Supporting Information

Sonochemistry-assisted Photocontrolled Atom Transfer Radical Polymerization Enabled by Manganese

Carbonyl

Chen Wang¹, Wenru Fan^{1*}, Zexuan Li¹, Jiaqiang Xiong², Wei Zhang², Zhenhua Wang^{1*}

¹Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.

²Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

Table of Contents

Figure S1. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of
BA under the irradiation of single hood light, and the GPC traces4
Figure S2. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA under ultrasound, and the GPC traces. 5
Figure S3. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA under both the irradiation of hood light and ultrasound, and the GPC traces
Figure S4. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA with $DP_T = 200$
Figure S5. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA with $DP_T = 300$
Figure S6. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA with $DP_T = 400$
Figure S7. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA with $DP_T = 800$
Figure S9. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of MA under both the irradiation of hood light and ultrasound, and the GPC trace11
Figure S10. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of EA under both the irradiation of hood light and ultrasound, and the GPC trace12
Figure S11. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of MMA under both the irradiation of hood light and ultrasound, and the GPC trace
Figure S12. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BMA under both the irradiation of hood light and ultrasound, and the GPC trace14
Figure S13. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BzMA under both the irradiation of hood light and ultrasound, and the GPC trace
Figure S14. Conversion analysis by ¹ H NMR (D_2O) of reaction mixture of SAP-ATRP of SPMA under both the irradiation of hood light and ultrasound, and the GPC trace
Figure S15. Conversion analysis by ¹ H NMR (CDCl ₃) of PMA-Br17
Figure S16. Conversion analysis by ¹ H NMR (CDCl ₃) of PMA- <i>b</i> -PEA-Br18
Figure S17. Conversion analysis by ¹ H NMR (CDCl ₃) of ON-OFF \rightarrow and the GPC traces19
Figure S18. Results for the effect of different contents of TPMA on polymerization20
Figure S19. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA, and the GPC traces. $[Cu^{II}]_0$: $[TPMA]_0 = 1:1$

Figure S20. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA, and the GPC traces. [Cu ^{II}] ₀ : [TPMA] ₀ =1:4
Figure S21. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of BA, and the GPC traces. $[Cu^{II}]_0$: $[TPMA]_0 = 1:6$
Table S1. Results for polymerization of various monomers under concurrent stimuli in different solvents.
Figure S22. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of MA in 50% v/v DMSO, and the GPC trace
Figure S23. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of MA in 50% v/v DMF, and the GPC trace
Figure S24. Conversion analysis by ¹ H NMR (CDCl ₃) of reaction mixture of SAP-ATRP of MA in 50% v/v anisole and the GPC trace

Figure S1. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA under the irradiation of single hood light, and the GPC traces.

Figure S2. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA under ultrasound, and the GPC traces.

Figure S3. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA under both the irradiation of hood light and ultrasound, and the GPC traces.

Figure S4. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA with $DP_{\rm T}$ = 200.

Figure S5. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA with $DP_T = 300$.

Figure S6. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA with $DP_{\rm T} = 400$.

Figure S7. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA with $DP_{\rm T} = 800$.

Figure S8. GPC traces of SAP-ATRP of BA with different $DP_{T.}$

Figure S9. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of MA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S10. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of EA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S11. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of

MMA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S12. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BMA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S13. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BzMA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S14. Conversion analysis by ¹H NMR (D₂O) of reaction mixture of SAP-ATRP of SPMA under both the irradiation of hood light and ultrasound, and the GPC trace.

Figure S15. Conversion analysis by ¹H NMR (CDCl₃) of PMA-Br.

Figure S16. Conversion analysis by ¹H NMR (CDCl₃) of PMA-*b*-PEA-Br.

Figure S17. Conversion analysis by ¹H NMR (CDCl₃) of *ON-OFF*, and the GPC traces.

Figure S18. Results for the effect of different contents of TPMA on polymerization. $[BA]_0$: $[EBiB]_0$: $[CuBr_2]_0$: $[TPMA]_0 = 200:1:0.03:X$, 0.45 wt % $Mn_2(CO)_{10}$, in 50% (v/v) DMF. (a) Semi-logarith mic kinetic plots evolution of polymerization under various stimuli. (b) Number-average molecula r weight and molecular weight distribution (\oplus). (c) Conversion and apparent rate of the reaction.

Figure S19. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA, and the GPC traces. $[Cu^{II}]_0$: $[TPMA]_0 = 1:1$.

Figure S20. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA,

and the GPC traces. $[Cu^{II}]_0$: $[TPMA]_0 = 1:4$.

Figure S21. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of BA, and the GPC traces. $[Cu^{II}]_0$: $[TPMA]_0 = 1:6$.

Entry ^a	Monomer	Solvent	T(h)	Conversion ^b	$M_{ m n,th}^{ m c}$	$M_{\rm n,GPC}^{\rm d}$	D^{d}
1	MA	DMSO	5	50%	8800	8600	1.10
2	MA	DMF	5	50%	8800	8300	1.08
3	MA	Anisole	5	8%	1600	3700	2.73

Table S1. Results for polymerization of various monomers under concurrent stimuli in different solvents.

^a Reaction conditions: $[MA]_0$: $[EBiB]_0$: $[CuBr_2]_0$: $[TPMA]_0$ = 200:1:0.03:0.18 in 50% (v/v) DMSO/DMF/anisole, Magnetic stirring with a rod stirrer.^b Conversion determined by ¹H NMR.^c Calculated on the basis of conversion (i.e., $M_{n,th}=M_{EBiB}+[Monomer]_0/[EBiB]_0 \times conversion \times M_{monomer}$).^d Determined by GPC in THF, based on linear PMMA as calibration standard.

Figure S22. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of MA in 50% v/v DMSO, and the GPC trace.

Figure S23. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of MA in 50% v/v DMF, and the GPC trace.

Figure S24. Conversion analysis by ¹H NMR (CDCl₃) of reaction mixture of SAP-ATRP of MA

in 50% v/v anisole and the GPC trace.

1) Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. *Macromolecules* **1999**, *32*, 2434-2437.