Supramolecular co-assembly of water soluble nucleobase-containing copolymers: bioinspired synthetic platforms towards new biomimetic materials

Laura Vasilica Arsenie, ${ }^{1}$ Mona Semsarilar, ${ }^{2}$ Johannes Brendel, ${ }^{3}$ Patrick Lacroix-Desmazes, ${ }^{1}$ Vincent Ladmiral, ${ }^{1}$ and Sylvain Catrouillet ${ }^{1}$
${ }^{1}$ ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
${ }^{2}$ IEM, University of Montpellier, CNRS, ENSCM, Montpellier, France
${ }^{3}$ IOMC, Friedrich-Schiller University of Jena, 07743 Jena, Germany

Table of contents

Supramolecular co-assembly of water soluble nucleobase-containing copolymers: bioinspired
synthetic platforms towards new biomimetic materials.. 1
Fig. S1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (A) and ${ }^{13} \mathrm{C}$-NMR spectrum (B) of 3-(adenin-9-..
Fig. S2 ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum (B) of 3-(uracil-1-yl)propyl methacrylate (UrMA)
Fig. S3 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of Poly((3-(uracil-1-yl) propyl methacrylate) -stat-(2-ethyl thiomorpholine oxide methacrylate)) $\mathrm{P}\left(\mathrm{UrMA}_{\mathrm{n}}\right.$-stat-THOXMA $\left.{ }_{\mathrm{m}}\right)$ 5
Fig. S4 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of Poly(ethylene glycol)-b-Poly((3-(adenine-9-yl) propyl methacrylate) -stat-(2-ethyl thiomorpholine oxide methacrylate)) $\mathrm{PEG}_{112}-b-\mathrm{P}\left(\mathrm{AdMA}_{\mathrm{n}}\right.$-stat- THOXMA ${ }_{m}$) 5
Table S1 Properties co-assembled formulations 6
Table S2 Molar mass of individual unimers $\left(\mathrm{M}_{\mathrm{u}}\right)$ vs. apparent molar mass and aggregation number $\mathrm{N}_{\text {agg }}$ of objects in the starting polymer solutions (evaluated by SLS). 6
Table S3 Characterisation of nucleobase-containing copolymers 7Fig. S5 (A) Overall conversion evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; (B) Representation of $\ln \left(\mathrm{C}_{\mathrm{o}} / \mathrm{C}\right)$ versustime for statistical copolymers prepared by RAFT; (C) Evolution of number-averagemolecular weight M_{n} and dispersity ($\mathrm{\Xi}$) versus global monomer conversion monitored bySEC. Experiments performed for P(UrMA ${ }_{n}$-stat-THOXMA $\left.{ }_{m}\right)$8
Fig. S6 (A) Overall conversion evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; (B) Representation of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time for statistical copolymers prepared by RAFT; (C) Evolution of number-average molecular weight M_{n} and dispersity ($\mathrm{)}$) versus global monomer conversion monitored by SEC. Experiments performed for $\mathrm{PEG}_{112}-b-\mathrm{P}\left(\mathrm{AdMA}_{\mathrm{n}}-\right.$ stat $\left.-\mathrm{THOXMA}_{\mathrm{m}}\right)$ 9
Fig. S7 Urea effect on the co-assembled structures: $\mathrm{N}_{\mathrm{agg}}$ and D_{H} evolution data 10
Fig. S8 $\mathrm{N}_{\text {agg }}$ (determined by SLS) and D_{H} (determined by DLS) for the co-assemblednucleobase copolymer compositions for a ratio $0.1 / 1$ of $\mathrm{Ur} / \mathrm{Ad}(\mathrm{A})$ and $10 / 1$ of $\mathrm{Ur} / \mathrm{Ad}(\mathrm{B}) \ldots .10$
Fig. S9 Evolution of apparent molecular weight $\left(M_{a}\right)$ at different concentrations (g / L) fordifferent formulations (A) individual polymer solutions; (B) formulations using 1:1 molarratio between uracil and adenine nucleobases; (C) formulations using 0.1:1 molar ratiobetween uracil and adenine nucleobases.11

Fig. S10 Evolution of R/KC over q for different formulations (A) individual polymer
solutions; (B) formulations using 1:1 molar ratio between uracil and adenine nucleobases; (C)
formulations using $0.1: 1$ molar ratio between uracil and adenine nucleobases; (D)
formulations using 10:1 molar ratio between uracil and adenine nucleobases................ 13
Scheme S1. (A) Preparation of the solutions of individual uracil- (P1, P3) and adeninecontaining (P2, P4) polymers, at physiological pH ; (B) Preparation of co-assembled micelles, obtained by adding the solution of uracil-containing polymer (at pH 7.4) to the solution of adenine-containing polymer (at pH 7.4) .15
Equations used for polymer characterisation 15
A. Characterisation of $\mathrm{P}\left(\mathrm{UrMA}_{\mathrm{n}}\right.$-stat-THOXMA $\left.\mathrm{m}_{\mathrm{m}}\right)$ copolymers 15
B. Characterisation of PEG- b-P(AdMA ${ }_{n}$-stat-THOXMA $\left.{ }_{m}\right)$ copolymers 17
Equation used for the preparation of co-assembled formulations 19

[^0]Fig. S1 ${ }^{1} \mathrm{H}$-NMR spectrum ${ }^{1}(\mathrm{~A})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (B) of 3-(adenin-9-yl)propyl methacrylate (AdMA). ${ }^{2}$
(A)

(B)

Fig. S2 ${ }^{1} \mathrm{H}$-NMR spectrum ${ }^{3}$ and ${ }^{13} \mathrm{C}$-NMR spectrum (B) of 3-(uracil-1-yl)propyl methacrylate (UrMA)

[^1]Fig. S3 ${ }^{1} \mathrm{H}$-NMR spectrum of $\operatorname{Poly}((3-(u r a c i l-1-y l)$ propyl methacrylate) -stat-(2-ethyl thiomorpholine oxide methacrylate)) P(UrMA ${ }_{n}$-stat-THOXMA ${ }_{m}$)

Fig. S4 ${ }^{1} \mathrm{H}$-NMR spectrum of Poly(ethylene glycol)-b-Poly((3-(adenine-9-yl) propyl methacrylate) -stat-(2-ethyl thiomorpholine oxide methacrylate)) $\mathbf{P E G}_{122}-b-\mathbf{P}\left(\mathbf{A d M A}_{\mathbf{n}}\right.$ -stat-THOXMA ${ }_{\mathbf{m}}$)

[^2]Table S1 Properties co-assembled formulations

Code	Co-assembly formulation	Molar ratio between Ur/Ad units	Aggregation number $\left(\mathbf{N}_{\mathrm{agg}}\right)^{\mathbf{a}}$	Particle size ($\left.\mathrm{D}_{\mathrm{H}}\right)^{\text {b }}$
A	$\mathrm{P} 1+\mathrm{P} 2$	1:1	315	130
B	$\mathrm{P} 3+\mathrm{P} 2$	1:1	194	101
C	$\mathrm{P} 3+\mathrm{P} 4$	1:1	9.95	40
D	$\mathrm{P} 1+\mathrm{P} 4$	1:1	7.8	35
E	$\mathrm{P} 1+\mathrm{P} 2$	0.1:1	44	58
F	$\mathrm{P} 3+\mathrm{P} 2$	0.1:1	47.6	52
G	$\mathrm{P} 3+\mathrm{P} 4$	0.1:1	12	28.5
H	$\mathrm{P} 1+\mathrm{P} 4$	0.1:1	5.2	31
I	$\mathrm{P} 1+\mathrm{P} 2$	10:1	101	81
J	$\mathrm{P} 3+\mathrm{P} 2$	10:1	92	75
K	$\mathrm{P} 3+\mathrm{P} 4$	10:1	33	21
L	$\mathrm{P} 1+\mathrm{P} 4$	10:1	21	29

${ }^{\text {a }}$ Evaluated by SLS: for $0.1: 1$ and $1: 1$ stoechiometries the measurements were performed at different concentrations (ranging from $1 \mathrm{~g} / \mathrm{L}$ to $5 \mathrm{~g} / \mathrm{L}$), according to the protocol presented in Materials and Methods section; for 10:1 stoechiometry, the measurements were performed at a mass concentration of $5 \mathrm{~g} / \mathrm{L}$; ${ }^{\mathrm{b}}$ Evaluated by DLS, at a concentration of $5 \mathrm{~g} / \mathrm{L}$.

Table S2 Molar mass of individual unimers (M_{u}) vs. apparent molar mass and aggregation number $\mathrm{N}_{\mathrm{agg}}$ of objects in the starting polymer solutions (evaluated by SLS)

Polymer entry	Molar mass of unimers ($\mathbf{M}_{\mathbf{u}}$,	Apparent molar mass (g/mol, by $\mathbf{g} / \mathbf{m o l})^{*}$	Aggregation number ($\left.\mathbf{N}_{\text {agg }}\right)$
P1	12100	20000	1.6
P2	39864	300000	7.5
P3	11550	38000	3.3
P4	8769	100000	11.4

* M_{u} determined by multiplying the \mathbf{M}_{n} (determined by end-group analysis from ${ }^{1} \mathbf{H}$-NMR spectroscopy) by the corresponding $\mathbf{M}_{w} / \mathbf{M}_{n}$ values determined by SEC

Table S3 Characterisation of nucleobase-containing copolymers

	Polymer name	$\begin{gathered} \text { Experimental } \\ \text { DP }^{\mathbf{a}} \end{gathered}$	Experimental molar composition (\%) ${ }^{\text {b }}$		Co-monomer conversion (\%), by ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\mathrm{c}}$		$\begin{gathered} \mathbf{M}_{\mathrm{n}} \\ (\mathrm{~g} / \mathrm{mol}), \\ \text { by }^{1} \mathrm{H}- \\ \mathbf{N M R}^{\mathrm{d}} \end{gathered}$	$\mathbf{M}_{\mathrm{n}}(\mathrm{g} / \mathrm{mol})$, by SEC ${ }^{e}$	Dispersity ($\mathbf{(})^{\text {e }}$	Average number of nucleobases per polymer chain	$\begin{gathered} \mathbf{M}_{\mathrm{th}} \\ (\mathrm{~g} / \mathrm{mol}) \end{gathered}$	Theoretical target DP ${ }^{\text {f }}$
			Nucleobase	THOXMA	Nucleobase	THOXMA						
P1	$\begin{gathered} \hline \mathrm{P}\left(\mathrm{UrMA}_{8^{-}}\right. \\ \text {stat- } \\ \left.\mathrm{THOXMA}_{34}\right) \end{gathered}$	42	20	80	85	92	10,000	10,430	1.21	8	11,840	50
P2	$\begin{gathered} \mathrm{PEG}_{112}-b- \\ {\mathrm{P}\left(\mathrm{AdMA}_{30^{-}}\right.}^{\text {stat- }} \\ \text { THOXMA } \left._{70}\right) \end{gathered}$	104	30	70	72	88	30,200	32,100	1.32	30	29,400	100
P3	$\begin{gathered} \mathrm{P}\left(\mathrm{UrMA}_{22^{-}}\right. \\ \text {stat- } \\ \left.\mathrm{THOXMA}_{19}\right) \end{gathered}$	41	53	47	81	90	10,500	11,200	1.1	22	11,950	50
P4	$\begin{gathered} \text { PEG }_{112}-b- \\ \mathrm{P}_{\left(\mathrm{AdMA}_{5-}-\right.} \\ \text { stat- } \\ \text { THOXMA } \left._{5}\right) \end{gathered}$	10	50	50	70	87	7,900	9,000	1.11	5	7,700	15

${ }^{\text {a }}$ Calculated by ${ }^{1} \mathrm{H}$-NMR performed in DMSO-d6, according to the Eq. S4. and Eq. S9.; ${ }^{\text {b }}$ Calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ performed in DMSO-d6, according to the Eq. S5., Eq. S6., Eq. S12., Eq. S13.; ${ }^{\text {c }}$ Calculated by ${ }^{1} \mathrm{H}-$ NMR performed in DMSO-d6, according to the Eq. S1. and Eq. S8.; ${ }^{\text {d }}$ Calculated by ${ }^{1} \mathrm{H}$-NMR performed in DMSO-d6, according to the Eq. S7. and Eq. S14.; e SEC analysis performed in DMF containing $0.1 \% \mathrm{LiCl}$ and by using PMMA standards. ${ }^{\text {f Calculated using the following equation } \mathrm{DP}_{\text {target }}=}$

Fig. S5 (A) Overall conversion evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; (B) Representation of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time for statistical copolymers prepared by RAFT; (C) Evolution of numberaverage molecular weight M_{n} and dispersity ($($) versus global monomer conversion monitored by SEC. Experiments performed for P(UrMA $_{\mathbf{n}}$-stat-THOXMA $\left.\mathbf{m}_{\mathbf{m}}\right)$

Fig. S6 (A) Overall conversion evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; (B) Representation of $\ln \left(\mathrm{C}_{0} / \mathrm{C}\right)$ versus time for statistical copolymers prepared by RAFT; (C) Evolution of numberaverage molecular weight M_{n} and dispersity ((D) versus global monomer conversion monitored by SEC. Experiments performed for PEG $_{112}-b-P\left(\right.$ AdMA $_{\mathrm{n}}$-stat-THOXMA ${ }_{\mathrm{m}}$)

Fig. S7 Urea effect on the co-assembled structures: $\mathbf{N}_{\text {agg }}$ and \mathbf{D}_{H} evolution data

Fig. S8 $\mathbf{N}_{\text {agg }}$ (determined by SLS) and D_{H} (determined by DLS) for the co-assembled nucleobase copolymer compositions for a ratio 0.1/1 of Ur/Ad (A) and 10/1 of Ur/Ad (B)
(A)

(B) $\begin{gathered}\text { Formulation } I \\ \text { (P1-P2) }\end{gathered}$

Fig. S9 Evolution of apparent molecular weight $\left(\mathrm{M}_{\mathrm{a}}\right)$ at different concentrations $(\mathrm{g} / \mathrm{L})$ for different formulations (A) individual polymer solutions; (B) formulations using 1:1 molar ratio between uracil and adenine nucleobases; (C) formulations using 0.1:1 molar ratio between uracil and adenine nucleobases.

(B)

1:1 molar ratio of Ur/Ad in P3/P4

(C)

0.1:1 molar ratio of Ur/Ad in P1/P4

0.1:1 molar ratio of Ur/Ad in P3/P4

Fig. S10 Evolution of R/KC over q for different formulations (A) individual polymer solutions; (B) formulations using 1:1 molar ratio between uracil and adenine nucleobases; (C) formulations using 0.1:1 molar ratio between uracil and adenine nucleobases; (D) formulations using 10:1 molar ratio between uracil and adenine nucleobases.

(C)
0.1:1 molar ratio of Ur/Ad in P1/P2

0.1:1 molar ratio of Ur/Ad in P1/P4

0.1:1 molar ratio of Ur/Ad in P3/P2

0.1:1 molar ratio of Ur/Ad in P3/P4

Scheme S1. (A) Preparation of the solutions of individual uracil- (P1, P3) and adeninecontaining (P2, P4) polymers, at physiological $\mathbf{p H}$; (B) Preparation of co-assembled micelles, obtained by adding the solution of uracil-containing polymer (at pH 7.4) to the solution of adenine-containing polymer (at pH 7.4)

Equations used for polymer characterisation

A. Characterisation of $\mathbf{P}\left(\right.$ UrMA $_{\mathbf{n}}$-stat-THOXMA $\left.\mathbf{m}_{\mathbf{m}}\right)$ copolymers

- Conversion of co-monomers

The conversions of co-monomers were calculated by ${ }^{1} \mathrm{H}$ NMR (Eq. S1.), via the comparison of signal integrals of the CPDB (7.4-7.9 ppm) and of the protons of - $\mathrm{C}=\mathrm{C}$ - double bond of THOXMA (6.06-5.68 ppm) and/or UrMA (5.99-5.73 ppm).

$$
\begin{equation*}
\text { Conversion }(\%)=\frac{\left(I_{0, \text { vinyl function }} / I_{0, \text { CTA }}\right)-\left(I_{t, \text { vinyl function }} / I_{t, C T A}\right)}{\left(I_{0, \text { vinyl function }} / I_{0, \text { CTA }}\right)} \times 100 \tag{Eq.S1.}
\end{equation*}
$$

Where $I_{0, C T A}$ and $I_{t, C T A}$ are the values of the integrals of the signal of the aromatic protons of the chain transfer agent (between 7.4 ppm and 7.9 ppm) at $\mathrm{t}=0$ and t respectively; $I_{0, \text { vinyl function }}$ and $I_{t, \text { vinyl function }}$ are the value of the integral of the signal of one of the protons of the vinyl group of methacrylate (5.68 ppm and 6.06 ppm for THOXMA, 5.73 ppm and 5.99 ppm for UrMA), at $\mathrm{t}=0$ and t respectively.

- Degree of polymerisation
$\mathrm{DP}_{\text {uracil copolymer }}$ was calculated as a sum between the number of UrMA (noted as $\mathrm{DP}_{\text {UrMA }}$ synthons) and THOXMA (noted as $\mathrm{DP}_{\text {тнохма }}$).

The number of UrMA was calculated considering the integral values at $5.56-5.58 \mathrm{ppm}$ and 7.64 ppm that correspond to $-\mathrm{C}=\mathrm{C}$ - double bond protons of uracil, compared to the two of the protons of CPBD (between 7.88 ppm and 7.9 ppm) as it follows (Eq. S2.):

$$
\begin{equation*}
\mathrm{DP}_{\mathrm{UrMA}}=\left(\frac{\left(I_{1}+I_{2}\right) / 2}{I_{C T A} / 2}\right) \tag{Eq.S2.}
\end{equation*}
$$

Where I_{1} is the value of the integral of the signal of the proton of double bond of uracil heterocycle (between 7.6 ppm and $7.83 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{i}}\right)$), I_{2} is the value of the integral of the other signal of the proton of double bond of uracil heterocycle (between 5.31 ppm and 5.71 ppm $\left.\left(\mathrm{H}_{\mathrm{h}}\right)\right)$, and $I_{\text {CTA }}$ is the value of the integral of the signal of two of the aromatic protons of the chain transfer agent (between 7.88 ppm and 7.9 ppm).

The number of THOXMA were calculated according to Eq. S3.:

$$
\mathrm{DP}_{\text {THOХМА }}=\left(\frac{\left(I_{3}+I_{4}+I_{5}-2\left(I_{1}+I_{2}\right)\right) / 12}{I_{C T A} / 2}\right)_{(\text {Eq. S3. })}
$$

The I_{3} and I_{4} are the values of the integrals of the proton signals in the field of $3.5 \mathrm{ppm}-4.5$ ppm and $2.52 \mathrm{ppm}-2.82 \mathrm{ppm}$ respectively that correspond to the protons of thiomorpholine oxide cycle ($\mathbf{I I I}_{\mathbf{a}}$ and $\mathbf{I I I}_{\mathbf{b}}$). ${ }^{I_{5}}$ is the value of the integral of the protons of UrMA aliphatic linker $\left(\mathbf{I I}_{\mathbf{a}}\right.$ and $\left.\mathbf{I I}_{\mathbf{c}}\right)$, and the protons of THOXMA aliphatic linker ($\mathbf{I I}_{\mathbf{d}}$ and $\mathbf{I I}_{\mathbf{e}}$) in the field of 2.82 ppm-3.48 ppm. To calculate the DP of THOXMA, the sum of integrals corresponding to these signals was assessed. Because this sum includes the integral of the protons of UrMA aliphatic linker, these values (${ }^{I_{1}}$ and ${ }^{I_{2}}$) were subtracted in order to correctly evaluate the DP of THOXMA. However, it was impossible to determine exactly the region where the protons of UrMA aliphatic linker were situated, due to signal interferences. Since in UrMA4 protons of aliphatic linker are present in the field of $2.52 \mathrm{ppm}-4.55 \mathrm{ppm}$, the sum of integrals of uracil double bond protons (that correspond to 2 protons in UrMA) was multiplied by 2, to calculate the integral value of UrMA aliphatic linker protons. Then, this multiplied value (corresponding with the UrMA aliphatic linker) was subtracted and the result was divided by 12 (that correspond to the total of protons of thiomorpholine oxide cycle and THOXMA aliphatic linker).

Then, $\mathrm{DP}_{\text {uracil copolymer was calculated (Eq. S4.): }}$

$$
\mathrm{DP}_{\text {uracil copolymer }}=\mathrm{DP}_{\mathrm{UrMA}}+\mathrm{DP}_{\text {THOXMA }} \text { (Eq. S4.) }
$$

- Experimental molar percentage of co-monomers

The molar percentage of UrMA and THOXMAwere calculated according to the equations:

$$
\begin{gathered}
\% \text { (molar) of } U r M A=\left({ }^{\left.D P_{U r M A} \times 100\right) / D P_{\text {uracil copolymer }} \text { (Eq. S5.) }}\right. \\
\% \text { (molar) of } T H O X M A=\left(D P_{T H O X M A} \times 100\right) / D P_{\text {uracil copolymer }} \text { (Eq. S6.) }
\end{gathered}
$$

- Experimental M_{n}

The experimental M_{n} of $\mathrm{P}\left(\right.$ UrMA $_{\mathrm{n}}$-stat- $\left.\mathrm{THOXMA}_{\mathrm{m}}\right)$ copolymer was calculated as:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{n}}=\left(\%(\text { molar }) \text { of UrMA } \times \mathrm{DP}_{\text {uracil copolymer }} \times \mathrm{M}_{\mathrm{th} \text { of UrMA }}\right)+(\%(\text { molar }) \text { of THOXMA } \\
& \left.\times \mathrm{DP}_{\text {uracil copolymer }} \times \mathrm{M}_{\mathrm{th} \text { of THOXMA }}\right)+\mathrm{M}_{\mathrm{th}, \mathrm{CTA}}(\text { Eq. } \mathrm{S} 7 .)
\end{aligned}
$$

Where \% (molar) of UrMA was calculated by Eq. S5., \% (molar) of THOXMA was calculated by Eq. S6., $\mathrm{DP}_{\text {uracil copolymer was calculated by Eq. } \mathrm{S} 4 . \mathrm{M}_{\mathrm{th}, \mathrm{CTA}}=221.34 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{th}} \text { of }}$ тнохмА $=231 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\text {th of UrMA }}=238 \mathrm{~g} / \mathrm{mol}$.

B. Characterisation of PEG-b-P(AdMA $\boldsymbol{n}_{\boldsymbol{n}}$-stat-THOXMA $\mathbf{m}_{\mathbf{m}}$) copolymers

- Conversion of co-monomers

The conversions of co-monomers were calculated by ${ }^{1} \mathrm{H}$ NMR (Eq. S8.), via the comparison of signal integrals of the PEG region (noted as region IV) of the macro-CTA agent (3.48-3.58 ppm) and of the protons of $-\mathrm{C}=\mathrm{C}$ - double bond of THOXMA ($6.06-5.68 \mathrm{ppm}$) and/or AdMA (5.95-5.72 ppm).

$$
\text { Conversion }(\%)=\frac{\left(I_{0, \text { vinyl function }} / I_{0, \text { macroCTA }}\right)-\left(I_{t, \text { vinyl function }} / I_{t, \text { macro CTA }}\right)}{\left(I_{0, \text { vinyl function }} / I_{0, \text { macro CTA }}\right)} \times 100
$$ S8.)

Where $I_{0, \text { macro }}$ CTA and $I_{t, \text { macroCTA }}$ are the values of the integrals of the signal of the methylene protons of the PEG region of the macro-chain transfer agent (between 3.48 ppm and 3.58 ppm) at $\mathrm{t}=0$ and t respectively; $I_{0 \text {, vinyl function }}$ and $I_{t \text {, vinyl function }}$ are the value of the integral of the signal of one of the protons of the vinyl group of methacrylate (5.68 ppm and 6.06 ppm for THOXMA, 5.72 ppm and 5.95 ppm for $A d M A$), at $\mathrm{t}=0$ and t respectively.

- Degree of polymerisation of the adenine containing block
$\mathrm{DP}_{\text {adenine containing block }}$ was calculated as a sum between the number of AdMA (noted as $\mathrm{DP}_{\text {AdMA }}$) and THOXMA (noted as $\mathrm{DP}_{\text {THохмА }}$).

The number of AdMA was calculated considering the integral values at $8.7-9.3 \mathrm{ppm}$ and $9.48-9.56 \mathrm{ppm}$ that correspond to the heterocycle protons of adenine (noted with h and i), compared to the methylene protons of the PEG region (region IV) of the macro-CTA (between 3.48 ppm and 3.58 ppm) as it follows (Eq. S9.). The DP of the macro-CTA is equal to 112 , so it is assigned to 112 ethylene glycol units. Since 1 unit of ethylene glycol contains 4 protons, in the PEG region (with 112 ethylene glycol units) of macro-CTA we have $4 \times 112=448$ protons.

$$
\mathrm{DP}_{\mathrm{AdMA}}=\left(\frac{\left(I_{1}+I_{2}\right) / 2}{I_{\text {macrocTA }} / 448}\right) \text { (Eq. S9.) }
$$

Where I_{1} is the value of the integral of the signal of the first proton of adenine heterocycle (between 8.7 ppm and $9.3 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{h}}\right)$), I_{2} is the value of the integral of the other signal of the proton of double bond of uracil heterocycle (between 9.48 ppm and 9.56 ppm $\left(\mathrm{H}_{\mathrm{i}}\right)$), and $I_{\text {macrocta }}$ is the value of the integral of the proton signals of PEG region the macrochain transfer agent (between 3.48 ppm and 3.58 ppm).

The number of THOXMA were calculated according to Eq. S10.:

$$
\mathrm{DP}_{\text {THOхмA }}=\left(\frac{\left(I_{3}+I_{4}-2\left(I_{1}+I_{2}\right)\right) / 12}{I_{\text {macrocta }} / 448}\right)_{(\text {Eq. S10. })}
$$

The I_{3} and I_{4} are the values of the integrals of the proton signals in the field of $3.7 \mathrm{ppm}-4.3$ ppm and $4.31 \mathrm{ppm}-4.8 \mathrm{ppm}$ respectively that correspond to the protons of thiomorpholine oxide cycle ($\mathbf{I I I}_{\mathbf{a}}$ and $\mathbf{I I I}_{\mathbf{b}}$), the protons of AdMA aliphatic linker ($\mathbf{I I}_{\mathbf{a}}$ and $\mathbf{I I}_{\mathbf{c}}$), and the protons of THOXMA aliphatic linker ($\mathbf{I I}_{\mathbf{d}}$ and $\mathbf{I I}_{\mathbf{e}}$). To calculate the DP of THOXMA, the sum of integrals corresponding to these signals was assessed. Because this sum includes the integral of the protons of AdMA aliphatic linker, these values were subtracted in order to correctly evaluate the DP of THOXMA. However, it was impossible to determine exactly the region where the protons of AdMA aliphatic linker were situated, due to signal interferences. Since in AdMA 4 protons of aliphatic linker are present in the field of $3.7 \mathrm{ppm}-4.8 \mathrm{ppm}$, the sum of integrals of the protons of adenine heterocycle (that correspond to 2 protons in AdMA monomer) was multiplied by 2 , to calculate the integral value of AdMA aliphatic linker protons. Then, this multiplied value (corresponding with the AdMA aliphatic linker) was subtracted and the result was divided by 12 (that correspond to the total of protons of thiomorpholine oxide cycle and THOXMA aliphatic linker).

Then, $\mathrm{DP}_{\text {adenine containing block }}$ was calculated (Eq. S11.):

$$
\mathrm{DP}_{\text {adenine containing block }}=\mathrm{DP}_{\text {AdMA }}+\mathrm{DP}_{\text {THOXMA }}(\text { Eq. } \mathrm{S} 11 .)
$$

- Experimental molar percentage of co-monomers

The molar percentage of AdMA and THOXMA were calculated according to the equations:

$$
\begin{aligned}
& \%\left(\text { molar) of } A d M A=\left({ }^{\left.D P_{A d M A} \times 100\right)} / D P_{\text {adenine containing block }}(\text { Eq. S12.) }\right.\right. \\
& \%\left(\text { molar) of THOXMA }=\left(D P_{T H O X M A} \times 100\right) / D P_{\text {adenine containing block }}(\text { Eq. S13.) }\right. \\
& \text { - Experimental } M_{n}
\end{aligned}
$$

The experimental M_{n} of $\mathrm{PEG}-b-\mathrm{P}\left(\mathrm{AdMA}_{\mathrm{n}}\right.$-stat-THOXMA $\left.{ }_{m}\right)$ was calculated as:
$\mathrm{M}_{\mathrm{n}}=\left(\%(\right.$ molar $)$ of AdMA $\left.\times \mathrm{DP}_{\text {adenine containing block }} \times \mathrm{M}_{\text {th of AdMA }}\right)+(\%$ (molar) of THOXMA $\left.\times \mathrm{DP}_{\text {adenine containing block }} \times \mathrm{M}_{\text {th of THOхмA }}\right)+\mathrm{M}_{\mathrm{n} \text { (macro CTA) }}$ (Eq.S14.)

Where \% (molar) of AdMA was calculated by Eq. S12., \% (molar) of THOXMA was calculated by Eq. S13., DP $_{\text {adenine containing block }}$ was calculated by Eq. S11. $\mathrm{M}_{\mathrm{th}, \mathrm{CTA}}=5400 \mathrm{~g} / \mathrm{mol}$, $\mathrm{M}_{\text {th of TНохмА }}=231 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\text {th of AdMA }}=261 \mathrm{~g} / \mathrm{mol}$.

Equation used for the preparation of co-assembled formulations

The volumes of uracil-containing copolymer solution (noted as V_{1}) and of adenine-containing copolymer solution (noted as V_{2}) were calculated according to the following equations (Eq. S15. And Eq. S16):
$V_{1}=\frac{R \times c_{2} \times \text { Number }_{A d} \times M_{\text {Ur polymer }}}{c_{1} \times \text { Number }_{U r} \times M_{\text {Ad polymer }}+R \times c_{2} \times \text { Number }_{A d} \times M_{\text {Ur polymer }}}($ Eq. S15.)
Where:
V_{1} is the volume (in mL) of the uracil-containing copolymer solution; R is the molar ratio between the molar equivalents of the number of uracil groups and the number of adenine groups; $^{\text {Number }_{A d}}$ is the number of adenine groups in the copolymer; Number ${ }_{U r}$ is the number of uracil groups in the copolymer; c_{1} is the concentration of uracil containing copolymer (in $\mathrm{mg} / \mathrm{mL}$); c_{2} is the concentration of adenine containing copolymer (in mg/mL); M_{Ur} polymer is the molecular weight of uracil containing copolymer (calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, according to the Eq. S7.) and $\mathrm{M}_{\text {Ad polymer }}$ is the molecular weight of adenine containing copolymer (calculated by ${ }^{1} \mathrm{H}$ NMR, according to the Eq. S14.).
$V_{2}=V_{\text {total }}-V_{1}$ (Eq. S16.)

Where: V_{2} is the volume (in mL) of the adenine-containing copolymer solution and $\mathrm{V}_{\text {total }}$ is the total volume (in mL) of the formulation prepared by using uracil-containing and adeninecontaining copolymers.

[^0]: ${ }^{1}$ The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis showed some signals with very low intensity (noted as*) which correspond to residual traces ($\sim 1.2 \%$) of bromo propyl methacrylate. The \% of residual bromo propyl methacrylate was calculated by comparing the signal integral of one of the vinyl protons of the bromo propyl methacrylate (noted as $I_{1 *}$, between 5.72 ppm and 5.75 ppm) to the signal integral of one of the vinyl protons of the AdMA (noted as I_{1}, between 5.82 ppm and 5.9 ppm), by using the equation: $\%$ of residual (non-reacted) bromo propyl methacrylate $=\frac{\left(\frac{I_{1 *}}{1}\right)}{\left(\frac{1}{1}\right)} \times 100$.
 ${ }^{2}$ The ${ }^{3} \mathrm{C}-\mathrm{NMR}$ analysis depicted some traces corresponding to hydroquinone residues. Hydroquinone was added to AdMA in order to avoid the degradation of monomer over time. The hydroquinone residues were removed before to perform the polymerisations, by passing AdMA through a silica column.

[^1]: ${ }^{3}$ The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis showed some signals with very low intensity (noted as*) which correspond to residual traces ($\sim 1 \%$) of bromo propyl methacrylate. The $\%$ of residual bromo propyl methacrylate was calculated by comparing the signal integral of one of the vinyl protons of the bromo propyl methacrylate (noted as $I_{1 *}$, between 5.72 ppm and 5.75 ppm) to the signal integral of one of the vinyl protons of the UrMA (noted as I_{1}, between 5.9 ppm and 6.01 ppm), by using the equation: $\%$ of residual (non-reacted) bromo propyl methacrylate $=$ $\left(\frac{I_{1 *}}{1}\right)$
 $\frac{1}{\left(\frac{I_{1}}{1}\right)} \times 100$

[^2]: $\begin{array}{lll}12.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathbf{p p m}\end{array}$

