Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Diselenide-yne chemistry for selenium-containing linear polymer modification

Ming Liu,^a‡ Sisi Chen,^a‡ Xiaofang Lin,^a Hanliang He,^{*a,b} Jie Gao,^{c,d} Yonghua Zhai,^d Yan Wu,^d Jian Zhu,^a and Xiangqiang Pan^{*a}

Affiliations:

^a State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China. E-mail: <u>panxq@suda.edu.cn</u>

^b The Department of Orthopedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China.

^cChanghai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.

^{*d*} Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China.

1. Experimental section

1.1 Characterization data for monomers

Scheme S1. Synthetic procedure of general monomers.

Characterization data for **2-(2-(2-methoxyethoxy)ethoxy)ethyl propiolate** (Figure S4-5). ¹H NMR (300 MHz, CDCl₃), δ (ppm): 4.33 (t, *J* = 4.5 Hz, 2H), 3.72 (t, *J* = 4.5 Hz, 2H), 3.68-3.59 (m, 6H), 3.57-3.50 (m, 2H), 3.37 (s, 3H), 2.90 (s, 1H). ¹³C NMR (75 MHz, CDCl₃), δ (ppm): 152.61, 75.10, 74.53, 71.91, 70.68, 70.59, 68.55, 65.23, 59.03.

Characterization data for **hexyl propiolate** (Figure S6-7). ¹H NMR (300 MHz, CDCl₃), δ (ppm): 4.18 (t, J = 7.5 Hz, 2H), 2.87 (s, 1H), 1.74-1.61 (m, 2H), 1.43-1.22 (m, 6H), 0.89 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ (ppm): 152.82, 74.80, 74.37, 66.48, 31.32, 28.27, 25.41, 22.48, 13.95.

Characterization data for **benzyl propiolate** (Figure S8-9). ¹H NMR (300 MHz, CDCl₃), *δ* (ppm): δ 7.43-7.30 (m, 5H), 5.23 (s, 2H), 2.89 (s, 1H). ¹³C NMR (75 MHz, CDCl₃), *δ* (ppm): 152.53, 134.52, 128.72, 128.69, 128.57, 75.06, 74.55, 67.92.

1.2 Characterization data for 6-((2-bromo-2-methylpropanoyl)oxy)hexyl propiolate

Scheme S2. Synthetic procedure of 6-((2-bromo-2-methylpropanoyl)oxy)hexyl propiolate.

Characterization data for **6-((2-bromo-2-methylpropanoyl)oxy)hexyl propiolate** (Figure S10-11). ¹H NMR (300 MHz, CDCl₃), δ (ppm): δ 4.18 (q, *J* = 6.0 Hz, 4H), 2.88 (s, 1H), 1.92 (s, 6H), 1.76-1.62 (m, 4H), 1.49-1.35 (m, 4H). ¹³C NMR (75 MHz, CDCl₃), δ (ppm): 171.69, 152.76, 74.73, 74.55, 66.18, 65.84, 55.92, 30.76, 28.20, 25.44, 25.40.

2. Results and Discussion

Table S1 Screening of reaction conditions for selenium-containing brush polymers through SET-LRP.^a

Entry	$[MMA]_0: [EGIn]_0: [Me_6TREN]_0: [CuBr_2]_0$	M _{n,SEC} ^b (g mol ⁻¹)	Đ ^b
1	50 : 1 : 0.2 : 0.1	20400	1.74
2	50 : 1 : 0.2 : 0.2	12300	1.56
3	50 : 1 : 0.2 : 0.3	9100	2.40

^{*a*} Reaction conditions : $[MMA]_0 = 8.33$ M, polymerized in DMSO at 25 °C using *I* = 1.4 cm, *d* = 0.5 mm Cu(0)-wire, 4 h. ^{*b*} Determined by SEC using polystyrene (PS) as the standard in THF.

Entry	Monomer	Time (h)	M _{n,SEC} (g mol ⁻¹)	ÐÞ		
1	TEGMA	4	9600	1.77		
2	DMAEMA	3	8700	1.76		
3	DMAEMA	4	13400	1.92		
4	DMAEMA	6	19100	1.85		

Table S2 Grafting of functional monomers through SET-LRP using EGIn as the macroinitiator. ^a

^a Reaction conditions: $[M]_0 = 8.33$ M, polymerized in DMSO at 25 °C using l = 1.4 cm, d = 0.5 mm Cu(0)-wire, $[M]_0$: $[EGIn]_0$: $[Me_6TREN]_0$: $[CuBr_2]_0 = 50$: 1 : 0.2 : 0.2. ^b Determined by SEC using polystyrene (PS) as the standard in THF.

Figure S1. ¹H NMR spectra of the reaction mixture of $EGSe_2$ and ethyl propiolate (Table 1, entries 1-3) in $CDCI_3$. Set the integral of c to 4.00, then the degree of functionalization was calculated by the formula (Integral of f)/1.00*100%.

Figure S2. ¹H NMR spectrum of the reaction mixture of $EGSe_2$ and phenylacetylene (Table 1, entry 4) in $CDCI_3$. Set the integral of e to 4.00, then the degree of functionalization was calculated by the formula (Integral of f')/1.00*100%.

Figure S3. ¹H NMR spectra of EGSe₂ and the reaction mixture of EGSe₂ and 1-hexyne (Table 1, entry 5) in CDCl₃. As shown in the spectra, the signal peak of the double bond was not observed at 6.5-5.5 ppm, thus the reaction did not happen even in 72 hours under the Blue LED irradiation.

Figure S4. ¹³C NMR spectra of EGSe₂ and EGSe₂-Et in CDCI₃.

Figure S5. FT-IR spectra of $EGSe_2$ and $EGSe_2$ -Et.

Figure S6. ¹³C NMR spectra of EGSe₂ and EGIn in CDCl₃.

Figure S7. ¹H NMR spectra of EGSe₂-Et before and after oxidization with 10 eq H_2O_2 in DMSO- d_6 . EGSe₂-Et (9.2 mg) dissolved in DMSO- d_6 (1 mL) was mixed with 30% H_2O_2 (20 µL) at room temperature. After incubation for 5 h, the solution was evaluated by ¹H NMR.

Fig S8. Particle size of polyplexes at a polymer/pDNA weight ratio = 3. Sample: EGIn-*g*-PDMAEMA, M_n = 8700 g mol⁻¹, D = 1.76.

Figure S9. ¹H NMR spectrum of 2-(2-(2-methoxyethoxy)ethoxy)ethyl propiolate in CDCl₃.

Figure S10. ¹³C NMR spectrum of 2-(2-(2-methoxyethoxy)ethoxy)ethyl propiolate in CDCl₃.

Figure S11. ¹H NMR spectrum of hexyl propiolate in CDCl₃.

Figure S12. ¹³C NMR spectrum of hexyl propiolate in CDCI₃.

Figure S13. ¹H NMR spectrum of benzyl propiolate in CDCl₃.

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 Chemical Shift (ppm)

Figure S14. ¹³C NMR spectrum of benzyl propiolate in CDCI₃.

Figure S15. ¹H NMR spectrum of 6-((2-bromo-2-methylpropanoyl)oxy)hexyl propiolate in CDCl₃.

Figure S16. ¹³C NMR spectrum of 6-((2-bromo-2-methylpropanoyl)oxy)hexyl propiolate in CDCI₃.