Supporting information

## The dumbbell-like polyionic complexes of dendronized poly(ethylene glycol): synthesis and self-assembly studies

S.V. Khatuntsev<sup>1</sup>, A.A. Fanova<sup>3</sup>, P.A. Fetin<sup>1</sup>, L.I. Kaberov<sup>4,5</sup>, N.V. Girbasova<sup>1</sup>, I.M. Zorin<sup>1</sup>, A.A. Lezov<sup>2</sup>, A.Yu. Bilibin<sup>1</sup>

<sup>1</sup>Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation

<sup>2</sup>Department of Molecular Biophysics and Polymer Physics, Physical Faculty, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation

<sup>3</sup>Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague 2, Czech Republic

<sup>4</sup>Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany

<sup>5</sup>Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743, Jena, Germany

p.fetin@spbu.ru

leonid.kaberov@uni-jena.de

i.zorin@spbu.ru

## Contents

| Figure S1. <sup>1</sup> H NMR spectrum of <i>N</i> -acryloyldimethyl asparaginate (DMA) in CDCl <sub>3</sub> 3                             |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S2. <sup>1</sup> H NMR spectrum of poly(ethylene glycol)- <i>bis</i> -tosylate in CDCl <sub>3</sub> 3                               |
| Figure S3. <sup>1</sup> H NMR spectrum of poly(ethelene glycol)-bis-amine in CDCl <sub>3</sub> 4                                           |
| Figure S4. <sup>1</sup> H NMR spectrum of PEG-DMA in CDCl <sub>3</sub> 4                                                                   |
| Figure S5. <sup>1</sup> H NMR spectrum of PEG-Asp-EDA in DMSO-d6                                                                           |
| Figure S6. <sup>1</sup> H NMR spectrum of PEG-Asp in DMSO-d65                                                                              |
| Figure S7. <sup>1</sup> H NMR spectrum of Complex 1 in DMSO-d6                                                                             |
| Figure S8. <sup>1</sup> H NMR spectrum of dimethyl-(4-N-acryloyl)aminobenzoyl aspartate in CDCl <sub>3</sub> 6                             |
| Figure S9. <sup>1</sup> H NMR spectrum of PEG-B-DMA in CDCl <sub>3</sub> 7                                                                 |
| Figure S10. <sup>1</sup> H NMR spectrum of PEG-B-Asp-EDA in CDCl <sub>3</sub> 7                                                            |
| Figure S11. <sup>1</sup> H NMR spectrum of PEG-B-Asp in DMSO-d68                                                                           |
| Figure S12. <sup>1</sup> H NMR spectrum of PEG-Asp-GMDA in CDCl <sub>3</sub>                                                               |
| Figure S13. IR spectrum of amino- component (PEG-Asp-EDA) of Complex 19                                                                    |
| Figure S14. IR spectrum of carboxyl component (PEG-Asp) of Complex 19                                                                      |
| Figure S15. IR spectrum of Complex 1 formed from carboxyl components (PEG-Asp) and amino- component (PEG-Asp-EDA)                          |
| Figure S16. The distribution functions of $R_h$ for PEG-Asp-GMDA and Complex 3 in water10                                                  |
| Figure S17. The thermogram of Complex 1 obtained from chloroform11                                                                         |
| Figure S18. The SWAXS spectra of Complex 1 obtained from water (A) and from methanol (B).<br>For measurement, the sample was fixed on tape |



Figure S1. <sup>1</sup>H NMR spectrum of *N*-acryloyldimethyl asparaginate (DMA) in CDCl<sub>3</sub>.



Figure S2. <sup>1</sup>H NMR spectrum of poly(ethylene glycol)-bis-tosylate in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR spectrum of poly(ethelene glycol)-bis-amine in CDCl<sub>3</sub>.



Figure S4. <sup>1</sup>H NMR spectrum of PEG-DMA in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H NMR spectrum of PEG-Asp-EDA in DMSO-d6.



Figure S6. <sup>1</sup>H NMR spectrum of PEG-Asp in DMSO-d6.



Figure S7. <sup>1</sup>H NMR spectrum of Complex 1 in DMSO-d6.



Figure S8. <sup>1</sup>H NMR spectrum of dimethyl-(4-N-acryloyl)aminobenzoyl aspartate in CDCl<sub>3</sub>.



Figure S9. <sup>1</sup>H NMR spectrum of PEG-B-DMA in CDCl<sub>3</sub>.



Figure S10. <sup>1</sup>H NMR spectrum of PEG-B-Asp-EDA in CDCl<sub>3</sub>.



Figure S11. <sup>1</sup>H NMR spectrum of PEG-B-Asp in DMSO-d6.



Figure S12. <sup>1</sup>H NMR spectrum of PEG-Asp-GMDA in CDCl<sub>3</sub>.



Figure S13. IR spectrum of amino- component (PEG-Asp-EDA) of Complex 1, T,% - transmission,  $\nu$ , cm<sup>-1</sup> - wave number.



Figure S14. IR spectrum of carboxyl component (PEG-Asp) of Complex 1, T,% - transmission,  $\upsilon$ , cm<sup>-1</sup> - wave number.



Figure S15. IR spectrum of Complex 1 formed from carboxyl components (PEG-Asp) and amino- component (PEG-Asp-EDA), T,% - transmission,  $\nu$ , cm<sup>-1</sup> - wave number.



Figure S16. The distribution functions of  $R_{\rm h}$  for PEG-Asp-GMDA and Complex 3 in water.



Figure S17. The thermogram of Complex 1 obtained from chloroform. The insets show POM images of the complex at different temperatures in crossed polarizers.



Figure S18. The SWAXS spectra of Complex 1 obtained from water (A) and from methanol (B). For measurement, the sample was fixed on tape. The SWAXS spectra of tape are represented by black dots, Complex 1 spectrum – red dots.