Electronic Supplementary Information

## Thermally Stimulated Cascade Reaction Polymer Membranes: A Promising Strategy for

### an increased Hydrogen and Propylene Purification Performance

Authors: David Meis, Silvio Neumann, Sergey Shishatskiy, Ulrike Meis, Volkan Filiz

## Affiliations:

Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Str.1, 21502

Geesthacht, Germany

\*Email: volkan.filiz@hereon.de

## **Table of Content**

| Polymer Synthesis                                                  | 2  |
|--------------------------------------------------------------------|----|
| Polymer Characterization                                           | 3  |
| Structure Characterization of $\beta$ Mallyloxy-modified Backbones | 6  |
| Structure Characterization of annealed $\beta$ MPI-1               | 6  |
| Thermal Characterization of $\beta$ Mallyloxy-modified Backbones   | 12 |
| X-Ray Diffraction Spectroscopy (XRD)                               | 17 |
| Gas Performance by means of Time-Lag Measurements                  | 18 |
| Computational Chemistry                                            | 26 |
| Quantum mechanical Simulation                                      | 26 |
| Molecular Modelling                                                | 30 |
| References                                                         | 38 |

# **Polymer Synthesis**



**Scheme S1**. Synthesis route for the polymerization, imidization and allylation. (I) Polyamic acid formation, (II) azeotropic imidization at 180 °C with *o*-xylene, (III) *ortho*-hydroxy group conversion. Overview of the formed structures after the Claisen-Rearrangement.

#### **Polymer Characterization**

#### **Polymer characterization methods**

The polymers were characterized by <sup>1</sup>H-Nuclear Magnetic Resonance (NMR) spectroscopy employing a Bruker AVIIIHD spectrometer at 500 MHz (<sup>1</sup>H-NMR), with deuterated dimethyl sulfoxide (DMSO-d<sub>6</sub>) as the solvent and lock signal. Tetramethylsilane (TMS) was used as a reference signal.

The standard-equivalent molecular weights of the functionalized polyimides was determined by gel permeation chromatography (GPC) based on standard polystyrene calibration using the PSS ReadyCal-Kits Poly(Styrene) pskitr4-12 with a molar mass range from Mp 474 - 2 520 000 Da, in dimethylacetamide (DMAc) with the addition of lithium chloride (2.12 g L<sup>-1</sup>) I the eluent in each measurement. A Waters 717plus instrument equipped with PSS GRAM columns [GRAM pre-column (dimension 8 – 50 mm) and two GRAM columns of different porosity (3000 Å and 1000 Å, respectively) with dimension of 8 · 300 mm and particle size of 10  $\mu$ m. The flow rate was 1,0 mL min<sup>-1</sup> using a VWR-Hitachi 2130 pump, and a Shodex RI-101 differential refractive index detector was used.

Attenuated total internal reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed using a Bruker alpha ATR in a spectral range of 400-4000 cm<sup>-1</sup> with an accumulation of 32 scans and a resolution of 4 cm<sup>-1</sup>.

Differential scanning calorimetry (DSC) was performed with a differential scanning calorimeter DSC1 (Mettler-Toledo) in a temperature range between 30 and 450 °C under nitrogen (60 mL min<sup>-1</sup>) and at a heating rate of 5 °C min<sup>-1</sup> to study the thermally induced transitions of the synthesized polyimides. Approximately 8 mg of the polymer sample were transferred into a 40  $\mu$ L sealed aluminum pan with a pierced lid. For the glass transition determination, the materials were heated up to 300 °C and held for 30 min, and cooled down afterwards at a heating rate of 5 and cooling rate of 10 °C min<sup>-1</sup>. The glass transition was determined during the second cycle. All measured heat flows are weight-normalized.

3

Thermogravimetric analysis (TGA) was performed using a TGA-DSC2 Thermogravimetric Analyzer (Mettler-Toledo) over the range of 25 to 800 °C with a heating rate of 5 °C min<sup>-1</sup> in an argon atmosphere (both with a flow rate of 20 mL min<sup>-1</sup>). In order to determine the CO<sub>2</sub> as well as other volatile products evolution during TR-process, the thermogravimetric analyzer was coupled with a FTIR spectrometer Nicolet iS50 (Thermo Scientific), which recorded in the spectral range of 400-4000 cm<sup>-1</sup> with a resolution of 4 cm<sup>-1</sup> and a total number of 64 scans per spectrum. The conversion of the Thermal Rearrangement process for each material after different isothermal treatments was obtained by performing TGA runs of these materials. Afterwards the mass loss of the corresponding mass loss step, in the temperature range between the determined onset- and offset-temperature, was measured. With this experimental mass loss, the conversion was calculated according to the following equation:

$$conversion (\%) = \frac{mass \ loss \ experimental}{mass \ loss \ theoretical} x100$$
(eq. S1)

The density of the membranes was determined by using a Mettler Toledo XP105 balance equipped with a density determination kit. The samples were weighed in air and isooctane according to the buoyancy method. Isooctane has been chosen as a liquid with known density since it is wetting the membrane perfectly and is not absorbing into the membrane. The density was calculated using the following equation (eq. S2)

$$\rho_{membrane} = \frac{w_{air}}{w_{air} - w_{liq}} \rho_{liq}$$
(eq. S2)

with  $\rho_{\text{membrane}}$  as the membrane density (g cm<sup>-3</sup>), w<sub>air</sub> and w<sub>liq</sub> as the weight of the membrane in air and isooctane (g), and  $\rho_{\text{liq}}$  is the density of isooctane (g cm<sup>-3</sup>).

Based on the density data, the fractional free volume (FFV) of the membranes before the thermal treatments was estimated according to the following equation (eq. S3)

 $V_{sp} = \frac{m}{\rho_{membrane}}$ 

(eq.S3)

4

$$FFV = \frac{V_{sp} - 1.3xV_w}{V_{sp}}$$
(eq.S4)

Where  $V_{sp}$  is the specific molar volume of the polymer membrane and  $V_w$  is the van der Waals molar volume according to Bondi's group contribution theory [1, 2].

X-ray diffraction measurements of the membranes were done using a Siemens D5000 diffractometer with a Cu K $\alpha$  radiation with a wavelength of 0.154 nm at a step size of 0.1° min<sup>-1</sup> and a step time of 4 s in the 2 $\theta$  range of 2 - 50°. The average d-spacing value was calculated via Bragg's equation:

$$2d\sin\theta = n\lambda$$
 (eq. S5)

The gas permeation properties were determined using a constant volume variable pressure method (time-lag method) realized in an in-house designed and built experimental facility [3]. The single gas permeability P of H<sub>2</sub>, He, N<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub>, CO<sub>2</sub>, C<sub>2</sub>C<sub>4</sub>, C<sub>2</sub>C<sub>6</sub>, C<sub>3</sub>C<sub>6</sub>, C<sub>3</sub>C<sub>8</sub> was measured at 30 °C and a feed pressure of 1000 mbar. From the linear increase of the downstream pressure rise as a function of the time (dp/dt) the permeability of each gas could be calculated with the equation:

$$P = \frac{273.15Vldp}{76T\Delta pA \ dt} \tag{eq. S6}$$

with permeability *P* (Barrer), membrane thickness *I* (cm) (see Table S1), downstream chamber volume *V* of 43.3 cm<sup>3</sup> temperature *T* of 303 K, pressure difference *dp* (= $p_{upstream}$ - $p_{downstream}$ ) (cm Hg) and effective membrane area *A* of 1.22cm<sup>2</sup>. Based on the calculated permeability of each gas, the ideal selectivity  $\alpha_{x/y}$  of each gas pair could be calculated, as shown in equation S7

$$\propto_{x/y} = \frac{P_x}{P_y}$$
 (eq. S7)

The diffusion coefficients were obtained from these steady-state measurements by determination of the diffusional time-lag  $\theta$ . The time-lag is determined by the intersection of time-axis and tangent of the steady-state range. By means of equation S8, the diffusion coefficient D was calculated:

$$\theta = \frac{l^2}{D}$$
(eq. S8)

#### Claisen Rearrangement mechanism



Scheme S2. Claisen Rearrangement mechanism.

#### Structure Characterization of annealed βMPI-1



**Figure S1.** FT-IR spectrum of the annealed samples of  $\Box$ MPI-1 after annealing at 300 °C with a heating rate of 3 °C/min and 1 °C/min, and a sample that was heated with a heating rate of 1 °C/min and an isothermal treatment for 2 h.

#### Structure Characterization of βMallyloxy-modified Backbones

*β***M-***P***I-**1



**Figure S2.** <sup>1</sup>H-NMR spectrum  $\beta$ M-PI.

Molecular weight: Mn (g/mol), = 2.47·10<sup>4</sup>, Mw (g/mol), = 9.91·10<sup>4</sup>, Đ = 4.0. IR: 3082 (w, C-H str., alkene); 2925 (w, C-H str., alkane, methyl); 2875 (w, C-H str., alkane, methylene); 1789 (s, C=O str, imide); 1725 (w, C=O str, imide); 1615 (w, C=C str., alkene); 1273,1205 (s, C-O-C str., ether). <sup>1</sup>H NMR (DMSO-d6, ppm); For specific assignments see Figure S2: 7.3-8.2 (m, 12 H, aromatic, **a-f**); 4.8-4.9 (m, 4 H, vinyl, **k,k'**); 4.5 (s, 4 H, allylic, **h**); 1.6 (s, 6 H, allylic, **M**).





**Figure S3.** <sup>1</sup>H-NMR spectrum  $\beta$ M-PI-3.

Molecular weight: Mn (g/mol), = 2.92·10<sup>4</sup>, Mw (g/mol), = 8.13·10<sup>4</sup>, Đ = 2.78. <sup>1</sup>H NMR (DMSOd6, ppm); For specific assignments see Figure S3: 7.3-8.4 (m, 12 H, aromatic); 4.9-5.1 (m, 4 H, vinyl, **k**,**k**'); 4.6 (s, 4 H, allylic, **h**); 1.6 (s, 6 H, allylic, **M**).



**Figure S4.** <sup>1</sup>H-NMR spectrum  $\beta$ M-PI-2.

Molecular weight: Mn (g/mol), = 1.29·10<sup>4</sup>, Mw (g/mol), = 5.58·10<sup>4</sup>, Đ = 4.31. <sup>1</sup>H NMR (DMSOd6, ppm); For specific assignments see Figure S4: 7.3-8.2 (m, 6 H, aromatic); 5.4-5.6 (m, 2 H, vinyl anhydride); 4.8-4.9 (m, 4 H, vinyl, **k,k**'); 4.6 (s, 4 H, allylic, **h**); 2.0 (s, 2 H, xxxx); 1.6 (s, 6 H, allylic, **M**).



**Figure S5.** <sup>1</sup>H-NMR spectrum  $\beta$ M-PI-4.

β**M-PI-4** 

Molecular weight: Mn (g/mol), = 3.37·10<sup>4</sup>, Mw (g/mol), = 6.80·10<sup>4</sup>, Đ = 2.02. <sup>1</sup>H NMR (DMSOd6, ppm); For specific assignments see Figure S5: 7.3-8.2 (m, 20 H, aromatic); 4.8-4.9 (m, 4 H, vinyl, **k**,**k**'); 4.5 (s, 4 H, allylic, **h**); 1.6 (s, 6 H, allylic, **M**).

10



**Figure S6.** <sup>1</sup>H-NMR spectrum  $\beta$ M-PI-5.

Molecular weight: Mn (g/mol), 3.79·10<sup>4</sup>, Mw (g/mol), = 16.9·10<sup>4</sup>, Đ = 4.49. <sup>1</sup>H NMR (DMSO-d6, ppm); For specific assignments see Figure S6: 7.3-8.2 (m, 12 H, aromatic, **a-f**); 4.8-4.9 (m, 4 H, vinyl, **k**,**k**'); 4.5 (s, 4 H, allylic, **h**); 1.6 (s, 6 H, allylic, **M**).



## Thermal Characterization of *β*Mallyloxy-modified Backbones

**Figure S7.** (a) Determination of the TR and degradation (DG) specific onset, peak and offset temperature, as well as the mass loss onset, peak and offset temperature of the first and

second mass loss corresponding process. (b) TGA-mass loss curve, its first derivative (DTG) and extracted CO<sub>2</sub> peak height profile, including the region of the determined experimental mass loss for the TR conversion calculation.

Residual mass loss in the TR region is divided by the theoretical mass loss of 2 molecules of  $CO_2$  per repetition unit, as expected for a quantitative PBO conversion, yields the TR conversion.



**Figure S8.** Mass loss curves (black) and CO<sub>2</sub> peak height profiles (blue) measured by DSC for all Claisen Rearrangement undergoing polymers.



**Figure S9.** TGA based mass loss curves (black) and  $CO_2$  peak height profile, determined by evolved decomposition gas analysis via FT-IR spectroscopy (red) of  $\beta$ Mallyloxy-modified polyamide  $\beta$ MPA-1 and polyimide  $\beta$ MPI-1, -2, -3, -4, and -5.



**Figure S10.** DSC based heat flow curves of  $\beta$ Mallyloxy-modified polyimide  $\beta$ MPI-1, -2, -3, -4, and -5.

| Table          | S1.    | Determined                  | physical  | properties  | glass-transition     | temperature  | Tg,    | TR    | onset            |
|----------------|--------|-----------------------------|-----------|-------------|----------------------|--------------|--------|-------|------------------|
| temper         | rature | e TR <sub>on</sub> , TR cor | version T | R%, density | v, fractional free v | olume FFV of | Allyl- | , αM· | -, β <b>M-</b> , |
| γ <b>M-</b> an | dγE-   | PI.                         |           |             |                      |              |        |       |                  |

| Modification         | Тg   | TR <sub>on</sub> (°C) | TR%  | Density (g/cm³) | FFV (%) | ∆Thickn |
|----------------------|------|-----------------------|------|-----------------|---------|---------|
|                      | (°C) |                       | (%)  |                 |         | ess (%) |
| Allyl-Pl             | N.A. | 331                   |      | 1.42±0.017      | 17.3    |         |
| Allyl-Pl             |      |                       | 12.6 | 1.35±0.025      | 20.6    | 5.47    |
| 300 °C               |      |                       |      |                 |         |         |
| Allyl-Pl             |      |                       | 48.5 | 1.33±0.016      | 20.9    | 7.39    |
| 350 °C               |      |                       |      |                 |         |         |
| Allyl-Pl             |      |                       | 100  | 1.32±0.010      | 20.9    | 4.31    |
| 400 °C               |      |                       |      |                 |         |         |
| αΜ-ΡΙ                | 333  | 328                   |      | 1.41±0.010      | 15.7    |         |
| α <b>Μ-ΡΙ 300</b> °C |      |                       | 13.0 | 1.36±0.001      | 16.6    | 2.10    |
| α <b>Μ-ΡΙ 350</b> °C |      |                       | 62.1 | 1.35±0.007      | 18.3    | 2.24    |
| α <b>Μ-ΡΙ 400</b> °C |      |                       | 100  | 1.32±0.007      | 20.8    | 3.35    |
| β <b>Μ-ΡΙ</b>        | 302  | 325                   |      | 1.40±0.018      | 16.9    |         |
| β <b>Μ-ΡΙ 300</b> °C |      |                       | 14.6 | 1.35±0.016      | 18.7    | 7.45    |
| β <b>Μ-ΡΙ 300</b> °C |      |                       | 22.2 | 1.34±0.022      |         | 1.75    |
| β <b>Μ-ΡΙ 350 °C</b> |      |                       | 84.8 | 1.31±0.013      | 20.6    | 17.4    |
| β <b>Μ-ΡΙ 400 °C</b> |      |                       | 100  | 1.31±0.013      | 22.3    | 3.00    |
| γΜ-ΡΙ                | 289  | 352                   |      | 1.40±0.007      | 15.9    |         |
| γ <b>Μ-ΡΙ 300</b> °C |      |                       | 13.1 | 1.35±0.007      | 19.1    | 9.26    |
| γ <b>Μ-ΡΙ 350</b> °C |      |                       | 52.1 | 1.34±0.01       | 18.1    | -1.60   |
| γ <b>Μ-ΡΙ 400</b> °C |      |                       | 100  | 1.32±0.029      | 20.8    | 8.42    |
| γΕ-ΡΙ                | 296  | 309                   |      | 1.41±0.009      | 13.7    |         |

| γE-PI 300 °C | 22.4 | 1.35±0.013 | 16.7 | 6.65 |
|--------------|------|------------|------|------|
| γE-PI 350 °C | 100  | 1.33±0.005 | 16.5 | 13.2 |
| γE-PI 400 °C | 100  | 1.27±0.038 | 20.4 | 8.29 |

# X-Ray Diffraction Spectroscopy (XRD)

**Table S2.** Determined d-spacing of Allyl-,  $\alpha$ M-,  $\beta$ M-,  $\gamma$ M- and  $\gamma$ E-PI by means of x-ray diffraction spectroscopy, after annealing at 350 °C for 2 h and 400 °C for 1 h, respectively.

|                | d-spacing                  | (2°) |  |  |  |  |  |  |
|----------------|----------------------------|------|--|--|--|--|--|--|
|                | Annealing temperature (°C) |      |  |  |  |  |  |  |
| Material       | 350                        | 400  |  |  |  |  |  |  |
| HPI            | 0.67                       | 0.60 |  |  |  |  |  |  |
| AllyIPI-1      | 0.53                       | 0.54 |  |  |  |  |  |  |
| α <b>MPI-1</b> |                            | 0.55 |  |  |  |  |  |  |
| β <b>MPI-1</b> | 0.55                       | 0.59 |  |  |  |  |  |  |
| γ <b>MPI-1</b> | 0.54                       | 0.51 |  |  |  |  |  |  |
| γΕΡΙ-1         | 0.57                       | 0.53 |  |  |  |  |  |  |



**Figure S11.** Determined diffraction pattern of  $\beta$ MPI-1 by means of x-ray diffraction spectroscopy, after annealing at 350 °C for 2 h and 400 °C for 1 h, respectively

# Gas Performance by means of Time-Lag Measurements



**Figure S12.** Diffusion coefficient as a function of the annealing temperature for different allyl derivatives for the gases  $H_2$ ,  $CO_2$  and  $CH_4$ .

Table S3. Overview of determined gas diffusion coefficients of He, H<sub>2</sub>, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub>.

|                              | Diffusion coefficient [10 <sup>-8</sup> cm <sup>2</sup> /s] |     |      |      |      |      |      |  |  |  |
|------------------------------|-------------------------------------------------------------|-----|------|------|------|------|------|--|--|--|
| Material                     | Annealing                                                   | Не  | H2   | CO2  | O2   | N2   | CH4  |  |  |  |
| Allyl-Pl                     | 300                                                         | 200 | 509  | 2.99 | 9.42 | 2.44 | 0.47 |  |  |  |
| <i>β</i> <b>Μ-</b> <i>ΡΙ</i> |                                                             | 680 | 702  | 5.51 | 16.8 | 3.89 | 0.83 |  |  |  |
| γM-PI                        |                                                             | 554 | 285  | 3.62 | 8.63 | 1.37 | 0.62 |  |  |  |
| γE-PI                        |                                                             | 593 | 1147 | 7.68 | 26.8 | 7.96 | 2.17 |  |  |  |
| Cinnamyl-Pl                  |                                                             | 139 | 85.2 | 1.14 | 5.71 | 2.33 | 0.04 |  |  |  |

| Prenyl-Pl                                                                                                                                               |          | 631                  | 458  | 3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5                                 | 1.01   | 0.35  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------|
| Butylene-Pl                                                                                                                                             |          | 196                  | 108  | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.9                                 | 4.07   | 1.25  |
|                                                                                                                                                         |          |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        |       |
| AllvI-PI                                                                                                                                                | 350      | 2638                 | 883  | 7.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.6                                 | 6.27   | 1.39  |
| , <b>,</b> ,                                                                                                                                            |          | 792                  | 185  | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.7                                 | 10.2   | 2.66  |
| RM DI                                                                                                                                                   |          | 3070                 | 2050 | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.5                                 | 11.2   | 6.30  |
|                                                                                                                                                         |          | 4420                 | 1106 | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0                                 | 5.20   | 1.10  |
| γM-PI                                                                                                                                                   |          | 4130                 | 1120 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.4                                 | 5.20   | 1.10  |
| gE-PI                                                                                                                                                   |          | 5431                 | 2825 | 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.8                                 | 29.9   | 7.92  |
| Cinnamyl-Pl                                                                                                                                             |          | 1217                 | 120  | 8.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.6                                 | 6.37   | 2.49  |
| Prenyl-Pl                                                                                                                                               |          |                      | 1110 | 9.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.9                                 | 9.31   | 0.45  |
| Butylene-PI                                                                                                                                             |          | 1736                 | 1471 | 8.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.1                                 | 6.65   | 1.18  |
|                                                                                                                                                         |          |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        |       |
| Allyl-Pl                                                                                                                                                | 400      | 210                  | 621  | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.9                                 | 5.95   | 2.41  |
| αM-PI                                                                                                                                                   |          | 491                  | 518  | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59.9                                 | 22.2   | 7.78  |
| RM_PI                                                                                                                                                   |          | 952                  | 1580 | 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72.8                                 | 219    | 6.21  |
|                                                                                                                                                         |          | 507                  | 1110 | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77.5                                 | 27.5   | 6.71  |
|                                                                                                                                                         |          | 1050                 | 606  | 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04.4                                 | 27.0   | 12.0  |
| γ <b>E-</b> PI                                                                                                                                          |          | 1850                 | 696  | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94.4                                 | 23.8   | 13.9  |
|                                                                                                                                                         |          |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        |       |
| βΜ-ΡΙ                                                                                                                                                   | 150      | 41.8                 | 188  | 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.3                                 | 3.32   | 0.52  |
|                                                                                                                                                         | 300 1'   |                      | 1400 | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.22                                 | 2.55   | 0.72  |
|                                                                                                                                                         | 300 30'  | 680                  | 702  | 5.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.8                                 | 3.89   | 0.83  |
|                                                                                                                                                         | 300 120' | 228                  | 1293 | 8.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.3                                 | 2.43   | 1.76  |
|                                                                                                                                                         | 350      | 3070                 | 2050 | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.5                                 | 11.2   | 6.30  |
|                                                                                                                                                         | 400      | 952                  | 1580 | 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72.8                                 | 21.9   | 6.21  |
| Solubility Coefficien<br>(cm <sup>3</sup> (STP)/(cm <sup>3</sup> atr<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0                       | 320 340  | 360 380              | 400  | 0,4<br>0,4<br>1,2<br>0,0<br>H <sup>2</sup> /CH <sup>4</sup><br>0,1<br>0,1<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>↓</b> = = <b>↓</b><br>300 320 340 | 360 38 |       |
| 4 Solubility Coefficient CO <sub>2</sub><br>(cm³ (STP)/(cm³ atm¹))<br>0'0 (1'0 (cm³ atm¹))<br>0'0 (1'0 (cm³ atm¹))                                      | 320 340  | 360 380              | 400  | Solubility Selectivity<br>$H_2/N_2$<br>$1^{\circ}$ , 0<br>$1^{\circ}$ , 0 | 300 320 340                          | 360 38 |       |
| Solubility Coefficient CH<br>(cm <sup>3</sup> (STP)/(cm <sup>3</sup> atm <sup>1</sup> ))<br>000<br>010<br>010<br>010<br>010<br>000<br>000<br>000<br>000 | 320 340  | <b>EEEEEEEEEEEEE</b> | 400  | Solubility Selectivity<br>CO <sub>2</sub> /CH <sub>4</sub><br>0 7 9 8 0 1<br>7 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ★ = = - 300 320 340                  | 360 38 | 0 400 |

**Figure S13.** Gas solubility coefficient of He, H<sub>2</sub>, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub> and solubility-based selectivity of the gas pairs H<sub>2</sub>/CH<sub>4</sub>, H<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> of the studied allylderivatives after annealing at 300 °C for 30 min, 350 °C for 2 h and 400 °C for 1 h.

|                |           | <u> </u> |             |            | <u> </u>          |              | 41=  |
|----------------|-----------|----------|-------------|------------|-------------------|--------------|------|
|                |           | Solubi   | lity coeffi | cient [10- | <u>° cm² (STP</u> | ') /(cm³ atr | n¹)] |
| Material       | Annealing | He       | H2          | CO2        | O2                | N2           | CH4  |
| Allyl-Pl       | 300       | 1,24     | 2,41        | 354        | 19,2              | 16,7         | 28,5 |
| β <b>Μ-ΡΙ</b>  |           | 2,19     | 2,72        | 271        | 17,4              | 13,8         | 59,4 |
| γΜ-ΡΙ          |           | 9,64     | 15,8        | 292        | 28,8              | 39,1         | 80,3 |
| γE-PI          |           | 3,06     | 1,93        | 237        | 13,6              | 13,4         | 42,2 |
| Cinnamyl-Pl    |           | 0,001    | 0,0008      | 240        | 18,0              | 16,4         | 902  |
| Prenyl-Pl      |           | 2,46     | 3,09        | 279        | 17,7              | 41,0         | 105  |
| Butylene-PI    |           | 9,07     | 12,9        | 245        | 23,9              | 22,5         | 51,2 |
|                |           |          |             |            |                   |              |      |
| Allyl-Pl       | 350       | 1,61     | 5,66        | 461        | 26,0              | 23,8         | 77,9 |
| α <b>M-</b> PI |           | 9,18     | 25,1        | 413        | 31,8              | 26,2         | 78,3 |
| βΜ-ΡΙ          |           | 2,38     | 5,26        | 302        | 21,6              | 17,1         | 61,2 |
| γΜ-ΡΙ          |           | 0,49     | 1,95        | 277        | 16,9              | 15,6         | 55,7 |
| γΕ-ΡΙ          |           | 0,99     | 2,84        | 3111       | 21,4              | 17,3         | 65,2 |
| Cinnamyl-Pl    |           | 0,001    | 0,001       | 293        | 38,0              | 35,9         | 78,4 |
| Prenyl-Pl      |           | 0,09     | 2,66        | 243        | 18,3              | 14,1         | 26,2 |
| Butylene-PI    |           | 1,95     | 1,97        | 275        | 20,2              | 17,5         | 64,6 |
|                |           |          |             |            |                   |              |      |
| Allyl-Pl       | 400       | 29,2     | 12,9        | 441        | 72,9              | 88,4         | 157  |
| αM-PI          |           | 15,3     | 22,3        | 507        | 48,6              | 39,9         | 101  |
| β <b>Μ-ΡΙ</b>  |           | 9,9      | 38,4        | 533        | 85,4              | 82,6         | 170  |
| γΜ-ΡΙ          |           | 11,3     | 7,32        | 302        | 22,1              | 19,1         | 61,4 |
| γΕ-ΡΙ          |           | 4,93     | 23,3        | 682        | 55,8              | 79,4         | 111  |
|                |           |          |             |            |                   |              |      |
| βΜ-ΡΙ          | 150       | 14,0     | 2,17        | 94,3       | 4,09              | 12,6         | 23,9 |
| _              |           |          |             |            |                   |              |      |

Table S4. Overview of determined gas solubility coefficients of He, H<sub>2</sub>, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub>.

| 300 1'  | -    | 8,72 | 267 | 25,8 | 19,2 | 46,3 |
|---------|------|------|-----|------|------|------|
| 300 30' | 2,19 | 2,72 | 271 | 17,4 | 13,8 | 59,4 |
| 350     | 2,38 | 5,26 | 302 | 21,6 | 17,1 | 61,2 |
| 400     | 9,9  | 38,4 | 533 | 85,4 | 82,6 | 170  |



**Figure S14.** Gas pair selectivity vs gas permeability of  $O_2/N_2$  for different allylderivatives after annealing at 300 °C for 0.5 h (**•**), 350 °C for 2 h (**•**) and 400 °C for 1 h (**•**), incorporated in the upper bound plot, including upper bounds of 1991, 2008 and 2015 [4].

|               |           | Perm | eability [E | Barrer] |      |      |      |
|---------------|-----------|------|-------------|---------|------|------|------|
| Material      | Annealing | He   | H2          | CO2     | O2   | N2   | CH4  |
| Allyl-Pl      | 300       | 247  | 122         | 102     | 17.9 | 3.91 | 1.39 |
| βM-PI         |           | 180  | 189         | 149     | 29.3 | 5.38 | 4.94 |
| γΜ-ΡΙ         |           | 151  | 152         | 106     | 23.1 | 5.33 | 4.99 |
| γE-PI         |           | 167  | 180         | 181     | 36.5 | 10.6 | 9.16 |
| Cinnamyl-Pl   |           | 95.8 | 99.8        | 50.6    | 10.3 | 3.81 | 3.59 |
| Prenyl-Pl     |           | 155  | 141         | 84.5    | 18.5 | 4.13 | 3.63 |
| Butylene-Pl   |           | 142  | 140         | 120     | 25.8 | 9.08 | 6.41 |
|               |           |      |             |         |      |      |      |
| Allyl-Pl      | 350       | 423  | 499         | 377     | 58.3 | 14.9 | 10.9 |
| αM-PI         |           | 727  | 467         | 527     | 101  | 25.4 | 20.8 |
| <i>β</i> Μ-ΡΙ |           | 728  | 1075        | 831     | 169  | 38.3 | 38.2 |
| γΜ-ΡΙ         |           | 204  | 219         | 185     | 22.8 | 8.15 | 6.14 |
| γΕ-ΡΙ         |           | 531  | 739         | 968     | 162  | 51.9 | 51.6 |
| Cinnamyl-Pl   |           | 226  | 269         | 249     | 55.1 | 22.8 | 19.2 |
| Prenyl-Pl     |           | 271  | 295         | 236     | 50.9 | 13.1 | 11.7 |
| Butylene-PI   |           | 287  | 289         | 225     | 48.5 | 11.6 | 7.19 |
|               |           |      |             |         |      |      |      |
| Allyl-Pl      | 400       | 613  | 803         | 1066    | 221  | 52.6 | 37.8 |
| aM-PI         |           | 752  | 1151        | 1669    | 291  | 88.3 | 78.2 |
| βM-PI         |           | 944  | 1475        | 1984    | 434  | 125  | 93.1 |
| γΜ-ΡΙ         |           | 575  | 808         | 975     | 171  | 52.5 | 41.2 |
| γΕ-ΡΙ         |           | 913  | 1624        | 3011    | 526  | 189  | 153  |
|               |           |      |             |         |      |      |      |
| <i>β</i> Μ-ΡΙ | 150       | 58.7 | 40.9        | 63.1    | 11.8 | 4.19 | 2.48 |
|               | 300       |      | 122         | 110     | 18.6 | 4.86 | 3.23 |
|               | 300       | 180  | 189         | 149     | 29.3 | 5.38 | 4.94 |
|               | 350       | 728  | 1075        | 831     | 169  | 38.3 | 38.2 |
|               | 400       | 944  | 1475        | 1984    | 434  | 125  | 93.1 |

Table S5. Overview of determined gas permeability of He, H<sub>2</sub>, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub>.

|               |           |        | Selectiv | vity   |       |         |        |
|---------------|-----------|--------|----------|--------|-------|---------|--------|
| Material      | Annealing | H2/CO2 | H2/N2    | H2/CH4 | O2/N2 | CO2/CH4 | CO2/N2 |
| Allyl-Pl      | 300       | 1.20   | 31.3     | 88.2   | 4.6   | 51      | 26.1   |
| <i>β</i> Μ-ΡΙ |           | 1.27   | 35.2     | 38.4   | 5.4   | 30.2    | 27.7   |
| γΜ-ΡΙ         |           | 1.44   | 28.5     | 30.5   | 4.3   | 21.2    | 19.9   |
| γE-PI         |           | 0.99   | 16.9     | 19.7   | 3.4   | 19.8    | 17.1   |
| Cinnamyl-Pl   |           | 1.97   | 26.2     | 27.8   | 2.7   | 14.1    | 13.3   |
| Prenyl-Pl     |           | 1.68   | 34.2     | 38.9   | 4.5   | 23.3    | 20.5   |
| Butylene-PI   |           | 1.17   | 15.4     | 21.8   | 2.8   | 18.6    | 13.2   |
|               |           |        |          |        |       |         |        |
| Allyl-Pl      | 350       | 1.32   | 33.4     | 45.9   | 3.9   | 34.7    | 25.3   |
| αM-PI         |           | 0.89   | 18.4     | 22.4   | 4.0   | 25.3    | 20.8   |
| <i>β</i> Μ-ΡΙ |           | 1.29   | 28.1     | 28.2   | 4.4   | 21.8    | 21.7   |
| γΜ-ΡΙ         |           | 1.18   | 26.9     | 35.7   | 2.8   | 30.2    | 22.7   |
| γE-PI         |           | 0.76   | 14.2     | 14.3   | 3.1   | 18.8    | 18.7   |
| Cinnamyl-Pl   |           | 1.08   | 11.8     | 13.8   | 2.4   | 12.8    | 10.9   |
| Prenyl-Pl     |           | 1.25   | 22.6     | 25.3   | 3.9   | 20.2    | 18.1   |
| Butylene-PI   |           | 1.29   | 24.9     | 40.2   | 4.2   | 31.3    | 19.4   |
|               |           |        |          |        |       |         |        |
| Allyl-Pl      | 400       | 0.75   | 15.3     | 21.2   | 4.2   | 28.2    | 20.3   |
| αM-PI         |           | 0.69   | 13.0     | 14.7   | 3.3   | 21.3    | 18.9   |
| βM-PI         |           | 0.74   | 11.8     | 15.8   | 3.5   | 21.3    | 15.9   |
| γΜ-ΡΙ         |           | 0.83   | 15.4     | 19.6   | 3.2   | 23.7    | 18.6   |
| γE-PI         |           | 0.54   | 8.6      | 10.6   | 2.8   | 19.6    | 15.9   |
|               |           |        |          |        |       |         |        |
| <i>β</i> Μ-ΡΙ | 150       | 0.65   | 9.8      | 16.5   | 2.8   | 25.5    | 15.0   |
|               | 300       | 1.10   | 25.0     | 37.7   | 3.8   | 34.0    | 22.7   |
|               | 300       | 1.27   | 35.2     | 38.4   | 5.4   | 30.2    | 27.7   |
|               | 350       | 1.29   | 28.1     | 28.2   | 4.4   | 21.8    | 21.7   |
|               | 400       | 0.74   | 11.8     | 15.8   | 3.5   | 21.3    | 15.9   |

 Table S6.
 Overview of determined gas selectivity certain gas pairs.

**Table S7.** Overview of determined gas diffusion coefficients of ethylene, ethane, propylene and propane.

| Diffusion coefficient [10 <sup>-8</sup> cm <sup>2</sup> /s] |           |      |      |      |       |  |  |  |  |
|-------------------------------------------------------------|-----------|------|------|------|-------|--|--|--|--|
| Material                                                    | Annealing | C2H4 | C2H6 | C3H6 | C3H8  |  |  |  |  |
| Allyl-Pl                                                    | 400       | 1.18 | 0.35 | 0.21 | 0.019 |  |  |  |  |
| αM-PI                                                       |           | 2.11 | 0.72 | 0.46 | 0.049 |  |  |  |  |
| βM-PI                                                       |           | 4.00 | 1.28 | 0.98 | 0.06  |  |  |  |  |
| γ <b>E-</b> PI                                              |           | 3.8  | 1.19 | 0.74 | 0.057 |  |  |  |  |

 Table S8. Overview of determined gas solubility coefficients of ethylene, ethane, propylene

 and propane.

| Solubility coefficient [10 <sup>-3</sup> cm <sup>3</sup> (STP) /(cm <sup>3</sup> atm <sup>1</sup> )] |     |     |      |      |      |  |
|------------------------------------------------------------------------------------------------------|-----|-----|------|------|------|--|
| Material Annealing C2H4 C2H6 C3H6 C3H8                                                               |     |     |      |      |      |  |
| Allyl-Pl                                                                                             | 400 | 524 | 741  | 1694 | 1493 |  |
| αM-PI                                                                                                |     | 660 | 817  | 1650 | 1246 |  |
| βM-PI                                                                                                |     | 593 | 879  | 1257 | 1019 |  |
| γΕ-ΡΙ                                                                                                |     | 859 | 1271 | 2794 | 2617 |  |

**Table S9.** Overview of determined gas permeability of ethylene, ethane, propylene and propane.

| Permeability [Barrer] |                                  |      |      |      |      |  |  |
|-----------------------|----------------------------------|------|------|------|------|--|--|
| Material              | al Annealing C2H4 C2H6 C3H6 C3H8 |      |      |      |      |  |  |
| Allyl-Pl              | 400                              | 61.5 | 25.5 | 35.5 | 2.88 |  |  |
| αM-PI                 |                                  | 139  | 59.0 | 76.0 | 6.15 |  |  |
| <i>β</i> Μ-ΡΙ         |                                  | 237  | 113  | 123  | 6.16 |  |  |
| γE-PI                 |                                  | 327  | 151  | 207  | 14.9 |  |  |

**Table S10.** Overview of determined gas selectivity certain gas pairs.

| Selectivity   |           |               |               |  |  |
|---------------|-----------|---------------|---------------|--|--|
| Material      | Annealing | C2H4/<br>C2H6 | C3H6/<br>C3H8 |  |  |
| Allyl-Pl      | 400       | 2.4           | 12.3          |  |  |
| αM-PI         |           | 2.4           | 12.4          |  |  |
| <i>β</i> Μ-ΡΙ |           | 2.1           | 19.9          |  |  |
| γΕ-ΡΙ         |           | 2.2           | 13.9          |  |  |

# **Computational Chemistry**

Quantum mechanical Simulation

Geometry optimized Structures











Figure S15. Geometry optimized structures of three models of each allylderivative.

Potentialenergy surface scan



Figure S16. Visulaization of the investigated dihedral angle of the studied allylderivatives.



**Figure S17.** PES scan of the dihedral angle (red mark up) of AllyI-PBO (left), PES scan of the dihedral angle of allyIderivatives  $\beta$ M-PBO,  $\gamma$ M-PBO,  $\gamma$ En-PBO and  $\gamma$ Ea-PBO.

# Molecular Modelling Method

The polymer models were built from previously constructed and optimized single repetition units. The prepared polymer models were also optimized by an energy minimization step.

From these optimized polymer models several amorphous cells were constructing, following the Theodorou/Suter method, which is implemented in the Amorphous Cell module of Materials Studio. Every cell was constructed from two polymer chains, each containing 40 repetition units, with a total of 6564 atoms (in the case of  $\gamma$ M-PI) at an initial density of 0.1 g cm<sup>-3</sup> at 303 K under periodic boundary conditions. The final packing of the cell at the final density was obtained after a compression-decompression procedure (Table S8) [5]. This relaxation and equilibration method is described more in detail in the support information. A long final NpT-MD runs was carried out to equilibrate the model. A validity check was done by varifying a stable energy and density after long MD runs. In order to check the quality of the boxes the ratio of the accessible volume (AV) to accessible solvent surface (ASA) and its gradient by varying the probe radius from 1.0 to 2.0 A with steps of 0.1 A was done [6, 7]. The final cell size of the packing models was about (40A)<sup>3</sup>

 Table S11. Overview of the compression-decompression-relaxations procedure to generate amorphous cells.

| Step# | Tempera  | Pressure | Time (ps) | Ensemble |
|-------|----------|----------|-----------|----------|
|       | ture (K) | (GPa)    |           |          |
| 1     | 600      |          | 50        | NVT      |
| 2     | 303      |          | 50        | NVT      |
| 3     | 303      | 0.003    | 50        | NPT      |
| 4     | 600      |          | 50        | NVT      |
| 5     | 303      |          | 100       | NVT      |

| 6     | 303 | 0.05   | 50  | NPT |
|-------|-----|--------|-----|-----|
| 7     | 600 |        | 50  | NVT |
| 8     | 303 |        | 100 | NVT |
| 9     | 303 | 0.3    | 50  | NPT |
| 10    | 600 |        | 50  | NVT |
| 11    | 303 |        | 100 | NVT |
| 12    | 303 | 0.15   | 5   | NPT |
| 13    | 600 |        | 5   | NVT |
| 14    | 303 |        | 10  | NVT |
| 15    | 303 | 0.06   | 5   | NPT |
| 16    | 600 |        | 5   | NVT |
| 17    | 303 |        | 10  | NVT |
| 18    | 303 | 0.0001 | 5   | NPT |
| 19    | 600 |        | 5   | NVT |
| 20    | 303 |        | 10  | NVT |
| 21    | 303 | 0.0001 | 300 | NPT |
| Final | 303 |        | 500 | NVT |

The subsequent crosslinking procedure was developed by a set of crosslinking reactions between corresponding allylgroups followed by an geometry optimization and a 30ps NPT and 30ps NVT MD-run. The procedure was repeated until no crosslinking allyl groups were found within the pre-specified cut-off distance of 5A. The scheme is demonstrated in the support information.

The analysis of the structure properties, such as the torsional distribution, length distribution of certain subunits, as well as the means-square displacement (MSD) was done by means of long 1ns-MD runs with a NVT-ensemble at 600 K and 303K with a time-step of 1 femtosecond. The temperature control was performed by using a Nosé thermostat.



**Scheme S3:** Amorphous cell development procedure including (1) monomer creation and optimization, (2) polymer building, (3) amorphous cell packing followed by a 21step procedure including compression-decompression-relaxation and equilibration runs, (4) analytics via long NVT or NpT-runs.

**The free volume analysis** was perfomed using the visualizer tool of materials studio. The free accessible volume (FAV), defined by the cell volume V and the probe accessible volume Vprobe, was determined by the ratio as show in equation

$$FAV(\%) = \frac{V - V_{Probe}}{V} x100$$

**Table S12.** Overview of determined parameter and properties obtained by molecular modelling simulations.

| Code                        | Atom# | Crosslinks | Density     |
|-----------------------------|-------|------------|-------------|
| Allyl                       | 4624  | 0          | 1.354±0.005 |
| Allyl10cx                   | 4624  | 10         | 1.362±0.012 |
| Allyl20cx                   | 4624  | 20         | 1.351±0.009 |
| Allyl33cx                   | 4624  | 33         | 1.361±0.014 |
| αΜ-ΡΙ                       | 5020  | 0          | 1.356±0.007 |
| αM-PI10cx                   | 5020  | 10         | 1.343±0.001 |
| α <b>M-Pl20cx</b>           | 5020  | 20         | 1.337±0.009 |
| α <b>M-Pl27cx</b>           | 5020  | 27         | 1.331±0.001 |
| β <b>Μ-ΡΙ</b>               | 5020  | 0          | 1.358±0.005 |
| β <b>M-PI10cx</b>           | 5020  | 10         | 1.322±0.024 |
| β <b>Μ-ΡΙ20cx</b>           | 5020  | 20         | 1.331±0.012 |
| β <b>Μ-ΡΙ26cx</b>           | 5020  | 26         | 1.335±0.014 |
| ΡΒ <b>F-</b> β <b>Μ-</b> ΡΙ | 5020  | 0          | 1.349±0.003 |
| γΜ-ΡΙ                       | 5020  | 0          | 1.347±0.001 |
| γ <b>M-PI10cx</b>           | 5020  | 10         | 1.319±0.000 |
| γ <mark>M-PI20cx</mark>     | 5020  | 20         | 1.320±0.001 |
| γ <b>Μ-ΡΙ29cx</b>           | 5020  | 29         | 1.308±0.000 |
| γΕ-ΡΙ                       | 5416  | 0          | 1.349±0.004 |
| γE-PI10cx                   | 5416  | 10         | 1.258±0.041 |
| γE-PI20cx                   | 5416  | 20         | 1.289±0.019 |
| γ <b>E-PI26cx</b>           | 5416  | 26         | 1.302±0.013 |
| γΕα-ΡΙ                      | 5416  | 0          | 1.345±0.008 |
| γEa-PI10cx                  | 5416  | 10         | 1.288±0.012 |

| γEa-Pl20cx | 5416 | 20 | 1.301±0.005 |
|------------|------|----|-------------|
| γEa-Pl21cx | 5416 | 21 | 1.252±0.050 |

**Table S13.** Overview of free volume analysis of  $\beta$ M-PI.

| Code              | Crosslinks | Density       | Free Volume (%) | Free Volume/         |
|-------------------|------------|---------------|-----------------|----------------------|
|                   |            |               |                 | Connolly Surface (Å) |
| β <b>Μ-ΡΙ</b>     | 0          | 1.358±0.005   | 23.58±0.36      | 0.76±0.019           |
| β <b>Μ-ΡΙ10cx</b> | 10         | 1.322±0.024   | 25.73±1.82      | 0.88±0.006           |
| β <b>Μ-ΡΙ20cx</b> | 20         | 1.331±0.012   | 25.85±2.38      | 0.87±0.031           |
| β <b>Μ-ΡΙ26cx</b> | 26±1       | 1.335±0.014   | 25.62±1.83      | 0.84±0.0006          |
| <b>CyCx-βM-PI</b> | 26±1       | 1.331 ± 0.011 | 26.58±0.006     | 0.83±0.014           |
| (ΤϹϺ)βΜ-ΡΙ        | 26±1       | 1.313±0.016   | 26.77±0.010     | 0.81±0.04            |
| (ΤϹϺ)βΜ-ΡΙ        | 26±1       | 1.298 ± 0.013 | 27.44±0.009     | 0.81±0.027           |
| (ΤϹϺ)βΜ-ΡΙ        | 26±1       | 1.270±0.007   | 28.14±0.006     | 0.83±0.023           |
| PBF- βM-PI        | 0          | 1.349±0.003   | 25.63±0.295     | 0.79±0.021           |



**Figure S18.** Free volume elements with an increasing number of crosslinks and a depiction of the density as a function of the degree of crosslinking of all allyl derivatives (left).



**Figure S19.**  $\beta$ M-PI polymer chain containing benzofuran, Claisen-Rearranged, crosslinked and thermally rearranged units.



**Figure S20.** Accessible free volume at a probe radius of 1.4 Å (left), 1.6 Å (middle) and 1.9 Å (right) is shown for CyCx- $\beta$ M-PI (top row) and (TRC) $\beta$ M-PI (bottom row).



**Figure S21.** Torsion distribution for the imide-phenol dihedral torsion with increasing degree of crosslinking (0-26) and CyCx- $\beta$ M-PI, (TCR) $\beta$ M-PI with 25, 50 and 75% HPI-to-PBO conversion.



**Figure S22.** Mean-Square Displacement for CyCx- $\beta$ M-PI, (TCR) $\beta$ M-PI with 25, 50 and 75% of HPI-to-PBO conversion.

# References

- 1. Bondi, A., *van der Waals Volumes and Radii.* The Journal of Physical Chemistry, 1964. **68**(3): p. 441-451.
- 2. Park, J.Y. and D.R. Paul, *Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method.* Journal of Membrane Science, 1997. **125**(1): p. 23-39.
- Shishatskii, A.M., Y.P. Yampol'skii, and K.V. Peinemann, *Effects of film thickness on density* and gas permeation parameters of glassy polymers. Journal of Membrane Science, 1996.
   112(2): p. 275-285.
- 4. Swaidan, R., B. Ghanem, and I. Pinnau, *Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations.* ACS Macro Letters, 2015. **4**(9): p. 947-951.
- 5. Larsen, G.S., et al., *Molecular Simulations of PIM-1-like Polymers of Intrinsic Microporosity*. Macromolecules, 2011. **44**(17): p. 6944-6951.
- 6. Park, C.H., et al., *A simulation study on OH-containing polyimide (HPI) and thermally* rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology. J Phys Chem B, 2014. **118**(10): p. 2746-57.
- 7. Park, C.H., et al., *Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)*. J Phys Chem B, 2012. **116**(42): p. 12864-77.