Supplementary Information for

Expanding Monomer Scope and Enabling Post-Modification in Photocontrolled Radical Ring-Opening Polymerization of Vinylcyclopropanes by An Iodine Transfer Strategy

Dong-Yang Zhang,^{†,§} Dong Han,^{‡,§} Yue Li,[†] Dian-Feng Chen*,[†]

[†]Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China. [‡]Department of Oral and Maxillofacial Surgery, Hefei First People's Hospital, Hefei, Anhui 230001, China.

[§]These authors contributed equally to this work

*Correspondence to: <u>cdf@ustc.edu.cn</u>

Table of Contents

1. Materials and Methods	S3
1.1 Materials	S3
1.2 Methods	S3
2. Synthesis of VCP Monomers	S5
3. Visible-Light-Driven ITP of VCP Monomers	S7
3.1 General Polymerization Procedure	S7
3.2 Optimization for the Polymerization of EtVCP	S7
3.3 Kinetic Study	S8
3.4 Pusled-Irradiation Experiment	S8
3.5 Chain-Extension Experiment	S9
3.6 ¹ H NMR Spectra of P(BuVCP), P(BnVCP), P(PhVCP), and P(EtVCP-CN)	S11
3.7 GPC Traces of P(BuVCP), P(BnVCP), P(PhVCP), and P(EtVCP-CN)	S13
4. Visible-Light-Driven ITP of Fluorinated VCP Monomers	S14
4.1 General Polymerization Procedure	S14
4.2 Optimization	S15
4.3 Chain-Extension Experiment to Synthesize P(EtVCP-PFP)-b-P(EtVCP)	S18
5. Post-Modifications of P(EtVCP-PFP)	S20
5.1 Large-Scale Synthesis of P(EtVCP-PFP)	S20

5.2 General Procedures for Post-Modification	S20
5.3 Probe of the Chain-End	S20
5.4 NMR Spectra of Modified P(VCPs)	S23
5.5 GPC Traces of Modified P(VCPs)	S30
5.6 DSC and TGA Curves of Modified P(VCPs)	S31
6. Reference	S37

1. Materials and Methods

1.1 Materials

All Chemicals were purchased from TCI, J&K, Energy Chemical, and Adamasbeta, and were used as received without further purification.

Deuterated chloroform was purchased from Cambridge Isotope Laboratories. All anhydrous solvents were purchased from J&K and were used as received.

1.2 Methods

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker 400 Hz (100 Hz for ¹³C) spectrometer at ambient temperature. All NMR spectra are referenced to the residual solvent (CHCl₃) signal.

Analysis of polymer molecular weight and dispersity was performed using an Agilent HPLC 1260 system (with one guard column and three PLgel 5 μ m MIXED-C gel permeation columns) coupled with a Wyatt Technology TrEX differential refractometer and a Wyatt Technology mini DAWN TREOS light scatter detector or a Waters e2695 system (with one guard column and two Styragel columns) coupled with Waters 2414 refractive index detector (calibrated with PS standards). The analysis was performed at 35 °C using THF as the eluent at a flow rate of 1.0 mL/minute.

Glass transition temperatures (T_g) and melting point (T_m) of the polymers were measured by differential scanning calorimetry (DSC) on a TA Q20 DSC at a rate of 10 °C/min. Decomposition temperatures (Td) at 5% of weight loss and maximum rate decomposition temperatures (T_{max}) of the polymers were measured by thermal gravimetric analysis (TGA) on a TA Q50 TGA by heating the polymer samples from 25°C to 700 °C at the rate of 10 °C/min.

Analysis of low molecular weight polymer was performed on a Autoflex matrixassisted laser desorption/ionization time-of-flight spectrometer (Bruker Daltonics). trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) was used as the matrix and CF₃CO₂Na was used as the cationic reagent.

White-light LED beaker: a 25 cm white LEDs strip (Yifaguang, item no. 5050, 14.4 W/meter) was wrapped around the inside of a 400 mL beaker, and powered by a 12VDC power Supply (Yifaguang, item no. 12V8A96W). The wattage of this setup is ~3.6W.

Fig. S1 Lighting beaker setup.

2. Synthesis of VCP Monomers

EtVCP, BuVCP, BnVCP, and EtVCP-CN were synthesized according to the literature.¹

To a solution of EtVCP-CO₂H (2.03 g, 1.1 equiv),² pentafluorophenol (1.84 g, 1.0 equiv), and DMAP (244 mg, 0.2 equiv) in 50 mL of anhydrous DCM (0.2 M) at 0 °C, DCC (2.48 g, 1.2 equiv) was added in portions. The reaction was then vigorously stirred at room temperature for 12 h. The white precipitate was filtered off and the filtrate was concentrated in vacuo. The residue was purified by silica gel flash chromatography using hexane/EtOAc (10:1) as the eluent to give the EtVCP-PFP (dr >20:1) as a white solid (2.93 g, 84% yield). $R_f = 0.35$ (10% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ 5.55 (ddd, J = 17.0, 10.1, 8.2 Hz, 1H), 5.40 (dd, J = 17.0, 1.5 Hz, 1H), 5.24 (dd, J = 10.1, 1.4 Hz, 1H), 4.37 – 4.11 (m, 2H), 2.87 – 2.65 (m, 1H), 1.99 (dd, J = 8.0, 5.2 Hz, 1H), 1.80 (dd, J = 9.2, 5.2 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 141.2 (dm, J = 250 Hz), 139.6 (dm, J = 250 Hz), 137.9 (dm, J = 250 Hz), 131.7, 124.8 (m), 120.0, 62.1, 35.1, 32.6, 21.7, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -152.5 (m), -157.6 (t, J = 21.6 Hz), -162.2 (m).

Fig. S2¹H NMR spectrum of EtVCP-PFP in CDCl₃

Fig. S3 ¹³C NMR spectrum of EtVCP-PFP in CDCl₃

Fig. S4 ¹⁹F NMR spectrum of EtVCP-PFP in CDCl₃

3. Visible-Light-Driven ITP of VCP Monomers

3.1 General Polymerization Procedure

An oven-dried 5 mL vial equipped with a small magnetic stir bar was transferred into a N₂-filled glove box. To this vial, VCP monomer (1.0 mmol), anhydrous PhCl or EtOAc, and the alkyl iodide stock solution (0.10 M) were sequentially added. The vial was then tightly capped and placed under white LED irradiation while stirring in the glovebox with a cooling fan to maintain the temperature at ~30 °C. For the progress analysis, an aliquot of the reaction mixture was taken via syringe and immediately quenched by injecting into a 1.5 mL vial containing ~0.6 mL of CDCl₃ with 250 ppm butylated hydroxytoluene (BHT). This aliquot was analyzed via ¹H NMR for monomer conversion, then dried under vacuum for direct GPC analysis to obtain the M_n and D. For further purification, the reaction mixture was slowly added into 20.0 mL of hexane while stirring at room temperature. The precipitated polymer was collected by vacuum filtration, washed with hexane (5.0 mL × 2) and dried overnight under vacuum at 50 °C to a constant weight.

3.2 Optimization for the Polymerization of EtVCP

Fig. S5 Overlay of GPC traces for P(EtVCP) in Table 1

3.3 Kinetic Study

Entry	Time	Conv. (%)	Mn(kDa)	$\mathcal{D}(M_{ m w}/M_{ m n})$	SL(%)
1	1	0	-	-	-
2	2	1	-	-	-
3	4	9	2.4	1.16	97
4	6	21	4.6	1.16	98
5	8	38	8.4	1.11	98
6	10	50	11.5	1.07	98
8	14	65	14.8	1.06	98
9	18	75	16.9	1.06	98

Table S1. Results of progress analysis for polymerization of EtVCP^a

^{*a*}The polymerization of [EtVCP]/[4] (100/1) was performed in 0.2 mL of anhydrous PhCl, with 3.6 W white LED irradiation at \sim 30 °C.

Fig. S6 Overlay of GPC traces for P(EtVCP) in Table S1

3.4 Pusled-Irradiation Experiment

Table S2. Results of Pusled-Irradiation Experiment of EtVCP at $\sim 30 \, ^{\circ}C^a$

Entry	Time	Conv. (%)	Mn(kDa)	$\mathcal{D}(M_{\rm w}/M_{\rm n})$	SL(%)
1	0	0	-	-	-
2	8	35	7.6	1.09	98
3	16	35	7.6	1.09	98
4	24	66	14.6	1.04	98
5	40	66	14.6	1.04	98
9	45	86	19.1	1.06	98

^{*a*}The polymerization of [EtVCP]/[4] (100/1) was performed in 0.2 mL of anhydrous PhCl, with 3.6 W white LED irradiation at \sim 30 °C.

Fig. S7 Overlay of GPC traces for P(EtVCP) in Table S2

3.5 Chain-Extension Experiment

<u>Synthesis of P(EtVCP) macroinitiator</u>. An oven-dried 5 mL vial equipped with a small magnetic stir bar was transferred into a N₂-filled glove box. To this vial, EtVCP (3.0 mmol) and 0.60 mL of the stock solution of **4** in PhCl (0.10 M) were added. The vial was then tightly capped and placed in the beaker wrapped with white LED strips while stirring in the glovebox with a cooling fan to maintain the temperature at ~30 °C. After 20 h, the reaction mixture was slowly added into 50.0 mL of hexane while stirring at room temperature. The precipitated polymer was collected by vacuum filtration, washed with hexane (5.0 mL ×2) and dried overnight under vacuum at 50 °C to a constant weight. 510 mg, $M_n = 9.5$ kDa, D = 1.07, $S_L = 98\%$.

<u>Chain-Extension Experiment.</u> An oven-dried 5 mL charged with a magnetic stir bar and P(EtVCP) macroinitiator (95 mg, 0.010 mmol) was transferred into a N₂-filled glovebox. To this vial, VCP monomer (0.50 mmol) and 0.20 mL of anhydrous solvent were quickly added. The vial was then tightly capped and irradiated in the beaker equipped with white LED strips while stirring in the glove box. A cooling fan was used to keep the temperature at ~30 °C. After 16 h, an aliquot was taken for ¹H NMR analysis. The aliquot was then dried under vacuum for direct GPC analysis.

Fig. S8 ¹H NMR spectrum of Chain-Extended P(EtVCP) in CDCl₃ ($M_n = 20.6$ kDa, D = 1.12, $S_L = 98\%$)

Fig. S9 ¹H NMR spectrum of P(EtVCP)-*b*-P(BuVCP) in CDCl₃ ($M_n = 20.0 \text{ kDa}, D = 1.10, S_L = 96\%$)

Fig. S10 ¹H NMR spectrum of P(EtVCP)-*b*-P(BnVCP) in CDCl₃ ($M_n = 26.9$ kDa, D = 1.13, $S_L = 97\%$)

3.6 ¹H NMR Spectra of P(BuVCP), P(BnVCP), P(PhVCP), and P(EtVCP-CN)

Fig. S11 ¹H NMR spectrum of P(BuVCP) in CDCl₃ ($M_n = 28.0 \text{ kDa}, D = 1.09, S_L = 98\%$)

Fig. S12 ¹H NMR spectrum of P(BnVCP) in CDCl₃ ($M_n = 28.5 \text{ kDa}, D = 1.12, S_L = 95\%$)

Fig. S13 ¹H NMR spectrum of P(PhVCP) in CDCl₃ ($M_n = 28.5 \text{ kDa}, D = 1.09, S_L = 98\%$)

Fig. S14 ¹H NMR spectrum of P(EtVCP-CN) in CDCl₃ ($M_n = 28.0 \text{ kDa}, D = 1.09, S_L = 98\%$)

3.7 GPC Traces of P(BuVCP), P(BnVCP), P(PhVCP), and P(EtVCP-CN)

Fig. S15 Overlay of GPC traces for P(EtVCP) P(BnVCP), P(PhVCP), and P(EtVCP-CN) in Table 1

4. Visible-Light-Driven ITP of Fluorinated VCP Monomers

4.1 General Polymerization Procedure

An oven-dried 5 mL vial equipped with a small magnetic stir bar was transferred into a N₂-filled glove box. To this vial, EtVCP-PFP (1.0 mmol), anhydrous solvent, and the stock solution of **4** (0.10 M) were sequentially added. The vial was then tightly capped and placed under white LED irradiation while stirring in the glovebox with a cooling fan to maintain the temperature at ~30 °C. An aliquot was taken and analyzed via ¹H NMR for monomer conversion, then dried under vacuum for direct GPC analysis to obtain the M_n and D. For further purification, the reaction mixture was slowly added into 20.0 mL of hexane while stirring at room temperature. The precipitated polymer was collected by vacuum filtration, washed with hexane (5.0 mL ×2) and dried overnight under vacuum at 50 °C to a constant weight. ¹H NMR (400 MHz, CDCl3) δ 5.55 – 5.32 (br, 1.96H), 4.33 – 4.01 (br, 2H), 2.83 – 2.05 (br, 4.05H), 1.26 – 0.98 (br, 3H). ¹⁹F NMR (376 MHz, CDCl3) δ -152.3 (br, 2F), -157.5 (m, 1F), -162.2 (m, 2F).

Fig. S16 ¹H NMR spectrum of P(EtVCP-PFP) in CDCl₃ (Table 2, entry 1, $M_n = 17.3$ kDa, D = 1.17, $S_L = 98\%$)

Fig. S17 ¹⁹H NMR spectrum of P(EtVCP-PFP) in CDCl₃ (Table 2, entry 2, $M_n = 17.3$ kDa, D = 1.17, $S_L = 98\%$)

4.2 Optimization

Table S3. Polymerization of VCP Monomers Bearing a Fluoroalkyl Group^a

		EtVCP-CF ₃		FEtVCP			
Entry	Monomer	Solvent	Conv. (%)	Mn(kDa)	$D(M_w/M_n)$	SL(%)	
1	EtVCP-CF ₃	EtOAc	15	-	-	-	
2	EtVCP-CF ₃	PhCl	12	-	-	-	
3	EtVCP-CF ₃	PhCF ₃	20	-	-	-	
4	FEtVCP	EtOAc	0	-	-	-	
5	FEtVCP	PhCl	0	-	-	-	
6	FEtVCP	PhCF ₃	0	-	-	-	

^{*a*}The polymerization of [M]/[4] = 50/1 was performed in 0.2 mL of anhydrous solvent, with 3.6 W white LED irradiation at ~30 °C.

Table S4. Photoredox rROP of EtVCP-PFP^a

$ \begin{array}{c} \textbf{EtVCP-PFP} \\ \textbf{(1.0 mmol)} \end{array} \xrightarrow{\textbf{PC} (0.2 mol\%)} \textbf{P(EtVCP-PFP)} \\ \hline \textbf{Solvent (1.0 M)} \\ \textbf{White LEDs, 30 °C} \end{array} \textbf{P(EtVCP-PFP)} \\ \begin{array}{c} \textbf{CO_2Et} \\ \textbf{DBMM} \end{array} \xrightarrow{\textbf{Ar}} \textbf{Ar} \\ \textbf{Ar} \\ \textbf{Ar} \\ \textbf{Ar} = 4-Ph-C_6H_5 \\ \textbf{PC1} \end{array} \xrightarrow{\textbf{Ar}} \textbf{Ar} = 2-Naph \\ \textbf{PC1} \end{array} $							
Entry	РС	Solvent	Conv. (%)	Mn(kDa)	$\mathcal{D}(M_{ m w}/M_{ m n})$	SL(%)	
1	Ir(ppy) ₃	EtOAc	0	-	-	-	
2	PC1	EtOAc	0	-	-	-	
3	PC2	EtOAc	0	-	-	-	
4	PC2	DMAc	0	-	-	-	
5	PC2	PhCl	0	-	-	-	
9	PC2	PhCF ₃	0	-	-	-	

^{*a*}The polymerization of [EtVCP-PFP]/[DBMM]/[PC] = 500/10/1 was performed in 1.0 mL of anhydrous solvent with 3.6 W white LED irradiation at ~30 °C for 16 h.

Entry	Solvent	Volume (mL)	Conv. (%)	M _n (kDa)	$\mathcal{D}(M_w/M_n)$	S _L (%)
1	EtOAc	0.2	65	17.3	1.53	98
2	PhCl	0.2	84	18.0	1.44	98
3	anisole	0.2	78	17.8	1.37	98
4	PhCF ₃	0.2	85	13.2	1.39	98
5	PhCF ₃	0.4	90	17.3	1.17	98
6	PhCF ₃	0.6	88	16.5	1.28	98

Table S5. Solvent and Concentration Effect on Polymerization of EtVCP-PFP^a

^{*a*}The polymerization of [EtVCP-PFP]/[4] = 50/1 was performed in anhydrous solvent with 3.2 W white LED irradiation at ~30 °C for 16 h.

Fig. S18 Overlay of GPC traces for P(EtVCP-PFP) in Table 2

Fig. S19 MALDI-TOF Analysis of P(EtVCP-PFP)

Fig. S20 DSC curves of P(EtVCP-PFP) (17.3 kDa, D = 1.17, $S_L = 98\%$). $T_g = 61$ °C, (2nd heating scan), $T_m = 151$ °C (1st heating scan).

Fig. S21 TGA and DTG curves of P(EtVCP-PFP) (17.3 kDa, D = 1.17, $S_L = 98\%$). $T_d^{5\%} = 340 \text{ °C}$, $T_{\text{max}} = 394 \text{ °C}$.

4.3 Chain-Extension Experiment to Synthesize P(EtVCP-PFP)-b-P(EtVCP)

An oven-dried 5 mL charged with a magnetic stir bar and P(EtVCP-PFP) macroinitiator (15.2 kDa, D = 1.22, $S_L = 98\%$; 152 mg, 0.010 mmol) was transferred into a N₂-filled glovebox. To this vial, EtVCP (106 mg, 0.50 mmol) and 0.20 mL of anhydrous PhCl were quickly added. The vial was then tightly capped and irradiated in the beaker equipped with white LED strips while stirring in the glove box. A cooling fan was used to keep the temperature at ~30 °C. After 16 h, an aliquot was taken for ¹H NMR analysis and GPC analysis.

Fig. S22 ¹H NMR spectrum of P(EtVCP-PFP)-*b*-P(EtVCP) in CDCl₃ (28.1 kDa, $D = 1.19, S_L = 97\%$)

Fig. S23 ¹⁹H NMR spectrum of P(EtVCP-PFP)-*b*-P(EtVCP) in CDCl₃ (28.1 kDa, D =

 $1.19, S_{\rm L} = 97\%$)

Fig. S24 DSC curves of P(EtVCP-PFP)-*b*-P(EtVCP) (28.1 kDa, D = 1.19, $S_L = 97\%$). $T_{g1} = 28 \text{ °C}$, $T_{g2} = 52 \text{ °C}$ (2nd heating scan), $T_m = 145 \text{ °C}$ (1st heating scan).

Fig. S25 TGA and DTG curves of P(EtVCP-PFP)-*b*-P(EtVCP) (28.1 kDa, D = 1.19, $S_L = 97\%$). $T_d^{5\%} = 340$ °C, $T_{max} = 393$ °C.

5. Post-Modifications of P(EtVCP-PFP)

5.1 Large-Scale Synthesis of P(EtVCP-PFP)

An oven-dried 20 mL vial equipped with a small magnetic stir bar was transferred into a N₂-filled glove box. To this vial, EtVCP-PFP (5.0 mmol), 1.0 mL of anhydrous PhCF₃, and 1.0 mL of the stock solution of **4** in PhCF₃ (0.10 M) were sequentially added. The vial was then tightly capped and placed in the beaker wrapped by white LED strips while stirring in the glovebox with a cooling fan to maintain the temperature at ~30 °C. After 24 h, the reaction mixture was slowly added into 50.0 mL of hexane while stirring at room temperature. The precipitated polymer was collected by vacuum filtration, washed with hexane (5.0 mL ×2) and dried overnight under vacuum at 50 °C to a constant weight. $M_n = 14.6$ kDa, D = 1.34, $S_L = 98\%$.

5.2 General Procedures for Post-Modification

To an oven-dried 5 mL vial charged with a small magnetic stir bar, P(EtVCP-PFP) (100 mg), 0.6 mL of anhydrous THF, amine or alcohol (0.286 mmol, 1.0 equiv), and Et₃N or DBU (0.286 mmol, 1.0 equiv) were added sequentially. The mixture was stirred at room temperature for 12 h. An aliquot was taken for ¹H NMR analysis to determine the conversion. For purification, the reaction mixture was added into 20 mL of aq. HCl (0.5 M) while stirring at room temperature. The precipitated polymer was collected by vacuum filtration, washed with H₂O (5 mL) and dried overnight under vacuum at 50 °C to a constant weight. GPC analysis was then performed to obtain the M_n and \overline{D} .

5.3 Probe of the Chain-End

<u>Model reaction of 1 with propylamine.</u> To an oven-dried 8 mL vial charged with a small magnetic stir bar, alkyl iodide 1 (90 mg, 0.3 mmol, 1.0 equiv), 0.6 mL of anhydrous THF, propylamine (24.7 uL, 0.3 mmol, 1.0 equiv) and Et₃N (41.7 uL, 0.3 mmol, 1.0 equiv) were added sequentially. The mixture was stirred at room temperature for 12 h. An aliquot was taken for direct ¹H NMR analysis.

<u>Reaction of 1 with trifluoroethanol</u>. To an oven-dried 8 mL vial charged with a small magnetic stir bar, alkyl iodide 1 (90 mg, 0.3 mmol, 1.0 equiv), 0.6 mL of anhydrous THF, trifluoroethanol (22 uL, 0.3 mmol, 1.0 equiv) and DBU (41.2 uL, 0.3 mmol, 1.0 equiv) were added sequentially. The mixture was stirred at room temperature for 12 h.

Fig. S26 Crude 1 H NMR spectrum of reaction of 1 with propylamine (CDCl₃).

Fig. S27 ¹H NMR of alkyl iodide 1 in CDCl₃.

Fig. S28 ¹H NMR of diethyl-2-methylmalonate in CDCl₃.

Fig. S29 Crude ¹H NMR spectrum of reaction of 1 with trifluoroethanol (CDCl₃)

Fig. S30 MALDI-TOF Analysis of P1

5.4 NMR Spectra of Modified P(VCPs)

Fig. S31 ¹H NMR spectrum of P1 in CDCl₃

Fig. S32 ¹H NMR spectrum of P2 in CDCl₃

Fig. S33 ¹H NMR spectrum of P3 in $CDCl_3$

Fig. S34 ¹H NMR spectrum of P4 in DMSO-d₆

Fig. S35 ¹H NMR spectrum of P5 in CDCl₃

Fig. S36 19 F NMR spectrum of P5 in CDCl₃

Fig. S37 ¹H NMR spectrum of P6 in CDCl₃

Fig. S38¹⁹F NMR spectrum of P6 in CDCl₃

Fig. S39 ¹H NMR spectrum of P7 in CDCl₃

Fig. S40 ¹⁹F NMR spectrum of P7 in CDCl₃

Fig. S41 ¹H NMR spectrum of P8 in CDCl₃

Fig. S42 ¹⁹F NMR spectrum of P8 in CDCl₃

Fig. S43 ¹H NMR spectrum of P9 in CDCl₃

Fig. S44 ¹⁹F NMR spectrum of P9 in CDCl₃

5.5 GPC Traces of Modified P(VCPs)

Fig. S45 Overlay of GPC traces of P(EtVCP-PFP) and P1-P4 in Figure 3c

Fig. S46 Overlay of GPC traces of P5–P9 in Figure 3d S30

5.6 DSC and TGA Curves of Modified P(VCPs)

Fig. S47 DSC curves of P1 (13.0 kDa, D = 1.16, $S_L = 97\%$). $T_g = 42 \text{ °C} (2^{nd} \text{ heating scan})$.

Fig. S48 TGA and DTG curves of **P1** (13.0 kDa, D = 1.16, $S_L = 97\%$). $T_d^{5\%} = 322 \text{ °C}$, $T_{\text{max1}} = 376 \text{ °C}$, $T_{\text{max1}} = 405 \text{ °C}$.

Fig. S49 DSC curves of **P2** (13.1 kDa, D = 1.13, $S_L = 99\%$). $T_g = 56 \text{ °C}$ (2nd heating scan).

Fig. S50 TGA and DTG curves of **P2** (13.1 kDa, D = 1.13, $S_L = 99\%$). $T_d^{5\%} = 366 \,^{\circ}\text{C}$, $T_{\text{max1}} = 376 \,^{\circ}\text{C}$, $T_{\text{max1}} = 456 \,^{\circ}\text{C}$.

Fig. S51 DSC curves of **P3** (12.6 kDa, D = 1.15, $S_L = 96\%$). $T_g = 58$ °C (2nd heating scan).

Fig. S52 TGA and DTG curves of **P3** (12.6 kDa, D = 1.15, $S_L = 96\%$). $T_d^{5\%} = 257 \text{ °C}$, $T_{\text{max}} = 458 \text{ °C}$.

Fig. S53 DSC curves of **P4** (16.8 kDa, D = 1.15, $S_L = 98\%$). $T_g = 87$ °C (2nd heating scan).

Fig. S54 TGA and DTG curves of **P4** (16.8 kDa, D = 1.15, $S_L = 98\%$). $T_d^{5\%} = 253$ °C, $T_{max} = 438$ °C.

Fig. S55 DSC curves of **P5** (13.1 kDa, D = 1.30, $S_L = 98\%$). $T_g = 48$ °C (2nd heating scan), $T_c = 88$ °C (1st cooling scan), $T_m = 147$ °C (2nd heating scan).

Fig. S56 TGA and DTG curves of **P5** (13.1 kDa, D = 1.30, $S_L = 98\%$). $T_d^{5\%} = 325$ °C, $T_{max} = 380$ °C.

Fig.S57 DSC curves of **P6** (13.4 kDa, D = 1.45, $S_L = 97\%$). $T_g = 46$ °C (1st heating scan), $T_c = 112$ °C (1st cooling scan), $T_m = 157$ °C (2nd heating scan).

Fig. S58 TGA and DTG curves of **P6** (13.4 kDa, D = 1.45, $S_L = 97\%$). $T_d^{5\%} = 271 \text{ °C}$, $T_{\text{max}} = 398 \text{ °C}$.

Fig. S59 DSC curves of **P7** (13.5 kDa, $\mathcal{D} = 1.37$, $S_L = 97\%$). $T_g = 21 \, ^{\circ}C \, (2^{nd} \text{ heating scan})$, $T_c = 92 \, ^{\circ}C \, (1^{st} \text{ cooling scan})$, $T_m = 144 \, ^{\circ}C \, (2^{nd} \text{ heating scan})$.

Fig. S60 TGA and DTG curves of **P7** (13.5 kDa, D = 1.37, $S_L = 97\%$). $T_d^{5\%} = 281 \text{ °C}$, $T_{\text{max}} = 387 \text{ °C}$

Fig. S61 DSC curves of **P8** (12.1 kDa, D = 1.24, $S_L = 97\%$). $T_g = 6 \, ^{\circ}C \, (2^{nd} \text{ heating scan})$, $T_c = 62 \, ^{\circ}C \, (1^{st} \text{ cooling scan})$, $T_m = 116 \, ^{\circ}C \, (2^{nd} \text{ heating scan})$

Fig. S62 TGA and DTG curves of **P8** (12.1 kDa, D = 1.24, $S_L = 97\%$). $T_d^{5\%} = 268 \text{ °C}$, $T_{\text{max}} = 415 \text{ °C}$

Fig. S63 DSC curves of **P9** (17.9 kDa, $\mathcal{D} = 1.21$, $S_L = 97\%$). $T_g = 47$ °C (2nd heating scan), $T_c = 111$ °C (1st cooling scan), $T_m = 158$ °C (2nd heating scan)

Fig. S64 TGA and DTG curves of **P9** (17.9 kDa, D = 1.21, $S_L = 97\%$). $T_d^{5\%} = 266 \text{ °C}$, $T_{\text{max}} = 385 \text{ °C}$

6. Reference

- ¹ (a) D.-F. Chen, B. M. Boyle, B. G. McCarthy, C.-H. Lim and G. M. Miyake, *J. Am. Chem. Soc.* 2019, *141*, 13268–13277; (b) D.-F. Chen, S. Bernsten and G. M. Miyake *Macromolecules* 2020, *53*, 8352–8359.
- ² M. R. Emmett and M. A. Kerr, Org. Lett. 2011, 13, 4180–4183.