 2

Approach 2 assumes that Equation (1) describes the CLD propagation of short radicals and 

Equation (2) describes the CLD propagation of long radicals. The cross-over chain length Lc 

is determined by setting the two representations equal at this chain length according to:

 (S5) c 0
p p 1 c p c

1/2

ln(2)1 exp 1Lk k C L k L
i

  
      

  
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Numerical solution of (S5) gives Lc; this chain length is reached at time tc according to 

Equation (S6) obtained by integration of Equation (3) for L  Lc with initial condition 

 and with kp
L expressed by Equation (1):0

1
t

L




 

(S6)

c

1/ 2

1

1/ 2 1
c

p 1

2ln
[M]ln(2) 1

L
ii Ct

k C

 
 

   
 

Substitution of the expression of Equation (2) for L  Lc and integration of Equation (3) p
Lk

with the initial condition  results in: 
c ct t

L L




(S7) 1/(1+ )1+
c 0 c(1+ ) ( )L L U t t

   

According to (S7) Lp =  could be estimated from (S8)
0t

L


(S8)1+ 1+
p c 0 c(1+ )L L U t   

4.3. Uncertainties in the estimation of  by the approaches

Consider the estimation of  by Approach 3. For other two approaches the mathematical 

considerations used to consider accuracy are similar and simpler. Equation (10a) could be 

rewritten as

(S9)

1 1
1 12 2
1 1

1 1

2 2L LL L
L L

 

  
     

             

or (S10)

1 1 1

2 1 2

1 1 1

2 2L L L
L L L

         
                 

Designating a = L2/L1, b = L'2/ L'1, с = L'1/ L1 we have four parameters connected by the 

relation:

(S11)   1 1 12 2a c b    

As the differentials on the left and right sides of Equation (S11) are equal, the following 

expression can be derived:
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(S12)

 
    

 

1

1 1 1

1 1 1

1 d ln( )d

2 1 d + ln( ) 2 d

1 d ln( )d

a a a a

b c c c c b

c b b+c b b

 

   

   

    

    

   

From Equation (S12) we have

(S13)      11 2 11 1
d d d d

b ca c b
a b c

V V V

      
   

(S14) 1 1 1 1 1ln( ) ln( ) ln( ) 2V a a c b b c c b        

According to Equation (S13), the error associated with the estimation of β by Approach 3 is 

mainly dependent on the ratios of chain lengths a and b. Note that the third term in Equation 

(S13) contains the multiplier 2b1+β, whose value is expected to be low, thus decreasing the 

contribution of this term to the error estimated in β.  
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