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1. General materials

Materials: Phenyl ether (Ph2O), ethanol, Dichloromethane, Petroleum ether. We main p

urchased from Energy Chemical (Shanghai, China). All these materials are analytical grade 

and used as received.

Characterizations and instruments: 1H, 13C NMR spectra, 2D 1H-1H correlation 

spectroscopy (COSY)， nuclear over hauser effect spectroscopy (NOESY) and 

heteronuclear singular quantum correlation (HSQC) were measured on a Bruker AVANCE 

Ⅲ 400MHz, 500MHZ or 600MHZ spectrometer using CDCl3 as solvent and 

tetramethylsilane (TMS, δ = 0) as internal standard. Time-of-flight mass spectrometry 

(MALDI-TOF/TOF) through Guan Technology Service (Guangzhou) Co., Ltd test. 

Absorption spectra were taken on a Thermo-fisher Evolution 220 spectrometer. Emission 

spectra were taken on a Thermo Lumina Fluorescent spectrometer. Powder XRD patterns 

were recorded on a Rigaku Smart Lab X-ray Diffractometer. Gel permeation 

chromatography(GPC) were taken on a Agilent 1260 Infinity Ⅱ separate. The electrochemical 

workstation is complete with cyclic voltammetry using a Chenhua 760e. The absolute 

fluorescence quantum yield (QY) was measured using C11347 instrument via integrating 

sphere. Elementary analysis results were collected on elementar vario EL cube.
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2. Synthesis detailes

Scheme S1. Synthetic routes toward the dendritic AIEgens DTPEs.

The corresponding precursor TTPE (1,1′,1′′,1′′′-(1,2-Ethenediylidene)tetrakis[4-ethynylbenzene]) 

was synthesized according to the previously literature.[1] The another three precursors (CPs)  

2,3,4,5-Tetraphenyl-2,4-cyclopentadien-1-one,  ,3,4,5-Tetrakis[4-(1,1-dimethylethyl)phenyl]-2,4-

cyclopenta-dien-1-one, and 2,3,4,5-tetrakis(4-methoxyphenyl)cyclopenta-2,4-dien-1-one were 

prepared according to the previously literature.[2]

DTPE-H

To a flask containing compound TTPE (1.0 eq, 0.10 g, 0.23 mmol), and 2,3,4,5-Tetraphenyl-2,4-

cyclopentadien-1-one (6.0 eq, 0.54 g, 1.40 mmol) was added Phenyl ether (10 ml). The resulting 

solution was stirred for half a day at 220℃. The resulting solution was slowly dripped into the 

EtOH (50 mL) to precipitation, and the crude product was further purified by silica-gel 

chromatography using CH2Cl2/n-Hexane mixture (1:1, v/v) as eluent. The titled compound 

DTPE-H was obtained as a gray solid (0.32 g, 73.8% yield). HRMS (MALDI-TOF, DCTB as 

matrix) m/z: [M]+ calcd. for C146H100: 1854.4060. Found: 1853.710. 1H NMR (400 MHz, 
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Chloroform-d) δ 7.54 (s, 1H), 7.15 (p, J = 2.1 Hz, 4H), 6.92 (dd, J = 3.0, 1.6 Hz, 2H), 6.88 – 6.84 (m, 

8H), 6.84 – 6.73 (m, 7H), 6.66 (d, J = 8.3 Hz, 2H). 13C NMR (151 MHz, Chloroform-d) δ 141.53 (d, J 

= 13.2 Hz), 140.67, 139.94 (d, J = 17.1 Hz), 139.17 (d, J = 10.1 Hz), 132.96 – 131.35 (m), 130.80 , 

129.96 , 129.10 , 127.56 , 126.82 (d, J = 16.8 Hz), 126.60 , 125.56 (d, J = 4.8 Hz). Elemental analysis: 

calcd (%): C, 94.56, H, 5.44; found (%): C 94.36, H 5.57.

DTPE-tBu

To a flask containing compound TTPE (1.0 eq, 55 mg, 0.125mmol), and 2,3,4,5-Tetrakis[4-(1,1-

dimethylethyl)phenyl]-2,4-cyclopentadien-1-one (6.0 eq, 460 mg, 0.75 mmol) was added Phenyl 

ether (10 ml). The resulting solution was stirred for half a day at 220℃. The resulting solution was 

slowly dripped into the EtOH (50 mL) to precipitation, and the crude product was further purified 

by silica-gel chromatography using CH2Cl2/n-Hexane mixture (1:1, v/v) as eluent. The titled 

compound DTPE-t-Bu was obtained as a yellow solid (0.2 g, 58.1% yield). HRMS (MALDI-TOF, 

DCTB as matrix) m/z: [M]+ calcd. for C210H228: 2752.1340. Found: 2751.760. 1H NMR (400 MHz, 

Chloroform-d) δ 7.52 – 7.49 (m, 4H), 7.16 – 7.12 (m, 8H), 7.10 – 7.05 (m, 8H), 6.91 – 6.78 (m, 20H), 

6.74 – 6.69 (m, 4H), 6.67 – 6.59 (m, 16H), 1.17 – 1.07 (m, 48H).  13C NMR (151 MHz, Chloroform-d) 

δ 148.61 , 147.96 , 147.49 , 141.91 , 141.41 , 140.48 , 140.25 , 139.29 , 139.24 , 139.01 , 137.63 , 

137.31 , 137.08 , 131.16 , 131.04 , 130.62 , 130.39 , 129.61 , 129.05 , 124.19 , 123.37 , 123.25 , 123.00 , 

34.31 , 34.13 , 34.08 , 34.05 , 31.31 , 31.23 , 31.21.

DTPE-OMe

To a flask containing compound TTPE (1.0 eq, 0.20 g, 0.46 mmol), and 2,3,4,5-tetrakis(4-

methoxyphenyl)cyclopenta-2,4-dien-1-one (6.0 eq, 1.40 g, 2.77 mmol) was added Phenyl ether 

(10 ml). The resulting solution was stirred for half a day at 220℃. The resulting solution was 

slowly dripped into the EtOH (50 mL) to precipitation, and the crude product was further purified 

by silica-gel chromatography using CH2Cl2/n-Hexane mixture (1:1, v/v) as eluent. The titled 

compound DTPE-OMe was obtained as a yellow brown solid (0.41 g, 29.6% yield). HRMS 

(MALDI-TOF, DCTB as matrix) m/z: [M]+ calcd. for C162H132O16: 2334.8220. Found: 2333.736. 

1H NMR (500 MHz, Chloroform-d) δ 7.46 (s, 4H), 7.10 – 7.01 (m,8H), 6.86 – 6.78 (m, 8H), 6.74 – 

6.67 (m, 24H), 6.66 – 6.59 (m,16H), 6.53 – 6.48 (m, 24H), 6.46 – 6.36 (m, 48H), 3.75 (s, 12H), 3.68 (s, 
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12H), 3.64 (s, 12H), 3.50 (s, 12H). 13C NMR (151 MHz, Chloroform-d) δ 157.89 , 157.20 , 156.93 , 

141.51 , 140.81 , 140.15 , 138.94 , 138.83 , 134.46 , 133.09 , 132.74 , 132.71 , 132.53 , 132.49 , 132.40 , 

131.01 , 130.82 , 129.00 , 113.05 , 112.53 , 112.24 , 112.17 , 55.14 , 54.97 , 54.93 , 54.69 . Elemental 

analysis: calcd (%): C, 83.34, H, 5.70; found (%): C 83.57, H 6.07.

Figure S1. MALDI-TOF mass spectrometry of dendritic AIEgens DTPEs. Inset: the experimental 

and simulated isotropy distributions.
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Figure S2. Partial 2D 1H-1H COSY NMR spectrum of DTPE-tBu in CDCl3.

Figure S3. Partial 2D 1H-1H NOESY NMR spectrum of DTPE-tBu in CDCl3.
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Figure S4. Partial 2D 1H-1H COSY NMR spectrum of DTPE-OMe in CDCl3.

Figure S5. Partial 2D 1H-1H NOESY NMR spectrum of DTPE-OMe in CDCl3.
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3. Figures and charts

Figure S6 Optimized geometry for TTPE and dendritic AIEgens DTPEs respectively, based on 

B3LYP/6-31G level via DFT calculation.

Figure S7. Molecular energy level of for TTPE and dendritic AIEgens DTPEs respectively, 

based on B3LYP/6-31G level via DFT calculation.
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Figure S8. Cyclic voltametry spectra of ferrocene and dendritic AIEgens DTPEs in DCM 

measured with [n-Bu4N][PF6] (0.1 M) as a supporting electrolyte.
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Figure S9. (a) Photoluminescence spectra of dendritic AIEgen DTPE-H in THF and THF/water 

mixtures with different water fraction (fw). (b) Plots of the maximum emission intensities of 

DTPE-H in THF and THF/water mixtures versus fw. (c) UV-Vis absorption spectra of dendritic 

AIEgen DTPE-H in THF and THF/water mixtures with different water fraction (fw). Inset: Images 

of DTPE-H under UV lamp in THF and THF/water mixture with different fw. Concentration = 10 

μM.
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Figure S10. (a) Photoluminescence spectra of dendritic AIEgen DTPE-tBu in THF and 

THF/water mixtures with different water fraction (fw). (b) Plots of the maximum emission 

intensities of DTPE-tBu in THF and THF/water mixtures versus fw. (c) UV-Vis absorption 

spectra of dendritic AIEgen DTPE-tBu in THF and THF/water mixtures with different water 

fraction (fw). Inset: Images of DTPE-tBu under UV lamp in THF and THF/water mixture with 

different fw. Concentration = 10 μM.
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Figure S11. (a) Photoluminescence spectra of dendritic AIEgen DTPE-OMe in THF and 

THF/water mixtures with different water fraction (fw). (b) Plots of the maximum emission 

intensities of DTPE-OMe in THF and THF/water mixtures versus fw. (c) UV-Vis absorption 

spectra of dendritic AIEgen DTPE-OMe in THF and THF/water mixtures with different water 

fraction (fw). Inset: Images of DTPE-OMe under UV lamp in THF and THF/water mixture with 

different fw. Concentration = 10 μM.
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Figure S12. Dynamic light scattering of dendritic AIEgen DTPEs in THF/Water mixture with 

water fraction fw = 90%. 
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Table S1. Photo-physical properties of dendritic AIEgens DTPEs

λem(nm)b HOMO [eV] LUMO [eV]
λab

(nm)
Soln 

[ФF,%]c

Aggr

[ФF,%]c

Powder 

[ФF,%]c

Eg 

[eV]
d

Exp.e Calc.f Exp.e Calc.f

DTPE-H 392
508.6

(12.21%)

479.5

(32.48%)

435

(42.96%)
3.17 -5.02 -5.08 -1.85 -1.40

DTPE-tBu 384
505.2

(14.68%)

475

(36.29%)

486

(44.87%)
3.24 -5.42 -4.97 -2.18 -1.28

DTPE-OMe 388
508.2

(12.58%)

478.1

(27.96%)

491.5

(47.31%)
3.20 -5.46 -4.83 -2.26 -1.16

a λab = absorption maximum in pure THF.
b λem = emission maximum in pure THF solution (soln), THF/water mixture (1:9 by volume) (aggr).
c Fluorescence quantum yield (ФF,%) of THF solution and solid powders given in the parentheses.
d Eg = energy band gap calculated from the onset of the absorption spectrum.
e HOMO = highest occupied molecular orbitals calculated from the onset oxidation potential, LUMO = lowest 

unoccupied molecular orbitals estimated by the equation: LUMO=HOMO + Eg.
f calculated based on B3LYP/6-31G level via DFT calculation
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Figure S13. Emission quantum yield of TTPE and DTPEs in THF, THF-H2O mixture (fw = 90%) 

and solid state.
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Figure S14. PL spectra of DTPE-H in absence and presence of PA (a), p-NP (b), DNT (c), p-NT 

(d), NB (e), Ph (f) in THF-H2O mixture with fw = 90%. (g) Dependency of fluorescence intensity 

(I) of DTPE-H with nitro-compounds concentration. (h) PL response of DTPE-H with different 

nitro-compounds (300 μM) [DTPE-H] = 1 μM. I0 is the maximal PL intensity in absence of nitro-

compounds. Inset: Images of DTPE-H under UV lamp in THF/water mixture (fw = 90%) with 90 

μM nitor-compounds.
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Figure S15. PL spectra of DTPE-tBu in absence and presence of PA (a), p-NP (b), DNT (c), p-

NT (d), NB (e), Ph (f) in THF-H2O mixture with fw = 90%. (g) Dependency of fluorescence 

intensity (I) of DTPE-tBu with nitro-compounds concentration. (h) PL response of DTPE-tBu 

with different nitro-compounds (300 μM) [DTPE-tBu] = 1 μM. I0 is the maximal PL intensity in 

absence of nitro-compounds. Inset: Images of DTPE-tBu under UV lamp in THF/water mixture 

(fw = 90%) with 90 μM nitor-compounds.



S-19

Figure S16. PL spectra of DTPE-OMe in absence and presence of PA (a), p-NP (b), DNT (c), p-

NT (d), NB (e), Ph (f) in THF-H2O mixture with fw = 90%. (g) Dependency of fluorescence 

intensity (I) of DTPE-OME with nitro-compounds concentration. (h) PL response of DTPE-OMe 

with different nitro-compounds (300 μM) [DTPE-OMe] = 1 μM. I0 is the maximal PL intensity in 

absence of nitro-compounds. Inset: Images of DTPE-OMe under UV lamp in THF/water mixture 

(fw = 90%) with 90 μM nitor-compounds.
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Figure 17. Luminescence lifetime decay of dendritic AIEgen DTPE-H suspensions in absence 

and presence of PA.

Figure 18. Luminescence lifetime decay of dendritic AIEgen DTPE-tBu suspensions in absence 

and presence of PAs.
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Figure 19. Luminescence lifetime decay of dendritic AIEgen DTPE-OMe suspensions in absence 

and presence of PA.
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Table 2. Comparative study of the present system with previously reported fluorescent sensors for 

PAs

Structure of probe Solvent λem[nm] KSV/M-1 Ref.

S THF/H2O
(1/19)

456 2.99 × 103 [4]

O

O

OC6H13

OC6H13

THF/H2O
(1:9)

555 8.44 × 103 [5]

N

HN

HN
N

N
THF/H2O

(1:1)
427 7.43×103 [6]

Si

n

Toluene 493 16.4 × 103 [7]

Si

n

Toluene 492 15.6 × 103 [8]

n
THF/H2O

(1:9)
520 4.204× 103 [9]
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S

C8H17 C8H17

x y n

THF/H2O
(1/19)

500 4.456× 103 [10]

THF/H2O
(1/4)

495 1.79× 103 [11]

n

THF/H2O
(1:9)

480 12.2× 103 [12]

DTPE-H
THF/H2O

(1:9)
509 26.1× 103 This 

work

DTPE-OMe
THF/H2O

(1:9)
508 37.4× 103 This 

work

DTPE-tBu
THF/H2O

(1:9)
505 27.7× 103 This 

work
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Figure S20. PL spectra (a) and UV-Vis absorption spectra of DTPE-H after 365 nm UV light 

irradaition in THF-H2O mixture with fw = 90%. Concentration: 10 uM.

Figure S21. PL spectra (a) and UV-Vis absorption spectra of DTPE-OMe after 365 nm UV light 

irradaition in THF-H2O mixture with fw = 90%. Concentration: 10 uM.
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Figure S22. PL spectra (a) and UV-Vis absorption spectra of DTPE-tBu after 365 nm UV light 

irradaition in THF-H2O mixture with fw = 90%. Concentration: 10 uM.

Figure S23. 1H NMR of DTPE-H before and after photo-irradiation in CDCl3 and proposed 

photocyclization reaction of DTPEs.
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Figure S24. PL spectra (a), powder XRD results (b), and fluorescent images (c) of the as-prepared 

DTPE-tBu samples after grinding and subsequent solvent fuming with THF vapours for 60 

minutes.
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4. NMR spectra

Figure S25. 1H NMR spectrum of compound DTPE-H in CDCl3 at 298K.

Figure S26. 13C NMR spectrum of compound DTPE-H in CDCl3 at 298K.



S-28

Figure S27. 1H NMR spectrum of compound DTPE-tBu in CDCl3 at 298K.

Figure S28. 13C NMR spectrum of compound DTPE-tBu in CDCl3 at 298K.
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Figure S29. 1H NMR spectrum of compound DTPE-OMe in CDCl3 at 298K.

Figure S30. 13C NMR spectrum of compound DTPE-OMe in CDCl3 at 298K.
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