-Supporting Information for the manuscript entitled-
"Iodine and alkali metal alkoxides: A simple and versatile catalyst system for fully alternating polyesters synthesis from phthalic anhydride and epoxides"

Anjaneyulu Kummari, ${ }^{\text {a }}$ Sreenath Pappuru, ${ }^{\text {a }}$ Sourav Singha Roy ${ }^{\text {a }}$ and Debashis Chakraborty*a
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.

Corresponding author: dchakraborty@iitm.ac.in

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}-$ alt-CHO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 15 , Table 1).

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}-$ alt-CHO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 15 , Table 1).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}$ ($\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400$), (entry 1 , Table 2).

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-tBGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 1 , Table 2).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}-a l t$-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / \mathrm{tBuOK} / \mathrm{PA} / \mathrm{AGE}=2: 1: 100: 400\right)$, (entry7, Table 2).

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $\mathrm{tBuOK}\left(\mathrm{I}_{2} / \mathrm{tBuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$, (entry7, Table 2).

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-PO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13, Table 2).

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13, Table 2).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10, Table 2).

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10, Table 2).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, at $70^{\circ} \mathrm{C}$. (entry 10 , Table 2).

Figure S14. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OK}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 300\right)$, (entry 3, Table 1).

Figure S15. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt -CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOLi}\left(\mathrm{I}_{2} / t \mathrm{BuOLi} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 6 , Table 1).

Figure S16. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuONa}\left(\mathrm{I}_{2} / t \mathrm{BuONa} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 7, Table 1).

Figure S17. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OK}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 8, Table 1).

Figure S18. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO) copolymer derived by the action of I_{2} and $i \operatorname{PrOK}\left(\mathrm{I}_{2} / i \mathrm{PrOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 12 , Table 1).

Figure S19. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOLi}\left(\mathrm{I}_{2} / t \mathrm{BuOLi} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 13 , Table 1).

Figure S20. GPC trace of purified product of P(PA-alt-CHO) copolymer derived by the action of I_{2} and $t \mathrm{BuONa}\left(\mathrm{I}_{2} / t \mathrm{BuONa} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 14 , Table 1).

Figure S21. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 15 , Table 1).

Figure S22. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $i \operatorname{PrONa}\left(\mathrm{I}_{2} / i \mathrm{PrONa} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 20, Table 1).

Figure S23. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OK}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 300\right)$, (entry 24 , Table 1).

Figure S24. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 1 , Table 2).

Figure S25. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 250: 800\right)$, (entry 2, Table 2).

Figure S26. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 500: 1200\right)$, (entry 3, Table 2).

Figure S27. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

Figure S28. GPC trace of purified product P(PA-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 250: 800\right)$, (entry 5, Table 2).

Figure S29. GPC trace of purified product of P(PA-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 500: 1200\right)$, (entry 6, Table 2).

Figure S30. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$, (entry 7, Table 2).

Figure S31. GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 250: 800\right)$, (entry 8 , Table 2).

Figure S32. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 500: 1200\right)$, (entry 9, Table 2).

Figure S33. GPC trace of purified product $\mathrm{P}\left(\mathrm{PA}\right.$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10 , Table 2).

Figure S34. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- SO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 250: 800\right)$, Table (entry 11, Table 2).

Figure S35. GPC trace of purified product $\mathrm{P}\left(\mathrm{PA}\right.$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 500: 1200\right)$, (entry 12 , Table 2).

Figure S36. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13 , Table 2).

Figure S37. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 250: 800\right)$, (entry 14 , Table 2).

Figure S38. GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 500: 1200\right)$, (entry 15 , Table 2).

Figure S39. Regiostructures of polyesters: tail-to-tail (TT), head-to-tail (HT), and head-tohead (HH) junctions, P(PO-alt-PA)polymer.

Figure S40. MALDI-TOF MS spectrum of the short P(PA-alt-AGE) precursor synthesized by the catalysis of $\mathrm{I}_{2} / t \mathrm{BuOK}$.

Figure S41. MALDI-TOF MS spectrum of the short $\mathrm{P}(\mathrm{PA}$-alt-t BGE) precursor synthesized by the catalysis of $\mathrm{I}_{2} / t \mathrm{BuOK}$.

Figure S42. Overlap of ${ }^{1} \mathrm{H}$ NMR monitoring of copolymerization PA/CHO and catalysed by $\mathrm{I}_{2} / \mathrm{BuOK}$ catalyst system with the ratio $\mathrm{I}_{2} / \mathrm{BuOK} / \mathrm{NA} / \mathrm{CHO}=1: 1: 100: 400$ (Entry 3 to 6 , Table 4.2) with respect $0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}$, and 2.5 h of reaction time.

Figure S43. TGA and derivative thermogravimetry (DTG) curves of of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of $\mathrm{I}_{2} / t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$, (entry 7 , Table 4.3).

Figure S44. TGA and derivative thermogravimetry (DTG) curves of $\mathrm{P}(\mathrm{PA}-$ alt-CHO) copolymer derived by the action of $\mathrm{I}_{2} / t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 500: 1200\right)$, (entry 26 Table 4.1).

Table S1. ROAC of phthalic anhydride with cyclohexane oxide at various temperature and time.

EXPERIMENTAL DETAILS

Monomers and catalysts used for copolymerization were purchased from Aldrich. CHO, $t \mathrm{BGE}, \mathrm{PO}, \mathrm{PGE}, \mathrm{AGE}$ and SO were dried over CaH_{2} overnight, vacuum-distilled, and stored in the glovebox for further use. PA was sublimed twice prior to use. The deuterated solvent for NMR studies i.e CDCl_{3} was acquired from Aldrich and purified by distilling over calcium hydride then stored in a glove box. The common reagents, common solvents were acquired locally and purified by usual methods. Toluene and THF were dried by refluxing over sodium/benzophenone for at least 24 h and freshly distilled prior to use. All manipulations for the preparation of polyesters were carried out using either standard Schlenk techniques or glovebox techniques under a dry argon atmosphere. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Avance 400 MHz or 500 MHz spectrometers with chemical shifts given in parts per million (ppm) using residual solvent peak at 7.26 ppm as reference in the case of CDCl_{3}. MALDI-TOF MS spectra were recorded on a Bruker Daltonics instrument using trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) as the matrix in THF at a loading of 1:5 with potassium trifluoroacetate as ionizing agent. Molecular weights (M_{n} and M_{w}) and the MWDs ($M_{\mathrm{w}} / M_{\mathrm{n}}$) of polymer samples were determined by GPC instrument with Waters 510 pump and Waters 410 or 2414 differential refractometer as the detector. Three columns, namely WATERS STRYGEL-HR5, STRYGEL-HR4 and STRYGEL-HR3, each of dimensions ($7.8 \times 300 \mathrm{~mm}$), were connected in series. Measurements were done in THF at 27 ${ }^{\circ} \mathrm{C}$. Number average molecular weights $\left(M_{\mathrm{n}}\right)$ and MWDs $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ of polymers were measured relative to polystyrene standards.

General procedure for the ring-opening copolymerization of PA and different epoxides under neat condition using I_{2} and $\boldsymbol{t B u O K}$

Polymerizations were performed in a dry Schlenk tube or pressure tube using an outside heating bath. The vial was charged with a predetermined amount of molecular iodine ($0.05 \mathrm{mmol}, 1$ equiv), potassium tert-butoxide ($0.05 \mathrm{mmol}, 1$ equiv), epoxide ($20 \mathrm{mmol}, 400$ equiv) and anhydride ($5 \mathrm{mmol}, 100$ equiv), which were kept stirring for 5 min at room temperature in an argon filled glove box. The Schlenk tube or pressure tube was sealed, taken out of the glove box, and then immersed in the heating bath under the determined temperature, and stirred over the desired period of time. After a desired period, the reaction tube was removed from the heating bath and a 0.2 mL of crude sample was taken from the reaction mixture and prepared for ${ }^{1} \mathrm{H}$ NMR analysis. Then the mixture was diluted with dichloromethane and precipitated into 10 fold excess of cold methanol or ethanol or hexane, filtered, washed with methanol or hexane to remove the unreacted monomer and dried in a vacuum at room temperature to a constant weight. The final copolymers were analysed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, GPC, MALDI-TOF MS, DSC and TGA experiments.

General procedure for the ring-opening copolymerization of PA and cyclohexene oxide in toluene using I_{2} and $\boldsymbol{t \mathrm { BuOK }}$

Polymerization was performed in a dry schlenk tube or pressure tube using an external heating bath. The reaction tube was charged with 5 mL of dry toluene, iodine ($12.69 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv), potassium tert-butoxide ($5.61 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv), dibromomethane ($8.69 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv), epoxide ($5 \mathrm{mmol}, 100$ equiv) and phthalic anhydride ($5 \mathrm{mmol}, 100$ equiv), which were kept stirring for 5 to 10 min at room temperature in an argon filled glove box. The schlenk tube or pressure tube was sealed, taken out of the glove box, and then immersed in the heating bath at $90^{\circ} \mathrm{C}$ and stirred over the desired period of time. After a desired period, the reaction tube was removed from the heat heating bath and cooled to room temperature. The crude reaction product was analysed by ${ }^{1} \mathrm{H}$ NMR to see the conversion.

In-situ studies for tert-butyl hypoiodite ($t \mathrm{BuOI}$) and other alkyl hypoiodites synthesis:

According to previous literature method, tert-butyl hypoiodite $(t \mathrm{BuOI})$ was prepared in-situ by the reaction of tert-butyl hypochlorite $(t \mathrm{BuOCl})$ with NaI in $1: 1$ stoichiometric amount. ${ }^{1}$ The starting reagent $t \mathrm{BuOCl}$ was also synthesized quantitatively from previous method. ${ }^{2}$ The reaction of I_{2} and $t \mathrm{BuOK}$ in THF at $70{ }^{\circ} \mathrm{C}$ gave tert-butyl hypoiodite $(t \mathrm{BuOI})$ and KI. The aliquot was analysed by ${ }^{1} \mathrm{H}$ NMR and tert-butyl signal of $t \mathrm{BuOI}$ along with solvated THF signals were noticed (Figure S5a). After removal of THF by 6 h vacuum the ${ }^{1} \mathrm{H}$ NMR analysis of obtained powder showed multiple signals indicating the decomposition of $t \mathrm{BuOI}$ product (Figure S 5 b). Hence, the in-situ formed $t \mathrm{BuOI}$ remains more stable in THF solvent. In the case of other alkyl hypoiodites we are not succeeded in in-situ ${ }^{1} \mathrm{H}$ NMR analysis. Because of high sensitivity to air and moisture the other alkyl hypoiodites (eg, iPrOI and MeOI) are decomposing while preparing NMR sample.

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of crude product derived by the action of $\mathrm{LiI}(\mathrm{LiI} / \mathrm{PA} / \mathrm{CHO}=1: 100: 400)$ at $90^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Figure $\mathbf{S 2}{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of crude product derived by the action of $\mathrm{NaI}(\mathrm{NaI} / \mathrm{PA} / \mathrm{CHO}=1: 100: 400)$ at $90^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of crude product derived by the action of $t \mathrm{BuOK}(t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 100: 400)$ (entry 18 , Table 1).

Figure S4 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of crude product, $\mathrm{P}(\mathrm{PA}-$ alt-CHO) derived by the action of $\mathrm{KI}+\mathrm{NaI}+t \mathrm{BuOCl}(\mathrm{KI} / \mathrm{NaI} / t \mathrm{BuOCl} / \mathrm{PA} / \mathrm{CHO}=1: 1: 1: 100: 400)$, (entry 19, Table 1).

Figure S5 a) ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of THF aliquot from the in-situ reaction of $t \mathrm{BuOK}$ and $\mathrm{I}_{2}(1: 1)$ in THF at $70^{\circ} \mathrm{C}, 6 \mathrm{~h}$. b) After removal of THF by 6 h vacuum.

Figure S6 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, 298K) of purified $\mathrm{P}(\mathrm{PA}$-alt-CHO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry15, Table 1).

Figure S7 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-CHO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 15 , Table $1)$.

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-t BGE$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 1, Table 2).

Figure S9 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-tBGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 1 , Table $2)$.

Figure S10 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

Figure S11 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

Figure S12 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / \mathrm{tBuOK} / \mathrm{PA} / \mathrm{AGE}=2: 1: 100: 400\right)$, (entry7, Table 2).

Figure S13 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $\mathrm{tBuOK}\left(\mathrm{I}_{2} / \mathrm{tBuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$, (entry7, Table 2).

Figure S14 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13, Table 2).

Figure $\mathbf{S 1 5}{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13, Table 2).

Figure S16 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10 , Table 2).

Figure S17 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10, Table 2).

Figure S18 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, at $70^{\circ} \mathrm{C}$.

Figure S19 GPC trace of purified product, $\mathrm{P}(\mathrm{PA}-a l t-\mathrm{CHO})$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OK}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 300\right)$, (entry 3, Table 1).

Figure S20 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OLi}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OLi} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 6 , Table 1).

Figure $\mathbf{S 2 1}$ GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{ONa}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{ONa} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 7, Table 1).

GPC Results										
	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MW Marker 2
1		9966	10300	9629	10682	11112		1.033573		
2		4647	4923	4942	5192	5448		1.059440		

Figure S22 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $\mathrm{CH}_{3} \mathrm{OK}\left(\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{OK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 8 , Table 1).

Figure S23 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt -CHO$)$ copolymer derived by the action of I_{2} and $i \operatorname{PrOK}\left(\mathrm{I}_{2} / i \operatorname{PrOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 12, Table 1).

Figure S24 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOLi}\left(\mathrm{I}_{2} / t \mathrm{BuOLi} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 13, Table 1).

Figure S25 GPC trace of purified product of $\mathrm{P}(\mathrm{PA}$-alt -CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuONa}\left(\mathrm{I}_{2} / t \mathrm{BuONa} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 14 , Table 1).

Figure S26 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- CHO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400\right)$, (entry 15 , Table 1).

Figure S27 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt -CHO$)$ copolymer derived by the action of $\mathrm{I}_{2} / \mathrm{BuOK}\left(\mathrm{I}_{2} / \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 250: 800\right)$, (entry 20, Table 1).

Figure S28 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt -CHO$)$ copolymer derived by the action of $\mathrm{KI}(\mathrm{KI} / \mathrm{PA} / \mathrm{CHO}=1: 100: 300)$, $($ entry 24 , Table 1$)$.

GPC Results

	Dist Name	Mn	MN	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{M} N$	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		13016	16498	14950	20649	25194		1.267589		

Figure $\mathbf{S 2 9}$ GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 100: 400\right)$, (entry 1, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz +1	Mv	Poly dispersity	MW Marker 1	MWV Marker 2
$\mathbf{1}$		17159	21593	21766	26406	31379		1.258380		

Figure S30 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 250: 800\right)$, (entry 2, Table 2).

Figure S31 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt- $t \mathrm{BGE})$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / t \mathrm{BGE}=1: 1: 500: 1200\right)$, (entry 3, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		6440	9423	8531	13441	18024		1.463186		

Figure S32 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 100: 400\right)$, (entry 4, Table 2).

GPC Results

	Dist Name	Mn	Mw	MP	Mz	Mz+1	M	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		7565	11176	11098	15793	20682		1.477361		

Figure S33 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 250: 800\right)$, (entry 5, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MWV Marker 2
$\mathbf{1}$		10366	14989	13607	20706	26493		1.446044		

Figure S34 GPC trace of purified product of P(PA-alt-PGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PGE}=1: 1: 500: 1200\right)$, (entry 6 , Table 2).

Figure S35 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$, (entry 7, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	$\mathrm{Mz}+1$	$\mathrm{M} v$	Poly dispersity	MW Marker 1	MWV Marker 2
$\mathbf{1}$		17891	21696	15377	26858	32785		1.212674		
$\mathbf{2}$		6680	6984	7431	7264	7515		1.045599		

Figure S36 GPC trace of purified product P(PA-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 250: 800\right)$, (entry 8 , Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		24824	48110	35252	85033	124271		1.938040		

Figure S37 GPC trace of purified product P(PA-alt-AGE) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 500: 1200\right)$, (entry 9, Table 2).

Figure S38 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 100: 400\right)$, (entry 10, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	MZ +1	MN	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		5438	5645	5084	5885	6159		1.037966		
2		2532	2748	2879	2942	3111		1.085162		

Figure S39 GPC trace of purified product $\mathrm{P}(\mathrm{PA}$-alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 250: 800\right)$, Table (entry 11, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		5756	5919	4889	6105	6314		1.028316		
2		2616	2863	2825	3099	3313		1.094261		

Figure S40 GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt-SO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{SO}=1: 1: 500: 1200\right)$, (entry 12, Table 2).

GPC Results

	Dist Name	Mn	MN	MP	Mz	Mz+1	M	Poly dispersity	MW Marker 1	MW Marker 2
$\mathbf{1}$		10030	13083	9284	17035	21762		1.304315		

Figure S41 GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 100: 400\right)$, (entry 13, Table 2).

GPC Results

| | Dist Name | Mn | Mon | MP | Mz | Mz+1 | Mv | Poly dispersity | MW Marker 1 | MW Marker 2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | | 12177 | 12672 | 12512 | 13213 | 13802 | | 1.040690 | | |
| 2 | | 5749 | 5989 | 6160 | 6210 | 6411 | | 1.041783 | | |

Figure S42 GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- PO$)$ copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 250: 800\right)$, (entry 14 , Table 2).

Figure S43 GPC trace of purified product $\mathrm{P}(\mathrm{PA}-$ alt- PO) copolymer derived by the action of I_{2} and $t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{PO}=1: 1: 500: 1200\right)$, (entry 15 , Table 2).

Table S1 ROAC of phthalic anhydride with cyclohexane oxide at various temperature and time using most active $\mathrm{I}_{2} / \mathrm{BuOK}$ catalyst.

Entry	Catalysts ${ }^{\text {a }}$	PA/CHO	T($\left.{ }^{\circ} \mathrm{C}\right)$	$\mathrm{t}\left(\mathrm{h}^{-1}\right)$	Conv. (\%) ${ }^{\text {b }}$	\%ester ${ }^{\text {c }}$	$M \mathrm{n}^{\text {d }}$ (kDa)	PDI ${ }^{\text {d }}$
1	$\mathrm{I}_{2}:$ tBuOK	100:400	25	24	--	--	--	--
2	$\mathrm{I}_{2}: \mathrm{tBuOK}$	100:400	50	24	48	95	--	--
3	$\mathrm{I}_{2}: \mathrm{tBuOK}$	100:400	90	0.5	20	99	--	--
4	$\mathrm{I}_{2}: \mathrm{tBuOK}$	100:400	90	1	40	99	$4.10(68) / 1.90$ (32) ${ }^{\text {e }}$	1.05/1.04
5	$\mathrm{I}_{2}:$ tBuOK	100:400	90	2	85	95	$6.65(68) / 3.0(32)^{\text {e }}$	1.01/1.05
6	$\mathrm{I}_{2}:$ tBuOK	100:400	90	2.5	99	95	$11.35(69) / 5.07(31)^{\text {f }}$	1.02/1.05

Figure S44 Regiostructures of polyesters: tail-to-tail (TT), head-to-tail (HT), and head-tohead (HH) junctions, $\mathrm{P}(\mathrm{PO}-$ alt-PA)polymer.

Figure S45 MALDI-TOF MS spectrum of the short P(PA-alt-AGE) precursor synthesized by the catalysis of $\mathrm{I}_{2} / \mathrm{tBuOK}$. The two (A and B) series shown as $\mathrm{m} / \mathrm{z}=[126.90(\mathrm{I})+114.14$ (AGE) $+(262.1$ $\left.\times \mathrm{n})(\mathrm{PA}+\mathrm{AGE})+39.09\left(\mathrm{~K}^{+}\right)+1.01\left(\mathrm{H}^{+}\right)\right](\mathrm{n}=3-8)$ for $\mathrm{A} ; \mathrm{m} / \mathrm{z}=[126.90(\mathrm{I})+(262.1 \times \mathrm{n})(\mathrm{PA}+$ AGE) $\left.+39.09\left(\mathrm{~K}^{+}\right)+1.01\left(\mathrm{H}^{+}\right)\right](\mathrm{n}=4-9)$ for B. $(\mathrm{n}=$ number of repeating units). For example: distribution $A=1087.374$ (experimental value) and $1088.408(n=3.08$; calculated value). For distribution $B=1219.457$ (experimental value) and $1220.642(n=4.02$; calculated value).

Figure S46 MALDI-TOF MS spectrum of the short $\mathrm{P}(\mathrm{PA}-$ alt-t $t \mathrm{BGE})$ precursor synthesized by the catalysis of $\mathrm{I}_{2} / t \mathrm{BuOK} . \mathrm{m} / \mathrm{z}=[126.90(\mathrm{I})+130.18(t \mathrm{BGE})+(278.30 \times \mathrm{n})(\mathrm{PA}+t \mathrm{BGE})$ $\left.+39.09\left(\mathrm{~K}^{+}\right)+1.01(\mathrm{H}+)\right](\mathrm{n}=2-8)$. For example: 873.111 (experimental value) and 873.261 ($\mathrm{n}=2.07$; calculated value).

Figure S47 Overlap of ${ }^{1} \mathrm{H}$ NMR monitoring of copolymerization PA/CHO and catalysed by $\mathrm{I}_{2} / \mathrm{BuOK}$ catalyst system with the ratio $\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 100: 400$ (Entry 3 to 6 , Table S1) with respect $0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}$, and 2.5 h of reaction time.

Figure S48 TGA and derivative thermogravimetry (DTG) curves of of $\mathrm{P}(\mathrm{PA}$-alt-AGE) copolymer derived by the action of $\mathrm{I}_{2} / t \mathrm{BuOK}\left(\mathrm{I}_{2} / t \mathrm{BuOK} / \mathrm{PA} / \mathrm{AGE}=1: 1: 100: 400\right)$.

Figure S49 TGA and derivative thermogravimetry (DTG) curves of $\mathrm{P}(\mathrm{PA}$-alt-CHO) copolymer derived by the action of $\mathrm{I}_{2} / t \mathrm{BuOK}\left(\mathrm{I}_{2} / \mathrm{BuOK} / \mathrm{PA} / \mathrm{CHO}=1: 1: 500: 1200\right)$.

References

1 Y. Takeda, S. Okumura, S. Tone, I. Sasaki and S. Minakata, Organic Letters, 2012, 14, 4874-4877.
2 D. D. Tanner, G. C. Gidley, N. Das, J. E. Rowe and A. Potter, Journal of the American Chemical Society, 1984, 106, 5261-5267.

