## Aggregation-Induced Emission (AIE) of poly(1,4-dihydropyridine) synthesized by Hantzsch Polymerization and Its Specific Detection for Fe<sup>2+</sup> Ions

Xue Meng<sup>a</sup>, Da Zhang<sup>a</sup>, Ronghui Zhao<sup>a,b</sup>, Zhixia Zhou<sup>a</sup>, Pengfei Zhang<sup>a</sup>, Meng Wang<sup>a</sup>,

Jingyuan Zhao<sup>a</sup>, Huiying Guo<sup>a</sup>, Kuilin Deng<sup>a\*</sup>

<sup>a</sup>College of Chemistry & Environmental Science, Hebei University, Baoding 071002,

China; <sup>b</sup>Affiliated Hospital of Hebei University, Baoding 071002, China

\*Corresponding author: Email: <u>dengkl\_hbu@163.com</u>

| Chemicals and reagents:1                                                                                  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Instruments and Measurements:                                                                             |  |  |  |  |  |
| Table S1. Different structures of synthesized PDPEs                                                       |  |  |  |  |  |
| Table S2. Yield, <i>M<sub>n</sub></i> , <i>PDI</i> and quantum yield of PDPEs                             |  |  |  |  |  |
| Figure S1. <sup>1</sup> H NMR spectra of PDPE-TE and PDPE-GE in DMSO <sub>d6</sub> 4                      |  |  |  |  |  |
| Figure S2. <sup>1</sup> H NMR spectra of PDPE-TB and PDPE-GB in DMSO <sub>d6</sub> 4                      |  |  |  |  |  |
| Figure S3. <sup>1</sup> H NMR spectra of PDPE-TD in DMSO <sub>d6</sub> and PDPE-GD in CDCl <sub>3</sub> 4 |  |  |  |  |  |
| Figure S4. $^1\mathrm{H}$ NMR spectra in CDCl3 and FT-IR spectra of PDPE-GH4                              |  |  |  |  |  |
| Figure S5. FT-IR spectra of PDPE-TE, PDPE-GE, PDPE-TB, PDPE-GB, PDPE-                                     |  |  |  |  |  |
| GD, and PDPE-GE5                                                                                          |  |  |  |  |  |
| Figure S6. GPC curves of PDPEs                                                                            |  |  |  |  |  |
| Figure S7. DSC curves of PDPE-GO and PDPE-TO7                                                             |  |  |  |  |  |
| Figure S8. UV absorption of PDPEs ( $1 \times 10^{-3}$ M) in DMSO solution7                               |  |  |  |  |  |
| Figure S9. The particle size of PDPEs ( $1 \times 10^{-3}$ M)                                             |  |  |  |  |  |
| Figure S10. Ratio of chromophore characteristic peaks and alkyl chain                                     |  |  |  |  |  |
| characteristic peaks in NMR spectra of PDPEs in DMSO <sub>d6</sub> 8                                      |  |  |  |  |  |
| Figure S11. Excitation spectra of PDPE-TO at different concentrations9                                    |  |  |  |  |  |
| Figure S12. Effect of different anions on fluorescence of PDPE-TO solution9                               |  |  |  |  |  |
| Figure S13. Changes of fluorescence intensity with time after adding $Fe^{2+}$ ions                       |  |  |  |  |  |
| (0.15 mM) to PDPE-TO10                                                                                    |  |  |  |  |  |

## Chemicals and reagents:

Ethylenediamine and 1,6-hexanediamine were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. Glutaraldehyde and terephthalaldehyde were provided by Aladdin Company (Shanghai, China). Benzaldehyde, 1,4-diaminobutane, acetylacetone, and 1,5-glutaraldehyde were purchased from Shanghai McLean Biochemical Co., Ltd. (China). n-Butylamine, acetic acid and anhydrous magnesium chloride were provided by Tianjin Guangfu Technology Development Co., Ltd. 1,8diaminooctane and 1,10-diaminodecane were provided by J&K Scientific Technology Co., Ltd. Unless otherwise stated, all chemicals and reagents were obtained from commercial suppliers and used as received without further purification.

## Instruments and Measurements:

To obtain Fourier transform infrared spectra (FT-IR) of intermediates and PDPEs, we scanned in the wavenumber range of 400-4000 cm<sup>-1</sup> using a Bruker Tensor 27 FT-IR spectrometer with a Specac Quest ATR accessory. <sup>1</sup>H NMRs (400 MHz) of the intermediates and PDPEs were recorded on a Bruker AVANCE III spectrometer at room temperature with tetramethylsilane (TMS) as an internal standard. The molecular weight ( $M_n$ ) and polydispersity index (*PDI*) of prepared PDPEs were determined using a gel permeation chromatography (GPC) system (Agilent 1200). *N*, *N*-dimethylformamide (DMF) with 0.1% lithium bromide as the elution solvent and polystyrene as the molecular weight standard. The average sizes of aggregated particles in solutions of different ( $V_{DMSO}/V_{ethyl acetate}$ ) were measured by dynamic light scattering (DLS) Zetasizer nano-ZSE.



Table S1. Different structures of synthesized PDPEs.

| Sample    | Yield<br>(%) | $M_n 	imes 10^3$ g/mol | PDI  | Quantum yield<br>(%) |
|-----------|--------------|------------------------|------|----------------------|
| PDPE - TB | 56.67        | 6.5                    | 1.52 | 5.11                 |
| PDPE - TH | 59.90        | 6.9                    | 1.73 | 6.86                 |
| PDPE - TO | 68.18        | 7.4                    | 1.69 | 9.3                  |
| PDPE - TD | 64.92        | 8.9                    | 1.56 | 7.6                  |
| PDPE - GB | 46.67        | 4.9                    | 1.71 | ×                    |
| PDPE - GH | 45.90        | 5.3                    | 1.53 | ×                    |
| PDPE - GO | 46.18        | 5.7                    | 1.72 | ×                    |
| PDPE - GD | 44.73        | 6.1                    | 1.68 | ×                    |

Table S2. Yield,  $M_n$ , PDI and quantum yield of PDPEs.

(× means the relative yield was too low.)



Figure S1. <sup>1</sup>H NMR spectra of PDPE-TE and PDPE-GE in DMSO<sub>d6</sub>.



Figure S2. <sup>1</sup>H NMR spectra of PDPE-TB and PDPE-GB in DMSO<sub>d6</sub>.



Figure S3. <sup>1</sup>H NMR spectra of PDPE-TD in DMSO<sub>d6</sub> and PDPE-GD in CDCl<sub>3</sub>.



Figure S4. <sup>1</sup>H NMR spectra in CDCl<sub>3</sub> and FT-IR spectra of PDPE-GH.



Figure S5. FT-IR spectra of PDPE-TE, PDPE-GE, PDPE-TB, PDPE-GB, PDPE-GD, and PDPE-GE.



Figure S6. GPC curves of PDPEs.



Figure S7. DSC curves of PDPE-GO and PDPE-TO.



Figure S8. UV absorption of PDPEs (1×10<sup>-3</sup> M) in DMSO solution.



Figure S9. The particle size of PDPEs (1×10<sup>-3</sup> M).



Figure S10. Ratio of chromophore characteristic peaks and alkyl chain characteristic peaks in NMR spectra of PDPEs in DMSO<sub>d6</sub>.



Figure S11. Excitation spectra of PDPE-TO at different concentrations.



Figure S12. Effect of different anions on fluorescence of PDPE-TO solution.



Figure S13. Changes of fluorescence intensity with time after adding Fe<sup>2+</sup> ions (0.15 mM) to PDPE-TO.