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1. General procedures of laboratory

All experiments involving moisture-sensitive compounds were performed under an inert 

atmosphere of N2 using standard Schlenk techniques or a glovebox. Deuterated solvents were 

degassed and dried over activated molecular sieves prior to use. 1-Chloroanthraquinone and 

hydrazine hydrate were purchased from Sigma-Aldrich and used as received. Acetone, 2-

quinoline carboxaldehyde, salicylaldehyde and benzaldehyde were purchased from Acros and 

used for the synthesis of 1 without further purification. THF, hexane and diethyl ether used for 

air sensitive processes were dried and degassed in a Solvent Purification System. LiHMDS was 

purchased from ABCR and used as received. L- and rac-lactide were purchased from Acros and 

recrystallized with toluene three times before used. MALDI-TOF mass spectra were acquired 

using a mass spectrometer Bruker Autoflex Speed system (Bruker, Germany). Diffusion NMR 

measurements, average molecular weights, and hydrodynamic radii calculations were performed 

as previously reported.1

NMR spectra were measured in a Bruker Avance III 500 spectrometer. IR (ATR and DRIFT) 

spectra were recorded in a FT-IR Bruker Alpha spectrometer. Elemental analyses (EA) were 

performed on an Elementar vario EL cube in the CHN mode. Mass spectra were acquired using 

a mass spectrometer Orbitrap Thermo Fisher Scientific (ExactiveTM, Thermo Fisher Scientific, 

Bremen, Germany) using an electrospray interface (ESI) (HESI-II, Thermo Fisher Scientific, San 

Jose, CA, USA). The ESI parameters for the spectrometric detection, were as follows: spray 

voltage, 4 kV; sheath gas (N2, >95%), 35 (adimensional); auxiliary gas (N2, >95%), 10 

(adimensional); skimmer voltage, 18 V; capillary voltage, 35 V; tube lens voltage, 95 V; heater 

temperature, 305 °C; capillary temperature, 300 °C. The mass spectra were acquired employing 

two alternating acquisition functions: (1) full MS, ESI+, without fragmentation (the higher 

collisional dissociation (HCD) collision cell was switched off), mass resolving power = 25 000 

full width at half maximum (FWHM); scan time = 0.25 s, (2) full MS, ESI- using the 

aforementioned settings, (3) all-ions fragmentation (AIF), ESI+, with fragmentation (HCD on, 

collision energy 30 eV), mass resolving power = 10000 FWHM; scan time = 0.10 s, and (4) AIF, 

ESI- using the settings explained for (3).



S4

2. General procedures

General procedure for the synthesis of ligands. Ligands 1 were synthesized from 1-

hydrazinoanthraquinone, which was prepared following a method previously described in the 

literature.[28] 1-Hydrazinoanthraquinone (7.2 mmol) was suspended in methanol (250 mL), and 

the corresponding aldehyde or ketone (8.7 mmol, 1.2 equiv.) was added. The mixture was stirred 

and refluxed for 3.5 h, after which a red precipitate was observed. The suspension was cooled to 

room temperature, and the pure product was obtained as a deep red powder by filtration under 

reduced pressure.

General procedure for the synthesis of Li-complexes 2. Li-complexes were synthesized 

following a described procedure.[27] LiHMDS (42 mg, 0.238 mmol) was dissolved in THF (10 

mL) and added to a suspension of 1 (0.238 mmol, 1.0 equiv.) in THF (10 mL). The resulting deep 

green solution was stirred for 2 h at room temperature, and then all the volatiles were removed 

under vacuum. The remaining solid was washed with hexane (15 mL) and filtered out to yield the 

pure product as a dark green powder.

General procedure for the catalytic ROP of L- and rac-LA. It was conducted in a glovebox 

by dissolving LiHMDS (2 mg, 0.012 mmol) and the corresponding ligand 1 (0.012 mmol) in 1.2 

mL of DCM or THF in a 5 mL capped vial equipped with a magnetic stirring bar. Once the catalyst 

was completely dissolved, the addition of L- or rac-Lactide (87 mg, 0.6 mmol) was carried out 

and the reaction was left to stir overnight at room temperature until complete conversion of the 

starting material was reached. The reaction was then quenched with HCl 1 M (few drops), 

precipitated with cold methanol, and washed and centrifuged (11000 rpm, 18ºC, 10 min.) with 

cold MeOH (3 x 10 mL). The pure polymer was finally dried under vacuum.

General procedure for the catalytic ROP of ε-Caprolactone. It was conducted in a glovebox 

by dissolving LiHMDS (2 mg, 0.012 mmol) and the corresponding ligand 1 (0.012 mmol) in 1.2 

mL of DCM or THF in a 5 mL capped vial equipped with a magnetic stirring bar. Once the catalyst 

was completely dissolved, the addition of ε-Caprolactone (64 μL, 0.6 mmol) was carried out and 

the reaction was left to stir overnight at room temperature until complete conversion of the starting 

material was reached. The reaction was then quenched with HCl 1 M (few drops), precipitated 

with cold methanol, and washed and centrifuged (11000 rpm, 18ºC, 10 min.) with cold MeOH (3 

x 10 mL). The pure polymer was finally dried under vacuum.
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General procedure for NMR monitored reactions. In a glovebox, the corresponding Li-

complex 2 (0.006 mmol) was dissolved in 0.6 mL of DCM-d2 in a 1.5 mL capped vial equipped 

with a magnetic stirring bar. Then, addition of L- or rac-lactide (21.6 mg, 0.3 mmol) was carried 

out and the solution was then immediately transferred into an oven-dried 5 mm NMR J-Young 

tube. The sample tube was shaken to ensure the homogeneity of the mixture and then placed inside 

the NMR spectrometer to perform the corresponding measurements.

Quantitative NMR acquisition parameters. 1H NMR determination of product conversion was 

carried out by comparing signals arising from both CH of substrate and product. The standard 

acquisition parameters were one-dimensional pulse sequence which includes a 30º flip angle 

(Bruker zg30), recycle time (D1 = 30 s), time domain (TD = 64k), number of scans (NS = 1), 

acquisition time (AQ = 2.97 s), transmitter (frequency) offset (O1P = 8.0 ppm), and spectral width 

(SW = 22.0 ppm).

Diffusion NMR Spectroscopy of complexes 2. NMR samples were prepared with different 

concentrations of complexes (10, 20, 40 mM) in 0.5 mL of THF-d8 in an oven-dried 5 mm NMR 

tube. The Δ and δ values varied from 75 to 100 ms for 1H and 75 ms for 7Li; and from 2.5 to 3.5 

ms, respectively. The gradient strength was incremented in steps of 4% starting from 8% to 96%, 

so that 23 points were used for regression analysis. The recovery delay was always set to 5 s. The 

number of scans per increment were 32 and typical experimental times were around 3 h. All 

experiments were run without spinning. To check reproducibility and lack of convection, two 

different measurements with different Δ were always carried out. The contribution of convection 

to the calculated D values seems to be negligible since it remains always constant under the two 

different diffusion times assayed. Determination of the D-values was performed by applying 

different algorithms. dART solutions were obtained by the use of an algebraic reconstruction 

technique.1 TRAIn solutions were obtained by the use of the algorithm provided by Xu et al,2 with 

an alpha parameter set to 1.05. LMS fittings were performed with the help of the DiffAtOnce 

package.3

Diffusion NMR Spectroscopy of cPLA polymers. NMR samples were prepared by just adding 

1.5 mg of each polymer together with 0.5 mL of CDCl3 in an oven-dried 5 mm NMR tube. The 

Δ and δ values varied from 75 to 100 ms, and from 2.5 to 3.5 ms, respectively. The gradient 

strength was incremented in steps of 4% starting from 8% to 96%, so that 23 points were used for 

regression analysis. The recovery delay was always set to 5 s. The number of scans per increment 

were 32 and typical experimental times were around 3 h. All experiments were run without 

spinning. To check reproducibility and lack of convection, two different measurements with 

different Δ were always carried out. The contribution of convection to the calculated D values 
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seems to be negligible since it remains always constant under the two different diffusion times 

assayed. Determination of the D-values was performed as mentioned before.

MALDI-TOF MS. Solutions of the polymer sample (10 mg/mL) and matrix DCTB (20 mg/mL) 

were prepared in dichloromethane (DCM):methanol (1:1). TFANa (10 mg/mL) in DCM:MeOH 

(1:1) was employed as additive. 1 µL of the 10:1:0.5 (v/v/v) mixture Matrix:Polymer:TFANa was 

spotted via micropipet for MALDI analysis.

FT-IR spectra were recorded in the range 400-4000 cm-1 with a Bruker Vertex 70 equipped with 

a cell for liquid samples.

Computational details. Density functional theory (DFT) simulations were carried out with the 

M06-2X density functional4 and an ultrafine grid as implemented in Gaussian 16.5 Geometry 

optimizations were performed in THF using the continuum solvent approach SMD.6 The 6-

31G(d,p) basis set was used for all atoms,7 and diffuse functions were added for O atoms.8 

Vibrational frequencies were computed to confirm the nature of minima. Those frequencies below 

50 cm−1 were replaced by 50 cm−1 when computing vibrational partition functions9 using the 

software GoodVibes.10 Gibbs energies are computed at 298 K and 1 M (12.33 M for a THF 

molecule in THF solution). Several conformations are searched for each species but only the most 

stables ones are reported. For the prediction of 15N and 7Li NMR chemical shifts, isotropic 

shielding constants were computed with the gauge-independent atomic orbital method (GIAO).11 

Single-point calculations were performed with the mPW1PW91 density functional12 and the 6-

311G(2d,p) basis set8,13 in THF. This level of theory has been successful for predicting chemical 

shifts.14 For 15N, only chemical shift differences between the free ligand and the complexed ligand 

are reported. For 7Li, the cation [Li(THF)4]+ is taken as reference, where the computed isotropic 

shielding constant is matched to the experimental chemical shift of −0.45 ppm.15 All inputs and 

outputs can be consulted in the open-access ioChem-BD repository16 via the following database.17
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3. Numbering of ligands and complexes
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Scheme S1. Structure and numbering of ligands 1b-1d.

3.2.  Complexes
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4. Crystallographic Data of ligands 1b and 1d

Single-crystal diffraction data were collected at 100(2) K on a Bruker D8 Venture with a Photon 

detector equipped with graphite monochromated MoKα radiation (λ = 0.71073 Å). The data 

reduction was performed with the APEX2 software  and corrected for absorption using SADABS. 

 Crystal structures were solved by direct methods using the SIR97 program  and refined by full-

matrix least-squares on F2 including all reflections using anisotropic displacement parameters by 

means of the WINGX crystallographic package.  Generally, anisotropic temperature factors were 

assigned to all atoms except for hydrogen atoms, which are riding their parent atoms with an 

isotropic temperature factor arbitrarily chosen as 1.2 times that of the respective parent. Several 

crystals of 1b and 1d were measured and the structure was solved from the best data we were able 

to collect, due to the fact that the crystals diffracted very little. Solvent mask routine (implemented 

in OLEX2 software)  was used to eliminate one disordered crystallization dichloromethane 

molecule. Final R(F), wR(F2) and goodness of fit agreement factors, details on the data collection 

and analysis can be found in Table S1. Crystallographic data (excluding structure factors) for the 

structures reported in this paper have been deposited with the Cambridge Crystallographic Data 

Centre as supplementary publication nos. CCDC 2193241-2193242 for compounds. Copies of 

the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, 

Cambridge, CB2 1EZ, U.K. (Fax: +44-1223-335033; e-mail: deposit@ccdc.cam.ac.uk).
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Table S1. Crystal data and structure refinement for compounds 1b and 1d.

Compound 1b Compound 1d

Empirical formula C25 H16 N3 O2 Cl3 C34 H28 N4 O4

Formula weight 496.76 556.60

Temperature (K) 295 (2) 130 (2)

CCDC number 2193242 2193241
Wavelength (Å) 0.71073 0.71073

Crystal system Monoclinic Monoclinic

Space group P21/c Pc

a(Å) 15.3458(8) 11.1707(15)

b(Å) 15.7608(7) 3.8686(5)

c(Å) 9.4437(4) 30.877(4)

 90 90

 93.062(4) 91.966(5)

 90 90

Volume(Å3) 2280.81(18) 1333.6(3)

Z 4 2

Density (calculated) (g/cm3) 1.447 1.386

Absorption coefficient (mm-1) 3.877 0.093

Goodness-of-fit on F2 1.083 1.163

Final R indices [I>2I)]
R1 = 0.0635

wR2 = 0.1785
R1 = 0.0771

wR2 = 0.1618

Largest diff. peak / hole 0.447 and -0.303 0.230 and -0.245
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Figure S1. Planar geometry of ligand 1b (top) and 1d (bottom) favoring π-stacking interactions 
among anthraquinone units.
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5. Diffusion data

Table S2. Diffusion coefficient (D) and Stokes-Einstein hydrodynamic radius (rH) values for 
compounds 2b, 2c and 2d at 292 K in THF-d8.

Entry Nucleus Conc. (mM) Complex D x 109 (m2s-1) [a] rH (Å)[b]

1H 10 2b 0.850556 5.0

7Li 0.907648 4.9

1

1H THF 2.699488 1.6

1H 10 2c 0.91713 4.7

7Li 0.92556 4.7

2

1H THF 2.68569 1.7

1H 20 2c 0.911063 4.7

7Li 0.923636 4.7

3

1H THF 2.695803 1.6

1H 40 2c 0.910831 4.7

7Li 0.899515 4.8

4

THF 2.694559 1.6

1H 20 2d 0.974004 4.4

7Li 0.984474 4.4

5

1H THF 2.722127 1.6

[a] The experimental error in the D values is ± 2%. [b] The viscosity η used in the Stokes-Einstein 
equation was taken from Perry's Chemical Engineers' Handbook 8th Edition (www.knovel.com) 
for tetrahydrofuran h 0.4966 Kg·m-1·s-1.
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Table S3. Diffusion coefficient (D), hydrodynamic radius (rH) weight-average MW (Mw) and 
polydispersity index (Đ) values for cPLAs with L-LA at 292 K in CDCl3.

LA, Catalyst [LA]0/[Cat] Solvent D x 10-9 (m2 s-1)[a] rH 

(Å)[b]

Mw 

(kDa)[c]

Đ

2b 50:1 DCM 0.0730667 51.1 40.2 2.13

CHCl3 2.337013 1.6

2c 50:1 DCM 0.062655 59.5 52.7 2.26

CHCl3 2.37369 1.6

2d 50:1 DCM 0.0785621 47.5 35.4 1.77

CHCl3 2.345989 1.6

[a] The experimental error in the D values is ± 2%. Signal at δH 5.19 ppm assigned to the inner 
methine was always monitored. [b] The viscosity η used in the Stokes-Einstein equation was taken 
from Perry's Chemical Engineers' Handbook 8th Edition (www.knovel.com) and is 0.545 10-3 kg 
m-1 s-1. [c] Determined by 1H PGSE diffusion NMR using polystyrene standards and without the 
use of any correction factor. See ref. 1 for details.

Table S4. Diffusion coefficient (D), hydrodynamic radius (rH) weight-average MW (Mw) and 
polydispersity index (Đ) values for cPLAs with rac-LA at 294 K in CDCl3.

LA, 

Catalyst

[LA]0/[Cat] Solvent D x 10-9 (m2 s-1)[a] rH 

(Å)[b]

Mw 

(kDa)[c]

Đ Pr

2b 50:1 DCM 0.078747 48.7 34.6 1.59 0.486

CHCl3 2.41818 1.6

2c 50:1 DCM 0.0639976 59.9 49.9 1.49 0.452

CHCl3 2.427372 1.6

2d 50:1 DCM 0.0681884 56.2 44.6 1.98 0.461

CHCl3 2.39270 1.6

[a] The experimental error in the D values is ± 2%. Signal at δH 5.19 ppm assigned to the inner 
methine was always monitored. [b] The viscosity η used in the Stokes-Einstein equation was taken 
from Perry's Chemical Engineers' Handbook 8th Edition (www.knovel.com) and is 0.5615 10-3 kg 
m-1 s-1. [c] Determined by 1H PGSE diffusion NMR using polystyrene standards and without the 
use of any correction factor. See ref. 1 for details.
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Table S5. 7Li and 15N NMR chemical shifts for ligands 1b-1d and complexes 2b-2d in THF-d8 
at 292 K and their corresponding ligands.

Compound δLi (ppm) Half width (Hz) T1 7Li (ms) δN1 (ppm) δN2 (ppm)

1b - - -249.2 -69.3

2b 1.99 15.7 257 -134.3 -9.8

1c - - -249.2 -69.3

2c 1.88 30.8 176 -134.4 -25.9

1d - - -256.1 -92.9

2d 1.31 6.0 192 -130.4 -43.9

Figure S2. Stejskal-Tanner plots from 1H and 7Li PGSE NMR diffusion experiments in THF-d8 
at 292 K using the stimulated echo with bipolar pair pulses (stebpgp1s1d) sequence for complex 
2b (1 mM). The solid lines represent linear least-squares fits to the experimental data.
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Figure S3. Stejskal-Tanner plots from 1H and 7Li PGSE NMR diffusion experiments in THF-d8 
at 292 K using the stimulated echo with bipolar pair pulses (stebpgp1s1d) sequence for complex 
2c (20 mM). The solid lines represent linear least-squares fits to the experimental data.

Figure S4. Stejskal-Tanner plots from 1H and 7Li PGSE NMR diffusion experiments in THF-d8 
at 292 K using the stimulated echo with bipolar pair pulses (stebpgp1s1d) sequence for complex 
2d (20 mM). The solid lines represent linear least-squares fits to the experimental data.
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Figure S5. Stejskal-Tanner plots from 1H PGSE NMR diffusion experiments in CDCl3 at 292 K 
using the stimulated echo with bipolar pair pulses (stebpgp1s1d) sequence for cPLA obtained 
with the different catalysts and L-Lactide in DCM (50:1). The solid lines represent linear least-
squares fits to the experimental data.

Figure S6. Stejskal-Tanner plots from 1H PGSE NMR diffusion experiments in CDCl3 at 292 K 
using the stimulated echo with bipolar pair pulses (stebpgp1s1d) sequence for cPCL obtained 
with 2d in THF (50:1). The solid lines represent linear least-squares fits to the experimental data
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6. Kinetic profiles
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7. Characterization data
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(E)-1-(2-(Quinolin-2-ylmethylene)hydrazineyl)anthracene-9,10-dione (1b):

1H-NMR (600.13 MHz, CDCl3): δ 12.95 (s, 1H, NH), 8.32 (m, 1H, H8), 8.30 (s, 1H, H15), 8.28-
8.25 (m, 2H, H2, H5), 8.19 (d, J = 8.60 Hz, 1H), 8.15 (d, J = 8.60 Hz, 1H), 8.09 (d, J = 8.30 Hz, 
1H), 7.85 (dd, J = 1.05 Hz, 7.35 Hz, 1H, H4), 7.83-7.79 (m, 2H), 7.79-7.73 (m, 2H), 7.73-7.69 
(2H, m, H3), 7.54 (m, 1H) ppm.

13C-NMR (150.91 MHz, CDCl3): δ 186.0 (CO, C9), 183.3 (CO, C10), 154.2 (C16), 148.0 (C23), 
147.7 (C1), 143.4 (C15), 136.4, 135.5, 134.5 (Cipso), 134.30, 134.28 (C11), 134.23 (C12), 133.8, 
133.2 (Cipso), 130.0, 129.3, 128.2 (Cipso), 127.8, 127.4, 127.2, 127.1 (C5), 120.4 (C2), 119.5 (C4), 
118.1, 113.5 (C13) ppm.

IR (ATR): υ 3050 (s), 1673 (m), 1633 (m), 1579 (w), 1502 (w), 1464 (s), 1425 (s), 1298 (m), 
1267 (w), 1169 (s), 1125 (w), 1069 (m), 1005 (m), 922 (s), 884 (m), 830 (s), 739 (m), 706 (w), 
635 (s), 615 (m) cm-1.

ESI-MS: calcd (m/z) for [C24H15N3O2]+: 377.1164; found: 378.1228 [M + H]+.

Elemental Analysis: Calcd for C24H15N3O2: C, 76.38; H, 4.01; N, 11.13; found: C, 73.51; H, 
4.28; N, 11.34.
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(E)-1-(2-Benzylidenehydrazineyl)anthracene-9,10-dione (1c):

1H-NMR (500.13 MHz, CDCl3): δ 12.75 (s, 1H, NH), 8.29 (dd, J = 7.7, 1.1 Hz, 1H, H5), 8.27 
(dd, J = 7.7, 1.2 Hz, 1H, H8), 8.20 (d, J = 8.6 Hz, 1H, H2), 8.05 (s, 1H, H15), 7.78 (d, J = 7.5 Hz, 
2H, ArH, H4), 7.76–7.73 (m, 3H, ArH, H17, H21), 7.67–7.64 (m, 1H, H3), 7.44–7.41 (m, 2H, 
ArH), 7.39–7.36 (m, 1H, H19) ppm.

13C-NMR (125.77 MHz, CDCl3): δ 185.6 (C9), 183.3 (C10), 148.2 (C1), 143.0 (C15), 135.3 
(C3), 134.7 (C16), 134.6 (Cipso), 134.04 (C7), 134.00 (Cipso), 133.5 (C6), 133.1, 129.5 (19), 128.8, 
127.0 (C5), 126.9 (C17, C21), 126.8 (C8), 120.3 (C2), 118.6, 112.5 (C3) ppm.

15N NMR (60.8 MHz, THF-d8, via gHMBC): δ -81.5 (N2), -250.2 (N1) ppm.

IR (ATR): υ 3061 (s), 1670 (m), 1628 (m), 1584 (w), 1501 (w), 1452 (s), 1298 (m), 1266 (w), 
1168 (m), 1115 (m), 1067 (m), 1003 (m), 929 (s), 928 (s), 829 (s), 806 (s), 739 (m), 706 (w), 640 
(m) cm-1.

ESI-MS: calcd. (m/z) for [C21H14N2O2]+: 326.1055; found: 327.1121 [M + H]+.

Elemental Analysis: Calcd. for C21H14N2O2: C, 77.29; H, 4.32; N, 8.58; found: C, 75.67; H, 4.23; 
N, 8.36.
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1-(2-(Propan-2-ylidene)hydrazineyl)anthracene-9,10-dione (1d):

1H-NMR (600.13 MHz, CDCl3): δ 12.30 (s, 1H, NH), 8.29 (dd, J = 7.7, 1.0 Hz, 1H, H8), 8.27 
(dd, J = 7.7, 1.1 Hz, 1H, H5), 8.09 (dd, J = 8.6, 1.0 Hz, 1H, H2), 7.77 (td, J = 7.5, 1.5 Hz, 1H, 
H7), 7.74–7.71 (m, 2H, H6, H4), 7.62–7.60 (m, 1H, H3), 2.15 (s, 3H, CH3), 2.13 (s, 3H, CH3) 
ppm.

13C-NMR (150.9 MHz, CDCl3): δ 185.3 (C9), 183.6 (C10), 149.6 (C15), 148.7 (Cipso), 135.3 
(C3), 134.7 (Cipso), 133.9 (C7), 133.2 (C6), 133.1 (Cipso), 126.9 (C5), 126.7 (C8), 119.9 (C2), 
117.8 (C4), 111.9 (C13), 25.3 (C16/C17), 17.1 (C17/C16) ppm.

15N NMR (60.8 MHz, CDCl3, via gHMBC): δ 143.92, -93.45 ppm.

15N NMR (60.8 MHz, THF-d8, via gHMBC): δ -92.72, -255.89 ppm.

IR (ATR): υ 2909 (s), 1665 (m), 1628 (m), 1584 (w), 1503 (m), 1436 (s), 1394 (s), 1366 (m), 
1303 (s), 1274 (w), 1162 (m), 1119 (m), 1068 (s), 966 (m), 891 (s), 828 (m), 800 (m), 730 (m), 
702 (w), 663 (s), 618 (s) cm-1.

ESI-MS: calcd. (m/z) for [C17H14N2O2]+: 278.1055; found: 279.1121 [M + H]+.

Elemental Analysis: Calcd. for C17H14N2O2: C, 73.37; H, 5.07; N, 10.07; found: C, 72.67; H, 
4.95; N, 10.22.
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Lithium E)-1-(2-(quinolin-2-ylmethylene)hydrazineyl)anthracene-9,10-dione (2b):

1H-NMR (600.13 MHz, THF-d8): δ 8.6 (dd, J = 9.15, 1.04 Hz, 1H, H2), 8.45 (s, 1H, H15), 8.37 
(d, J = 7.79 Hz, 1H, H8), 8.34 (d, J = 8.64 Hz, 1H, H17), 8.20 (d, J = 7.6 Hz, 1H, H5), 8.14 (d, J 
= 8.66 Hz, 1H, H18), 7.95 (d, J = 8.33 Hz, 1H, H22), 7.83 (d, J = 7.45 Hz, 1H, H19), 7.79-7.73 
(m, 1H, H6), 7.70-7.62 (m, 2H, H7, H21), 7.49-7.43 (m, 2H, H4, H20), 7.29 (dd, J = 9.13, 6.84 
Hz, 1H, H3).

13C-NMR (150.9 MHz, THF-d8): 183.2 (C10), 179.0 (C9), 161.3 (C1), 157.1 (C16), 148.7 (C23), 
143.8 (C15), 137.0 (C11), 135.2 (C14), 134.7 (C18), 133.2 (C12), 132.9 (C6), 131.9 (C3), 131.1 
(C7), 129.0 (C22), 128.7 (C21), 127.8 (C24), 127.4 (C19), 126.6 (C8), 125.8 (C5), 125.3 (C20), 
124.7 (C2), 118.2 (C17), 116.3 (C4), 112.4 (C13).

IR (ATR): 2980 (w), 2875 (w), 1654 (m), 1585 (m), 1509 (m), 1433 (m), 1409 (m), 1354 (m), 
1319 (m), 1300 (m), 1254 (s), 1188 (m), 1148 (m), 1092 (m), 1057 (s), 1001 (m), 904 (m), 801 
(m), 733 (m), 598 (w), 559 (w) cm-1.

ESI-MS: calcd (m/z) for [C24H14N3O2Li(THF)2+Na]+: 550.22941; found: 550.62946 [M + Na]+.
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Lithium (E)-1-(2-benzylidenehydrazineyl)anthracene-9,10-dione (2c):

1H-NMR (600.13 MHz, THF-d8): δ ppm 8.50 (d, J = 9.1 Hz, H2), 8.36 (d, J = 7.6 Hz, 1H, H8), 
8.27 (s, 1H, H15), 8.18 (d, J = 7.6 Hz, 1H, H5), 7.77 (d, J = 7.4 Hz, 2H, H17, H21), 7.72 (t, J = 
7.6 Hz, 1H, H7), 7.62 (t, J = 7.6 Hz, 1H, H6), 7.40-7,30 (m, 3H, H4, H18, H20), 7.26 (t, J = 7.4 
Hz, 1H, H19), 7.17 (t, J = 8.0 Hz, 1H, H3).

13C-NMR (150.9 MHz, THF-d8): δ 183.29 (C10), 177.08 (C9), 161.24 (C1), 143.12 (C15), 
137.87 (C16), 137.41 (C12), 135.18 (C14), 133.10 (C11), 132.74 (C7), 131.22 (C3), 130.56 (C6), 
128.22 (C18, C20), 127.51 (C19), 126.37 (C8), 126.24 (C17, C21), 125.67 (C5), 124.92 (C2), 
115.73 (C4), 111.25 (C13).

IR (ATR): υ 3060 (w), 3024 (w), 2975 (w), 2871 (w), 2361 (w), 2341 (w), 2237 (w), 1653 (w), 
1629 (m), 1580 (m), 1529 (w), 1496 (m), 1457 (w), 1446 (w), 1429 (w), 1411 (w), 1398 (w), 1388 
(w), 1361 (m), 1302 (w), 1261 (m), 1234 (w), 1189 (w), 1150 (w), 1098 (w), 1069 (m), 1051 (m), 
994 (m), 911 (w), 847 (w), 826 (w), 792 (w), 782 (w), 757 (w), 720 (m), 701 (m), 694 (m), 652 
(w), 620 (w), 594 (w), 559 (w), 441 (s), 430 (s), 412 (s) cm-1.

ESI-MS: calcd (m/z) for [C21H13N2O2Li(THF)2+Na]+: 449.49070; found: 499.32474 [M +Na]+.
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Lithium 1-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-(propan-2-ylidene)hydrazin-1-ide 
(2d):

1H-NMR (600.13 MHz, THF-d8): δ ppm 8.25 (d, J = 7.8, 1H, H8), 8.05 (d, J = 7.8, 1H, H5), 
7.59 (dt, J = 7.8, 1.1 Hz, 1H, H7), 7.45 (dt, J = 7.8, 1.1 Hz, 1H, H6), 7.26 (d, J = 9.3 Hz, 1H, H2), 
7.06 (d, J = 6.6 Hz, 1H, H4), 6.84 (dd, J = 9.3, 6.6 Hz, 1H, H3), 2.01 (s, 3H, CH3), 1.81 (s, 3H, 
CH3).

13C-NMR (150.9 MHz, THF-d8): δ 184.6 (C10), 174.2 (C9), 156.2 (C1), 154.3 (C15), 139.4 
(C12), 136.5 (C14), 134.1 (C11), 133.6 (C7), 131.3 (C3), 130.5 (C5), 127.1 (C8), 126.6 (C5), 
124.8 (C2), 115.2 (C4), 110.9 (C13), 25.5 (C16/C17), 17.4 (C17/C16)

IR (ATR): υ 2361 (w), 1647 (m), 1588 (m), 1547 (w), 1499 (m), 1431 (m), 1415 (m), 1396 (m), 
1311 (m), 1273 (m), 1162 (w), 1069 (w), 1047 (w), 1024 (w), 860 (w), 824 (w), 796 (w), 728 (m), 
707 (m), 663 (w), 624 (w), 594 (w), 559 (w), 448 (s), 436 (s), 414 (s) cm-1.

ESI-MS: calcd (m/z) for [C17H13N2O2Li(THF)2]+: 429.46500; found: 429.23141 [M + H]+.
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8. NMR data

 
Figure S10. 1H NMR (600.13 MHz, CDCl3) spectrum of 1b.

Figure S11. Expanded 1H NMR (600.13 MHz, CDCl3) spectrum of 1b.
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Figure S12. 13C NMR (125.77 MHz, CDCl3) spectrum of 1b.

Figure S13. Expanded 13C NMR (125.77 MHz, CDCl3) and DEPT-135 spectrum of 1b.
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Figure S14. COSY spectrum of 1b.

Figure S15. Expanded COSY spectrum of 1b.
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Figure S16. HSQC spectrum of 1b.

Figure S17. Expanded HSQC spectrum of 1b.
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Figure S18. HMBC spectrum of 1b.

Figure S19. Expanded HMBC spectrum of 1b.
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Figure S20. 1H NMR (500.13 MHz, CDCl3) spectrum of 1c.

Figure S21. Expanded 1H NMR (500.13 MHz, CDCl3) spectrum of 1c.
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Figure S22. 13C NMR (125.77 MHz, CDCl3) spectrum of 1c.

Figure S23. Expanded 13C NMR (125.77 MHz, CDCl3) and DEPT-135 spectrum of 1c.
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Figure S24. COSY spectrum of 1c.

 
Figure S25. Expanded COSY spectrum of 1c.
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Figure S26. HSQC spectrum of 1c.

Figure S27. Exspanded HSQC spectrum of 1c.

O

O HN
N

O

O HN
N



S34

Figure S28. HMBC spectrum of 1c.

Figure S29. Expanded HMBC spectrum of 1c.
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Figure S30. 1H NMR (500.13 MHz, CDCl3) spectrum of 1d.

Figure S31. Expanded 1H NMR (500.13 MHz, CDCl3) spectrum of 1d.
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Figure S32. 13C NMR (125.77 MHz, CDCl3) spectrum of 1d.

Figure S33. Expanded 13C NMR (125.77 MHz, CDCl3) and DEPT-135 spectrum of 1d.
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Figure S34. COSY spectrum of 1d.

Figure S35. Expanded COSY spectrum of 1d.
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Figure S36. HSQC spectrum of 1d.

Figure S37. HMBC spectrum of 1d.
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Figure S38. Expanded HMBC spectrum of 1d.

Figure S39. 1H,15N gHMBC spectrum of 1d.
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Figure S40. 1H NMR (500.13 MHz, THF-d8) spectrum of 2b (in-situ) and 2b (isolated).

Figure S41. Expanded 1H NMR (500.13 MHz, THF-d8) spectrum of 2b (in-situ) and 2b 
(isolated).
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Figure S42. 13C NMR (125.77 MHz, THF-d8) spectrum of 2b.

Figure S43. Expanded 13C NMR (125.77 MHz, THF-d8) and DEPT-135 spectrum of 2b.
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Figure S44. COSY spectrum of 2b.

Figure S45. Expanded COSY spectrum of 2b.
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Figure S46. HMQC spectrum of 2b.

Figure S47. Expanded HMQC spectrum of 2b.
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Figure S48. HMBC spectrum of 2b.

Figure S49. Expanded HMBC spectrum of 2b.
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Figure S50. 1H,15N gHMBC spectrum of 1b and 2b.

Figure S51. 1H NMR (500.13 MHz, THF-d8) spectrum of 2c (in-situ) and 2c (isolated).
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Figure S52. Expanded 1H NMR (500.13 MHz, THF-d8) spectrum of 2c (in-situ) and 2c 
(isolated).

Figure S53. 13C NMR (125.77 MHz, THF-d8) spectrum of 2c.
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Figure S54. Expanded 13C NMR (125.77 MHz, THF-d8) and DEPT-135 spectrum of 2c.

Figure S55. COSY spectrum of 2c.
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Figure S56. HMQC spectrum of 2c.

Figure S57. Expanded HMQC spectrum of 2c.
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Figure S58. HMBC spectrum of 2c.

Figure S59. Expanded HMBC spectrum of 2c.
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Figure S60. 1H,15N gHMBC spectrum of 1c and 2c.

Figure S61. 1H NMR (500.13 MHz, THF-d8) spectrum of 2d (in-situ) and 2d (isolated).
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Figure S62.Expanded 1H NMR (500.13 MHz, THF-d8) spectrum of 2d (in-situ) and 2d 
(isolated).

Figure S63. 13C NMR (125.77 MHz, THF-d8) spectrum of 2d.
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Figure S64. Expanded 13C NMR (125.77 MHz, THF-d8) and DEPT-135 spectrum of 2d.

Figure S65. COSY spectrum of 2d.
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Figure S66. Expanded COSY spectrum of 2d.

Figure S67. HMQC spectrum of 2d.
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Figure S68. Expanded HMQC spectrum of 2d.

Figure S69. HMBC spectrum of 2d.
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Figure S70. 1H,15N gHMBC spectrum of 1d and 2d.
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9. IR Spectra
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Figure S71. IR (ATR) spectrum of 1b.
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Figure S72. IR (ATR) spectrum of 1c.
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Figure S73. IR (ATR) spectrum of 1d.
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  Figure S74. IR (THF solution) spectrum of 2b.
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  Figure S75. IR (THF solution) spectrum of 2c.
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  Figure S76. IR (THF solution) spectrum of 2d.
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Figure S77. IR spectra comparation between ligand 1b and Lithium complex 2b.

Figure S78. IR spectra comparation between ligand 1c and Lithium complex 2c.

Figure S79. IR spectra comparation between ligand 1d and Lithium complex 2d.
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10. ESI-MS data

Figure S80. ESI-MS spectrum obtained for compound 1b.

Figure S81. ESI-MS spectrum obtained for compound 1c.

O

O HN
N

N

O

O HN
N



S61

Figure S82. Expanded ESI-MS spectrum obtained for compound 1c.

 
Figure S83. ESI-MS spectrum obtained for compound 1d.
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Figure S84. ESI-MS spectrum obtained for compound 2b. Due to the presence of humidity during 
the introduction of the sample into the ionizer, the spectrum presents lower abundance of the 
parent peak compared to the adducts.
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Figure S85. Expanded ESI-MS spectrum obtained for compound 2b and theoretical (M+Na)+ 
adduct.
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Figure S86. ESI-MS spectrum obtained for compound 2c. Due to the presence of humidity during 
the introduction of the sample into the ionizer, the spectrum presents lower abundance of the 
parent peak compared to the adducts.
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Figure S87..Expanded ESI-MS spectrum obtained for compound 2c and theoretical (M+Na)+ 
adduct.
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Figure S88. ESI-MS spectrum obtained for compound 2d. Due to the presence of humidity during 
the introduction of the sample into the ionizer, the spectrum presents lower abundance of the 
parent peak compared to the adducts.
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Figure S89..Expanded ESI-MS spectrum obtained for compound 2d and theoretical (M+H)+ 
adduct.
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11. Results of polymerization reactions

Table S6. 1H and 13C NMR intensities (%) of tetrad fractions calculated via signal deconvolution 
of the methine signal ([M]/[Cat] ratio of 50:1 in DCM).

rmr (sis) rmm (sii) mmr (iis) mmm (iii)
rrr (sss)
rrm (ssi)
mrr (iss)

mrm (isi) Pm

Tacticity[a] ht sb it sb it it ht

δH (ppm) 5.23 5.22 5.18 5.17 5.16

L-/LiHMDS - - - 100 - 0.0

L-/2a - - - 100 - 0.0

L-/2b - - - 100 - 0.0

L-/2c - - - 100 - 0.0

L-/2d - - - 100 - 0.0

rac-/LiHMDS 17.0 13.1 11.8 27.3 30.8 0.27

rac-/2a 12.2 16.1 12.2 29.7 29.9 0.30

rac-/2b 15.4 14.3 10.2 27.0 33.2 0.27

rac-/2c 13.1 15.0 10.7 29.2 32.1 0.29

rac-/2d 13.0 15.4 10.2 28.3 33.1 0.28

mrr (iss) rrr (sss) mrm (isi) rrm (ssi) mmm (iii)
rmm (sii)
mmr (iis)
rmr (sis)

δC (ppm) 69.4 69.3 69.2 69.1 69.0

L-/LiHMDS

L-/2a

L-/2b - - - - 100

L-/2c - - - - 100

L-/2d - - - - 100

rac-/LiHMDS 6.5 1.8 23.2 3.4 65.1

rac-/2a 6.7 1.9 20.8 3.9 66.7

rac-/2b 7.2 9.3 22.9 4.5 63.0

rac-/2c 7.9 1.8 20.0 4.5 65.8

rac-/2d 7.9 1.8 20.5 4.7 65.1

[a] ht = heterotactic; sb it = stereoblock isotactic; it = isotactic.
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Figure S90. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic L-PLA obtained with 2b at 50:1 
[LA]0/[Cat] ratio in DCM at room temperature.

Figure S91. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic L-PLA obtained 
with 2b at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.
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Figure S92. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA obtained with 2b at 50:1 
[LA]0/[Cat] ratio in DCM at room temperature.

Figure S93. Homodecoupling1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA 
obtained with 2b at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.
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Figure S94. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic rac-PLA obtained 
with 2b at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.

Figure S95. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic L-PLA obtained with 2c at 50:1 
[LA]0/[Cat] ratio in DCM at room temperature.
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Figure S96. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic L-PLA obtained 
with 2c at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.

Figure S97. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA obtained with 2c at 50:1 
[LA]0/[Cat] ratio in DCM at room temperature.
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Figure S98. Homodecoupling 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA 
obtained with 2c at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.

Figure S99. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic rac-PLA obtained 
with 2c at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.
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Figure S100. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic L-PLA obtained with 2d at 50:1 
[LA]0/[Cat] ratio in DCM at room temperature.

Figure S101. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic L-PLA obtained 
with 2d at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.
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Figure S102. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA obtained with 2d at 
50:1 [LA]0/[Cat] ratio in DCM at room temperature.

Figure S103. Homodecoupling 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic rac-PLA 
obtained with 2d at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.
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Figure S104. Inverse-gated 13C{1H} spectrum (125.76 MHz, CDCl3) of cyclic rac-PLA obtained 
with 2d at 50:1 [LA]0/[Cat] ratio in DCM at room temperature.

Figure S105. 1H NMR spectrum (500.13 MHz, CDCl3) of ɛ-Caprolactone.
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Figure S106. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2a at 50:1 
[CL]0/[Cat] ratio in DCM at room temperature.

Figure S107. 13C NMR (125.76 MHz, CDCl3) of cyclic PCL obtained with 2a at 50:1 [CL]0/[Cat] 
ratio in DCM at room temperature.
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Figure S108. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2a at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.

Figure S109. 13C spectrum (125.76 MHz, CDCl3) of cyclic PCL obtained with 2a at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.



S79

Figure S110. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2b at 50:1 
[CL]0/[Cat] ratio in DCM at room temperature.

Figure S111. 13C NMR (125.76 MHz, CDCl3) of cyclic PCL obtained with 2b at 50:1 [CL]0/[Cat] 
ratio in DCM at room temperature.
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Figure S112. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2b at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.

Figure S113. 13C spectrum (125.76 MHz, CDCl3) of cyclic PCL obtained with 2b at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.
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Figure S114. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2c at 50:1 
[CL]0/[Cat] ratio in DCM at room temperature.

Figure S115. 13C spectrum (125.76 MHz, CDCl3) of cyclic PCL obtained with 2c at 50:1 
[CL]0/[Cat] ratio in DCM at room temperature.
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Figure S116. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2c at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.

Figure S117. 13C spectrum (125.76 MHz, CDCl3) of cyclic PCL obtained with 2c at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.
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Figure S118. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2d at 50:1 
[CL]0/[Cat] ratio in DCM at room temperature.

Figure S119.13C NMR (125.76 MHz, CDCl3) of cyclic PCL obtained with 2d at 50:1 [CL]0/[Cat] 
ratio in DCM at room temperature.
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Figure S120. 1H NMR spectrum (500.13 MHz, CDCl3) of cyclic PCL obtained with 2d at 50:1 
[CL]0/[Cat] ratio in THF at room temperature.

Figure S121. 13C NMR (125.76 MHz, CDCl3) of cyclic PCL obtained with 2d at 50:1 [CL]0/[Cat] 
ratio in THF at room temperature.
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12. MALDI-TOF.
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Figure S122. MALDI-TOF spectra of cyclic L-PLA obtained using 2b as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S123. MALDI-TOF spectra of cyclic L-PLA obtained using 2c as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S124. MALDI-TOF spectra of cyclic L-PLA obtained using 2d as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S125. MALDI-TOF spectra of cyclic PCL obtained using 2a as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S126. MALDI-TOF spectra of cyclic PCL obtained using 2b as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S127. MALDI-TOF spectra of cyclic PCL obtained using 2c as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.
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Figure S128. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio.

O

O

O

O O

O

n-2



S92

 
Figure S129.MALDI-TOF spectra of cyclic PCL obtained using 2a as catalyst in THF at a 50:1 [LA]0/[Cat] ratio.
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Figure S130. MALDI-TOF spectra of cyclic PCL obtained using 2b as catalyst in THF at a 50:1 [LA]0/[Cat] ratio.
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Figure S131. MALDI-TOF spectra of cyclic PCL obtained using 2c as catalyst in THF at a 50:1 [LA]0/[Cat] ratio.
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Figure S132. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in THF at a 50:1 [LA]0/[Cat] ratio.
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Figure S133. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in DCM at a 75:1 [LA]0/[Cat] ratio.
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Figure S134. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in DCM at a 100:1 [LA]0/[Cat] ratio.

O

O

O

O O

O

n-2



S98

2222.259

2336.322

2108.198

2564.498

1994.140

2678.564

1880.087

2792.631

2906.699

1766.029

3020.768

1651.968

1537.912

3134.835

1309.775

3248.902

3362.968

3477.038

3591.099

3705.163

3819.235

3933.303

4047.374

4275.469
4504.545

4732.641

0.0

0.2

0.4

0.6

0.8

1.0

5x10

In
te

ns
. [

a.
u.

]

1000 1500 2000 2500 3000 3500 4000 4500
m/z

Figure S135. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in DCM at a 150:1 [LA]0/[Cat] ratio.
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Figure S136. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in DCM at a 300:1 [LA]0/[Cat] ratio.
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Figure S137. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in THF at a 100:1 [LA]0/[Cat] ratio.
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Figure S138. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in THF at a 150:1 [LA]0/[Cat] ratio.
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Figure S139. MALDI-TOF spectra of cyclic PCL obtained using 2d as catalyst in THF at a 300:1 [LA]0/[Cat] ratio.
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Figure S140. MALDI-TOF spectra of cyclic PLA samples at increasing conversions during 
polymerization using 2d as catalyst in DCM at a 50:1 [LA]0/[Cat] ratio. Blue area indicates linear 
population.
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Figure S141. MALDI-TOF spectra of cyclic PCL samples at increasing conversions during 
polymerization using 2d as catalyst in THF at a 50:1 [LA]0/[Cat] ratio. Blue area indicates linear 
population.
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13. Turnover Frequency (TOF) in DCM
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Figure S142. TOF obtained with different complexes (2a-2d) at conversions of 30 and 90% using 
L-LA in DCM.

14.  Molecular weight vs [M]0/[2d] ratio

Figure S143. Polymerization of ε-CL catalyzed by 2d in THF at 25 ºC. The relationship between 
Mw of the polymer and the initial monomer-to-catalyst ratio is shown. Black squares circles 
correspond to weight-average molecular weight whereas orange circles correspond to isolated 
yield.
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