Electronic Supporting Information

Synthesis and Solution Properties of Telechelic Poly(2isopropyl-2-oxazoline) Bearing Perfluoro End Groups

Na Xue, ^a Xiaoming Hou, ^b Xing-Ping Qiu, ^c Xiaotao Song, ^b Qingguo Feng, ^{*b} and Xiaozhi Liu ^{*a}

^aTianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China

^bDepartment of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China

^cDepartment of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal QC Canada H3C 3J7

*Corresponding author: lxz7997@126.com, anginagi@163.com

Polymerization kinetics: ¹H NMR spectroscopy was used to track the kinetics of the polymerization based on the changes in signal strength due to the resonances of the methylene protons of the monomer and the polymer. Fig. S1 presents a slightly upward curvature of $\ln([M_o]/[M_t])$ plot as a function of polymerization time, indicating that initiation was slower than chain propagation.³⁰ The $\ln([M_o]/[M_t])$ vs time relationship is virtually linear in the late stages of the polymerization, showing that the concentrations of propagating species remained constant and termination reactions were absent in the system. In addition, for a given conversion, the polymerization degree (DP) of the polymer was in good agreement with the initial feed ratio of monomer/initiator, which supports our assumption that all the initiator was consumed in the late stages of the polymerization. Table S1 presents details of the polymerization and molecular weight characterizations of N₃PIPOZ.

Fig. S1 Kinetic plot of N_3 IPOZ polymerization initiated by diethylene glycol di(p-toluenesulfonate) in acetonitrile at 65 °C.

Table S1 Polymerization and molecular weight characterizations of N_3PIPOZ

Fig. S2 GPC traces of N₃PIPOZ and FPIPOZ in DMF.

Fig.S3 FPIPOZ ¹H NMR spectrum in CDCl₃.

Fig.S4 (a) The hydrodynamic radius distribution of FPIPOZ aqueous solution with polymer concentration 1.0 $g \cdot L^{-1}$ at 20 °C by dynamic light scattering at a scattering angle of 90°. (b) The $R_{\rm H}$, $R_{\rm g}$ and $R_{\rm g}/R_{\rm H}$ of FPIPOZ aqueous solution as a function of temperature at 0.8 $g \cdot L^{-1}$. The shaded area represents the temperature range where micrometer-sized aggregates could be found.

Fig. S5 Optical transmittance of the FPIPOZ and N₃PIPOZ aqueous solutions (polymer concentration 1.0 g·L⁻¹).

Fig.S6 XRD data of the freeze-dried FPIPOZ (red line) and that recovered from water after heating at 65 °C for 24 h (black line).

Fig. S7 Sections of scratched FPIPOZ (upper) and N_3 PIPOZ (lower) films spin-coated from THF solutions with polymer concentration $5g \cdot L^{-1}$.

Fig. S8 Sections of N₃PIPOZ (upper) and FPIPOZ (lower) films after annealing in THF vapor at 70% saturation for 2 (top) and 7 hours (bottom) respectively at 22 °C.