Supplementary information

New block poly(ether sulfone)s based anion exchange membranes with rigid side-chain and high-density quaternary ammonium groups for fuel cell application

Shenghua Du, Shuai Huang, Ning Xie, Tong Zhang, Yaoyao Xu, Xingming Ning, Pei Chen*, Xinbing Chen*, Zhongwei An

Key Laboratory of Applied Surface and Colloid Chemistry (MOE); International Joint Research Center of Shaanxi Province for Photoelectric Materials Science; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China

Materials and reagents

The FAA-3-solut-10 is an anion exchange ionomer that act as a binder, which is obtained by dissolving FAA-3 in N-methyl-2-prrolidone. It is bought from SCI Materials Hub.

The sample preparation method

The copolymers bPES(x/y)-Q (in Br^{-}form) was dissolved in DMF to keep the polymer concentration at about $5 \mathrm{wt} \%$. After filtering out insoluble impurities, the filtrate was dropped on mica flake surface, followed by vacuum drying at $60^{\circ} \mathrm{C}$ for 48 h , and then AFM measurement was conducted in atmosphere. For TEM image observation, the filtrate was dropped on a carbon coated copper mesh. After dried under vacuum at $30^{\circ} \mathrm{C}$, the sample loaded-copper mesh was immersed in $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{WO}_{4}$ aqueous solution for 24 h to adsorb $\mathrm{WO}_{4}{ }^{2-}$ by ion-exchange of the Br^{-}ions, in order to improve the contrast of TEM images. The excess $\mathrm{Na}_{2} \mathrm{WO}_{4}$ was rinsed thoroughly with deionized water, dried in a vacuum oven for 12 h , and then observed by TEM.

Figure S1. FT-IR spectrum of the monomer DFTED.

Figure $\mathrm{S} 2 .{ }^{1} \mathrm{H}$-NMR spectrum of the monomer DFTED.

(b)

Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the membranes (a) bPES(5/10)-MPi and (b) bPES(5/10)MM (in Br^{-}form)

Figure S4. The TEM images the membranes (a) bPES(5/10)-MM, (b) bPES(5/20)-MM, (c) bPES(5/10)-MPi, (d) bPES(5/20)-MPi, (e) bPES(5/10)-MPy, (f) bPES(5/20)-MPy.

Figure S5. The SAXS spectrumof the membrane bPES(5/20)-MM.

Figure S6. Temperature dependence of in-plane dimensional change of the membranes
bPES(x/y)-Q.

Figure S7. the Arrhenius plots of the membranes $\mathrm{bPES}(\mathrm{x} / \mathrm{y})-\mathrm{Q}$.

Figure S8. The TGA curves of the membranes $\operatorname{bPES}(\mathrm{x} / \mathrm{y})-\mathrm{Q}$.

Figure S9. Time dependence of the weight for the membranes bPES(5/20)-MPy and
bPES(5/10)-MM aging in Fenton' reagent at $80^{\circ} \mathrm{C}$.

Figure S10. The mechanical properties of the AEMs.

