Supplementary Information for

Synthesis and electrochromic property of polyamines containing 4,4'diaminotriphenylamine-*N*,*N*'-diyl unit in the polymer backbone: Ru-catalyzed N–H insertion polycondensation of 1,4-phenylenebis(diazoacetate) with 4,4'diaminotriphenylamine derivatives

Yun-Chi Wang, Yu-Jen Shao, Guey-Sheng Liou,* Sota Nagao, Yusuke Makino, Eita Akiyama, Masaaki Kato, Hiroaki Shimomoto,* and Eiji Ihara*

Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan orcid.org/0000-0003-3725-3768; Phone: +886-2-33665070; Email: gsliou@ntu.edu.tw (G.-S. L.)

Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan orcid.org/ 0000-0002-9515-8681; Phone & Fax: +81-89-927-9949; e-mail: shimomoto.hiroaki.mx@ehimeu.ac.jp (H. S.)

orcid.org/0000-0002-0279-5105; Phone & Fax: +81-89-927-8547; e-mail: ihara@ehime-u.ac.jp (E. I.)

Experimental section

Materials.

Monomers 1, 12a, 2 and $2b^3$ were prepared according to the literatures. Dichloro(*p*-cymene)ruthenium(II) dimer ([RuCl₂(*p*-cymene)]₂; Sigma-Aldrich), CaH₂ (Nacalai Tesque, >99.0%), MgSO₄ (FUJIFILM Wako Pure Chemical, >98.0%) were used as received. 1,2-dichloroethane (FUJIFILM Wako Pure Chemical, Guaranteed Reagent) were dried over CaH₂ and used without further purification.

Polymer Synthesis.

P3-CN (polymerization of **1** with **2b**). Under a N₂ atmosphere, a 1,2-dichloroethane solution (0.85 mL) of **1** (60.5 mg, 0.200 mmol) and **2b** (60.1 mg, 0.200 mmol) were placed in a Schlenk tube. At room temperature, a 1,2-dichloroethane solution (0.4 mL) of $[RuCl_2(p-cymene)]_2$ [3.1 mg, 0.0050 mmol (0.010 mmol of Ru)] was added to the solution, and the mixture was stirred at 30 °C for 12 h. Then, CHCl₃ (15 mL) was added, and the resulting mixture was transferred to a separatory funnel, where the organic layer was washed with water (15 mL) and brine (15 mL). The organic layer was dried over MgSO₄, and the volatiles were removed under reduced pressure. The residual crude product was subjected to purification with preparative recycling SEC using CHCl₃ as an eluent to afford **P3-CN** (49 mg, 43%).

¹H NMR (500 MHz, CDCl₃, *δ*): 7.47 [s, 4*n*H, Ar-*H* (derived from 1)], 7.2 [br, 2*n*H, Ar-*H* (derived from 2b)], 6.9 [br, 4*n*H, Ar-*H* (derived from 2b)], 6.7 [br, 2*n*H, Ar-*H* (derived from 2b)], 6.5 [br, 4*n*H, Ar-*H* (derived from 2b)], 5.00 (s, 2*n*H, C*H*), 4.9 (br, 2*n*H, N*H*), 4.0–4.3 (m, 4*n*H, OC*H*₂), 1.2 (m, 6*n*H, C*H*₃).

¹³C NMR (126 MHz, CDCl₃, *δ*): 171.5 (*C*=O), 152.5 [Ar, quaternary (q.)], 144.0 (Ar, q.), 137.8 (Ar, q.), 136.3 (Ar, q.), 133.0 [Ar (*C*-H)], 128.0 [Ar (*C*-H)], 127.7 [Ar (*C*-H)], 120.4 (*C*N), 116.3 [Ar (*C*-H)], 114.3 [Ar (*C*-H)], 99.6 (Ar, q.), 62.0 (OCH₂), 60.8 (CH-NH), 14.1 (CH₃).

Anal. Calcd for [C₃₃H₃₀N₄O₄ · H₂O]_n: C, 70.20; H, 5.71; N, 9.92. Found: C, 70.56; H, 6.30; N, 8.92.

P3-OMe was prepared in a similar manner by the polymerization of 1 with 2a.

¹H NMR (500 MHz, CDCl₃, δ): 7.45 [s, 4*n*H, Ar-*H* (derived from 1)], 6.9–6.7 [m, 2*n*H × 2 + 4*n*H, Ar-*H* (derived from 2a)], 6.4 [br, 4*n*H, Ar-*H* (derived from 2a)], 5.0 (br, 2*n*H, C*H*), 4.2–4.1 (m, 4*n*H, OCH₂), 3.71 (s, 3*n*H, OCH₃), 1.2–1.1 (m, 6*n*H, CH₃).

¹³C NMR (126 MHz, CDCl₃, δ): 171.1 (*C*=O), 150–110 (Ar), 61.8 (OCH₂), 60.9 (*C*H-NH), 55.5 (OCH₃), 14.1 (CH₃). Because of the very broad appearance and overlapping, the signals for aromatic carbons of **P3-OMe** cannot be precisely assigned.

Anal. Calcd for [C₃₃H₃₃N₃O₅]_n: C, 71.85; H, 6.03; N, 7.62. Found: C, 71.05; H, 6.14; N, 7.30.

Fabrication of the Electrochromic Films and Devices

For polymer films in the electrochemical measurements, 10 mg polymer samples were first dissolved into 5 mL DMAc. After the samples dissolved, the polymer solution was filtered through 0.22 μ m PTFE filters and dropped onto the indium-tin-oxide (ITO)-coated glasses (6 mm × 30 mm). The specimen was dried under vacuum at room temperature until most of the solvent was removed and then heated at 80 °C for 4 hours and 160 °C for 8 hours.

As for devices, the polyamine was drop-coated onto ITO-coated glass substrates (25 mm \times 30 mm). Then, confined the gap to 120 µm between two pieces of ITO-coated glass substrates by using a full-auto dispenser to coat thermoset adhesive with a 20 \times 20 mm² active area under 120 °C for 6 hours and retained a tiny hole to inject gel solution into the device using vacuum encapsulating method. After injection of gel electrolytes, sealed the tiny hole with UV-curing adhesive, and the device would cure under 75 °C for 2 hours. The polymer gel was made of 7.6 mg of poly(MMA-HEMA), 1.65 mg (0.1 M) of tetrabutylammonium tetrafluoroborate (TBABF₄), 0.40 mg (0.015 M) of HV, 0.63 mg of aliphatic polyisocyanate (Desmodur® N3200), 0.01 mg of catalyst dibutyltin diacetate, and 0.048 mL of propylene carbonate (PC).

Measurements.

The polymers' molar mass distributions were measured via SEC in THF at 40 °C on polystyrene gel columns (Waters Styragel HR4 and HR2 with molar-mass exclusion limit = 600 kDa and 20 kDa for polystyrene, respectively; column size = 300 mm × 7.8 mm i.d.; average particle size = 5 μ m, flow rate = 1.0 mL/min) connected to a pump (JASCO, PU-4180), a column oven (JASCO, CO-2065 Plus), an ultraviolet detector (JASCO, UV-4075), and a refractive index detector (JASCO, RI-2031 Plus). The number-average molar mass (M_n) and dispersity [D; weight-average molar mass/number-average molar mass (M_w/M_n)] were calculated from the chromatographs based on six poly(methyl methacrylate) (PMMA) standards (Shodex M-75; $M_p = 2400-212000$, D < 1.1) and dibutyl sebacate (molar mass = 314.5). Purification by preparative recycling SEC was performed on a JAI LC-918R equipped with a combination of JAIGEL-3H and JAIGEL-2H (Japan Analytical Industry; molar mass exclusion limit = 70 kDa and 5 kDa for polystyrene, respectively; column size = 600 mm × 20 mm i.d.) using chloroform as eluent at a flow rate of 3.8 mL/min at room temperature.

¹H (500 MHz) and ¹³C (126 MHz) NMR spectra were recorded on a Bruker Avance III HD 500 spectrometer in CDCl₃ at room temperature or at 50 °C.

FT-IR spectra were recorded on Perkin-Elmer Spectrum Two system using KBr pellets.

Elemental analyses were performed on a YANAKO CHN Corder MT-5.

The glass transition temperature (T_g) of polymers was determined by differential scanning calorimetry (DSC; Seiko Instruments Inc., EXSTAR DSC6000) in the range from -100 °C to 200 °C for product polymers. The heating and cooling rates were 10 °C/min. The T_g of the polymers was defined as the temperature of the midpoint of a heat capacity change on the second heating scan. Thermogravimetric analysis was performed with Exstar TG/DTA6200 (Seiko Instruments). The experiments were carried out with about 5 mg of a sample under a nitrogen atmosphere at a heating rate of 10 °C/min.

Electrochemical properties, including cyclic voltammetry (CV) and differential pulse voltammograms (DPV), were conducted through CH Instruments 6122E Electrochemical Analyzer under a three-electrode system consisting of polymer film coated on a 6 mm by 30 mm ITO glass as a working electrode, a platinum counter electrode, and an Ag/AgCl reference electrode in 3 mL PC with 0.1 M TBABF₄ as supporting electrolyte. An Ailgent UV-vis spectrophotometer recorded the spectroelectrochemical spectra.

Supplementary Figures

Figure S1. ¹H NMR spectra of **P3-OMe** ($M_n = 7700, D = 1.44$), **2a**, and **1**.

Figure S2. ¹³C NMR spectra of P3-OMe ($M_n = 4000, D = 2.10$).

Figure S3. SEC charts of (a) P3-OMe ($M_n = 7700, D = 1.44$) and (b) P3-CN ($M_n = 8700, D = 1.40$).

Figure S4. ¹H NMR spectra of P3-OMe (upper; $M_n = 14000$, D = 1.42) and P3-CN (lower; $M_n = 7700$, D = 1.44) with the intensities of signals.

Figure S5. FT-IR spectra of P3-OMe ($M_n = 7700, D = 1.44$), 2a, and 1.

Figure S6. FT-IR spectra of P3-CN ($M_n = 14000, D = 1.42$), 2b, and 1.

Figure S7. Thermogravimetric analysis results of (a) P3-OMe ($M_n = 7100, D = 1.64$) and (b) P3-CN ($M_n = 9800, D = 1.40$).

Figure S8. DSC thermograms of P3-OMe ($M_n = 7100, D = 1.64$) and P3-CN ($M_n = 9800, D = 1.40$).

Figure S9. Photographs of (a) P3-OMe (thickness: $500 \pm 10 \text{ nm}$) and (b) P3-CN (thickness: $500 \pm 40 \text{ nm}$)inTBABF₄/PCattheneutralstateandthreeoxidationstates.

References

- 1. H. Shimomoto, H. Mukai, H. Bekku, T. Itoh and E. Ihara, *Macromolecules*, 2017, 50, 9233–9238.
- 2. C.-W. Chang, G.-S. Liou and S.-H. Hsiao, J. Mater. Chem., 2007. 17, 1007-1015.
- 3. H.-J. Yen, C.-J. Chen and G.-S. Liou, Chem. Comm., 2013. 49, 630-632.