Supporting information for : Solvent-free synthesis of a formaldehydefree benzoxazine monomer: Study of its curing acceleration effect for commercial benzoxazine

Romain Tavernier^{1,2,*}, Lérys Granado¹, Monique Tillard¹, Louis Van Renterghem², Thomas-Xavier Métro³, Frédéric Lamaty³, Leila Bonnaud², Jean-Marie Raquez^{2,*}, Ghislain David¹, Sylvain Caillol¹

- 1. ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. E-Mail: romain.tavernier@gmail.com
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials, Materia Nova Research Center & University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium. E-mail: jean-marie.raquez@umons.ac.be
- 3. IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.

NMR Spectroscopy

Figure S1 - 1H NMR spectrum of an equimolar mixture of furfurylaminomethylphenol and p-hydroxybenzaldehyde in dmso-d_6

Figure S4 - Full ¹³C NMR spectrum of an APT experiment on Ph-fa[2]PhOH in dmso-d₆ (showing secondary and quaternary ¹³C positive (up) and primary or tertiary ¹³C negative (down))

FTIR spectroscopy

Figure S5 - Full IR spectrum of Ph-fa[2]PhOH

Single crystals X-ray Diffraction

Figure S6 - Picture of single crystals of Ph-fa[2]PhOH

Figure S7 -The molecular packing in the crystal, viewed along the a-axis (up) and c-axis (down). The intermolecular interactions are drawn as dashed lines, green for the 3.267 Å weak O1…C12 interactions and orange for the O3…N hydrogen bonds of 2.821Å

Atoms	x	у	z	U(eq)
Ν	3519(1)	5804(1)	2141(1)	25(1)
C(4)	2241(2)	3517(1)	-534(2)	45(1)
C(5)	2994(2)	3318(1)	852(2)	46(1)
C(7)	3534(1)	4541(1)	1495(1)	30(1)
C(8)	4259(1)	5110(1)	2545(1)	29(1)
C(9)	1958(1)	5828(1)	2427(1)	29(1)
C(10)	2038(1)	5880(1)	3982(1)	27(1)
C(11)	2389(2)	6454(1)	6016(1)	42(1)
C(12)	2000(2)	5804(1)	6283(1)	43(1)
C(13)	1774(2)	5426(1)	4962(1)	40(1)
C(14)	2830(1)	6657(1)	127(1)	26(1)
C(15)	1284(1)	6772(1)	-587(1)	29(1)
C(16)	737(1)	7448(1)	-960(1)	31(1)
C(17)	1733(1)	8021(1)	-640(1)	33(1)
C(18)	3285(1)	7913(1)	56(2)	39(1)
C(19)	3815(1)	7236(1)	430(1)	34(1)
C(6)	3633(1)	3827(1)	1857(2)	38(1)
O(1)	2510(1)	5424(1)	-314(1)	32(1)
C(1)	3458(1)	5936(1)	629(1)	26(1)
O(2)	2429(1)	6525(1)	4609(1)	40(1)
C(2)	2742(1)	4731(1)	105(1)	29(1)
O(3)	1266(1)	8698(1)	-973(1)	47(1)
C(3)	2103(1)	4222(1)	-919(2)	37(1)

Table S1 - Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for C₁₉H₁₇NO₃. U(eq) isdefined as one-third of the trace of the orthogonalized U_{ij} tensor.

Bond	Bond length (Å)			
N-C(1)	1.4619(13)			
N-C(8)	1.4800(13)			
N-C(9)	1.4837(14)			
C(4)-C(3)	1.3830(19)			
C(4)-C(5)	1.386(2)			
C(4)-H(4)	0.9500			
C(5)-C(6)	1.3828(19)			
C(5)-H(5)	0.9500			
C(7)-C(2)	1.3932(16)			
C(7)-C(6)	1.3954(16)			
C(7)-C(8)	1.5069(15)			
C(8)-H(8A)	0.9900			
C(8)-H(8B)	0.9900			
C(9)-C(10)	1.4812(15)			
C(9)-H(9A)	0.9900			
C(9)-H(9B)	0.9900			
C(10)-C(13)	1.3394(16)			
C(10)-O(2)	1.3679(13)			
C(11)-C(12)	1.322(2)			
C(11)-O(2)	1.3677(15)			
C(11)-H(11)	0.9500			
C(12)-C(13)	1.4279(18)			

Bond	Bond length (Å)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(14)-C(19)	1.3898(16)
C(14)-C(15)	1.3947(15)
C(14)-C(1)	1.5091(14)
C(15)-C(16)	1.3866(15)
C(15)-H(15)	0.9500
C(16)-C(17)	1.3868(16)
C(16)-H(16)	0.9500
C(17)-O(3)	1.3625(14)
C(17)-C(18)	1.3936(17)
C(18)-C(19)	1.3842(17)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(6)-H(6)	0.9500
O(1)-C(2)	1.3744(14)
O(1)-C(1)	1.4479(13)
C(1)-H(1)	1.0000
C(2)-C(3)	1.3945(16)
O(3)-H(1O)	0.88(2)
C(3)-H(3)	0.9500

Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
C(1)-N-C(8)	108.46(8)	C(10)-C(9)- N	112.19(9)	C(19)-C(14)- C(15)	118.33(10)	C(5)-C(6)- C(7)	120.88(13)
C(1)-N-C(9)	112.02(8)	С(10)-С(9)- Н(9А)	109.2	C(19)-C(14)- C(1)	118.86(9)	C(5)-C(6)- H(6)	119.6
C(8)-N-C(9)	110.82(8)	N-C(9)- H(9A)	109.2	C(15)-C(14)- C(1)	122.77(10)	C(7)-C(6)- H(6)	119.6
C(3)-C(4)- C(5)	120.60(12)	С(10)-С(9)- Н(9В)	109.2	C(16)-C(15)- C(14)	120.79(10)	C(2)-O(1)- C(1)	115.88(8)
C(3)-C(4)- H(4)	119.7	N-C(9)- H(9B)	109.2	С(16)-С(15)- Н(15)	119.6	O(1)-C(1)-N	112.20(9)
C(5)-C(4)- H(4)	119.7	H(9A)-C(9)- H(9B)	107.9	C(14)-C(15)- H(15)	119.6	O(1)-C(1)- C(14)	107.15(8)
C(6)-C(5)- C(4)	119.85(12)	C(13)-C(10)- O(2)	109.49(10)	C(15)-C(16)- C(17)	120.15(10)	N-C(1)- C(14)	113.03(8)
C(6)-C(5)- H(5)	120.1	C(13)-C(10)- C(9)	133.90(11)	C(15)-C(16)- H(16)	119.9	O(1)-C(1)- H(1)	108.1
C(4)-C(5)- H(5)	120.1	O(2)-C(10)- C(9)	116.59(9)	C(17)-C(16)- H(16)	119.9	N-C(1)-H(1)	108.1
C(2)-C(7)- C(6)	118.34(11)	C(12)-C(11)- O(2)	110.83(11)	O(3)-C(17)- C(16)	122.95(10)	C(14)-C(1)- H(1)	108.1
C(2)-C(7)- C(8)	119.21(10)	C(12)-C(11)- H(11)	124.6	O(3)-C(17)- C(18)	117.36(11)	C(11)-O(2)- C(10)	106.39(9)
C(6)-C(7)- C(8)	122.45(11)	O(2)-C(11)- H(11)	124.6	C(16)-C(17)- C(18)	119.69(11)	O(1)-C(2)- C(7)	122.02(10)
N-C(8)-C(7)	111.79(9)	C(11)-C(12)- C(13)	106.29(11)	C(19)-C(18)- C(17)	119.60(11)	O(1)-C(2)- C(3)	116.75(11)
N-C(8)- H(8A)	109.3	C(11)-C(12)- H(12)	126.9	C(19)-C(18)- H(18)	120.2	C(7)-C(2)- C(3)	121.21(11)
C(7)-C(8)- H(8A)	109.3	C(13)-C(12)- H(12)	126.9	C(17)-C(18)- H(18)	120.2	C(17)-O(3)- H(1O)	109.5(13)
N-C(8)- H(8B)	109.3	C(10)-C(13)- C(12)	106.99(12)	C(18)-C(19)- C(14)	121.42(10)	C(4)-C(3)- C(2)	119.10(13)
C(7)-C(8)- H(8B)	109.3	С(10)-С(13)- Н(13)	126.5	C(18)-C(19)- H(19)	119.3	C(4)-C(3)- H(3)	120.5
H(8A)-C(8)- H(8B)	107.9	C(12)-C(13)- H(13)	126.5	C(14)-C(19)- H(19)	119.3	C(2)-C(3)- H(3)	120.5

Table S3 - Bond angles (°) for $C_{19}H_{17}NO_3$.

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ν	24(1)	27(1)	23(1)	2(1)	4(1)	4(1)
C(4)	32(1)	36(1)	67(1)	-17(1)	9(1)	-5(1)
C(5)	37(1)	28(1)	74(1)	-3(1)	13(1)	-2(1)
C(7)	24(1)	28(1)	36(1)	-1(1)	8(1)	2(1)
C(8)	28(1)	27(1)	30(1)	2(1)	3(1)	5(1)
C(9)	25(1)	37(1)	25(1)	3(1)	6(1)	5(1)
C(10)	27(1)	28(1)	27(1)	1(1)	7(1)	4(1)
C(11)	47(1)	48(1)	31(1)	-11(1)	10(1)	5(1)
C(12)	53(1)	52(1)	26(1)	7(1)	12(1)	14(1)
C(13)	56(1)	33(1)	34(1)	5(1)	18(1)	1(1)
C(14)	28(1)	31(1)	21(1)	2(1)	7(1)	3(1)
C(15)	28(1)	31(1)	26(1)	1(1)	4(1)	-2(1)
C(16)	26(1)	35(1)	29(1)	5(1)	1(1)	2(1)
C(17)	34(1)	30(1)	33(1)	5(1)	2(1)	2(1)
C(18)	32(1)	32(1)	47(1)	5(1)	-2(1)	-4(1)
C(19)	26(1)	37(1)	34(1)	5(1)	1(1)	1(1)
C(6)	31(1)	30(1)	53(1)	5(1)	9(1)	2(1)
O(1)	39(1)	30(1)	24(1)	-2(1)	3(1)	2(1)
C(1)	26(1)	30(1)	24(1)	0(1)	6(1)	2(1)
O(2)	56(1)	30(1)	38(1)	-4(1)	20(1)	-2(1)
C(2)	25(1)	30(1)	34(1)	-4(1)	9(1)	2(1)
O(3)	39(1)	29(1)	60(1)	9(1)	-9(1)	1(1)
C(3)	28(1)	40(1)	43(1)	-11(1)	7(1)	-1(1)

Table 4 - Anisotropic displacement parameters ($Å^2 \times 10^3$) for $C_{19}H_{17}NO_3$. The anisotropic displacement factor exponent takesthe form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$

Figure S8 - DSC thermograms of Ph-fa[2]PhOH at 10 °C·min⁻¹. Upper thermogram corresponds to single-crystals, bottom thermogram corresponds to polycrystalline sample.

Figure S9 - DSC integrals of Ph-fa[2]PhOH at different heating rates

Figure S10 - Complex viscosity of both formulation followed at 10° C·min⁻¹

Samples pictures

Figure S11 - Pictures of fully cured BA-a (up) and BA-a + 10 wt % Ph-fa[2]PhOH (down)

Figure S12 – Cured samples of BA-a + 10 wt% of Ph-fa[2]PhOH with different homogenization method : in molten state on the left, in acetone solution on the right.