Supporting Information

Spiropyran-based polymeric micelles in aqueous solution: light-regulated reversible size alterations and catalytic characteristics

Yuting Min,^{#a} Ruizhen Zhang,^{#a} Xuli Dong,^{a,e} Lifang Zhang,^{a,e} Dongming Qi,^{a,c,d} Zan Hua,^{*b} and Tao Chen^{*a,c,d}

^a Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, China

^c Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang, 323000, China

^d Zhejiang Provincial Innovation Center of Advanced Textile Technology, Keqiao, Zhejiang, 312030 China

^e Zhejiang Cady Industry Co., Ltd., Huzhou, 313013, China

**Corresponding Authors:tao.chen@zstu.edu.cn (T. Chen), z.hua@ahau.edu.cn (Z. Hua)* # *These authors contributed equally to this work. Minyu Ting. and Ruizhen Zhang*

Contents

1 Experimental Section
1.1 Preparation of SPA
1.2 Synthesis of P(MMA ₁₄)-NHS5
1.3 Synthesis of P(SPA ₁₀ -b-MMA ₁₄)-NHS6
1.4 Synthesis of P(OEGMA ₅₁ - <i>b</i> -SPA ₁₀ - <i>b</i> -MMA ₁₄)-NHS (1)
1.5 Synthesis of P(OEGMA ₅₆ -b-MMA ₁₄)-NHS7
2 SEC curves
3 DLS and color comparison of diblock copolymers before and after UV9
4 Dye removal rate
5 Synthesis of P(OEGMA ₅₁ - <i>b</i> -SPA ₁₀ - <i>b</i> -MMA ₁₄)-TREN-Boc and P(OEGMA ₅₁ - <i>b</i> -SPA ₁₀ - <i>b</i> -MMA ₁₄)-NHS
6 Synthesis of P(OEGMA ₅₁ -b-SPA ₁₀ -b-MMA ₁₄)-TREN (2)11
7 TEM images of self-assemblies of Catalytic Nanomicelles

1 Experimental Section

1.1 Preparation of SPA

Scheme S1. Synthetic route of SPA

The synthetic details of SPA can be found in Scheme S1. First, 2,3,3-trimethyl-3H-indole (12.6 mmol, 2.0 g) and 2-bromoethanol (15.1 mmol, 1.7 g) were refluxed in acetonitrile (25 mL) for 24 h under nitrogen atmosphere. The mixture was then washed three times with n-hexane (25 mL), and concentrated in vacuo to work up a purple-red solid (2.8 g). Next, KOH (1.17 g) aqueous solution (40 mL) was added, and the mixture was stirred for 30 minutes. The solution was extracted with ether (20 mL × 3). The extracted ether solution was washed with deionized water (30 mL × 3) and concentrated in vacuo to afford compound **1** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (td, J = 7.6, 1.3 Hz, 1H), 7.11 – 7.06 (m, 1H), 6.94 (td, J = 7.4, 0.9 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 3.88 – 3.70 (m, 2H), 3.63 – 3.48 (m, 2H), 1.45 (s, 3H), 1.41 (s, 3H), 1.20 (s, 3H).

Figure S1. ¹H NMR spectrum of compound 1 (400 MHz, CDCl₃)

The resulting compound **1** (7.4 mmol, 71.5 mg) was refluxed with 2-hydroxy-5-nitrobenzaldehyde (11.1 mmol, 1.9 g) in ethanol (15 mL) under nitrogen atmosphere for 5 hours. After cooling the reaction flask to room temperature, the suspension was filtered with suction and washed with ethanol to obtain a purple filter cake, which was vacuum dried overnight to obtain a purple compound **2**. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dt, *J* = 6.1, 2.7 Hz , 2H), 7.19 (td, J = 7.7, 1.2 Hz, 1H), 7.10 (d, *J* = 7.3 Hz, 1H), 6.90 (dd, *J* = 8.6, 5.9 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 5.88 (d, *J* = 10.4 Hz, 1H), 3.84–3.70 (m, 2H), 3.49–3.20 (m, 2H), 1.29 (s, 3H), 1.20 (s, 3H).

Figure S2. ¹H NMR spectrum of compound 2 (400 MHz, CDCl₃)

The obtained compound **2** (1.0 g, 3.3 mmol) and Et₃N (0.5 g, 4.9 mmol) were dissolved in anhydrous CH₂Cl₂. Under an ice bath, acryloyl chloride (0.5 g, 4.9 mmol) in CH₂Cl₂ (10 mL) was slowly added to the reaction flask. The mixture was stirred for 30 min, then refluxed for 4 h. After the reaction, the mixture was concentrated in vacuo to obtain the crude product. The crude product was purified by column chromatography to give SPA as a purple solid. ¹H NMR (400 MHz, CDCl₃) δ 8.17–7.80 (m, 2H), 7.21 (td, *J* = 7.7, 1.0 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 6.90 (dd, *J* = 8.9, 5.3 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 6.37 (dt, *J* = 14.8, 7.4 Hz, 1H), 6.11–5.99 (m, 1H), 5.90–5.79 (m, 2H), 4.31 (t, *J* = 6.3 Hz, 2H), 3.62–3.35 (m, 2H), 1.28 (s, 3H)), 1.16 (s, 3H).

Figure S3. ¹H NMR spectrum of SPA (400 MHz, CDCl₃)

1.2 Synthesis of P(MMA₁₄)-NHS

Figure S4. ¹H NMR spectrum of P(MMA₁₄)-NHS (400 MHz, CDCl₃)

1.3 Synthesis of P(SPA₁₀-b-MMA₁₄)-NHS

Figure S5. ¹H NMR spectrum of P(SPA₁₀-*b*-MMA₁₄)-NHS (400 MHz, CDCl₃)

1.4 Synthesis of P(OEGMA₅₁-*b*-SPA₁₀-*b*-MMA₁₄)-NHS (1)

$$Conv. = \frac{b-b'}{b} = \frac{72.72 - 10.53}{72.72} \approx 85.5\%, DP_{OEGMA} \approx 85.5\% \times 60 \approx 51$$
(Eq. S3)

Figure S6. (a) ¹H NMR spectrum of the mixture before the reaction (400 MHz, CDCl₃) with 10 equiv. of s-trioxane as the internal standard and 60 equiv. of OEGMA added before the reaction. (b) Unpurified ¹H NMR spectrum after the reaction. (400 MHz, CDCl₃)

Figure S7. ¹H NMR spectrum of P(OEGMA₅₁-*b*-SPA₁₀-*b*-MMA₁₄)-NHS (400 MHz, CDCl₃)

1.5 Synthesis of P(OEGMA₅₆-b-MMA₁₄)-NHS

P(MMA₁₄)-NHS (100 mg, 0.057 mmol), OEGMA (498.2 mg, 3.4 mmol), trioxane (51.17 mg, 0.57 mg) and AIBN (1.4 mg, 0.008 mmol) were dissolved in 1 ,4-dioxane (5 mL). and transferred to a 25 mL ampule. The solution was degassed by three freeze-pump-thaw cycles, then the ampule was refilled with nitrogen and sealed. RAFT polymerization was carried out at 70 °C overnight. The reaction was exposed to air and the temperature was lowered to 0 °C to quench the reaction. The diblock copolymer was obtained by precipitation in cold petroleum ether. DP_{OEGMA} = 56.

Figure S8. ¹H NMR spectrum of P(OEGMA₅₆-b-MMA₁₄)-NHS (400 MHz, CDCl₃)

2 SEC curves

The molecular weights were measured by size exclusion chromatography (SEC) using a waters breeze polymer labs SEC system in THF at 30 °C (1.0 mL/min). (Number average molecular weights (M_n) were determined by size exclusion chromatography in THF)

Figure S9. SEC traces of (a) P(MMA₁₄)-NHS; (b) P(SPA₁₀-*b*-MMA₁₄)-NHS; (c) P(OEGMA₅₁-*b*-SPA₁₀-*b*-MMA₁₄)-NHS; (d) P(OEGMA₅₁-*b*-MMA₁₄)-NHS.

3 DLS and color comparison of diblock copolymers before and after UV.

Figure S10. (a) DLS curve of P(OEGMA₅₆-*b*-MMA₁₄)-NHS; (b) before and after adsorption of methyl red (0.03 mg/mL) by micelles from P(OEGMA₅₆ -*b*-MMA₁₄)-NHS under visible light and UV light

4 Dye removal rate.

$$Dye\ removal\ rate = \frac{Absorbance_{Before\ adsorption} - Absorbance_{After\ adsorption}}{Absorbance_{Before\ adsorption}} * 100\%$$
(Eq. S4)

5 Synthesis of P(OEGMA₅₁-*b*-SPA₁₀-*b*-MMA₁₄)-TREN-Boc and P(OEGMA₅₁-*b*-SPA₁₀-*b*-MMA₁₄)-NHS.

Figure S11. Comparison of ¹H NMR spectra before and after introduction of TREN-Boc (400 MHz, CDCl₃)

Figure S12. ¹H NMR spectra before and after the removal of N-Boc. (400 MHz, CDCl₃)

7 TEM images of self-assemblies of Catalytic Nanomicelles

Figure S13. TEM images of self-assemblies of Catalytic Nanomicelles: (a) $P(OEGMA_{51}-b-SPA_{10}-b-MMA_{14})$ -TREN under visible light; (b) $P(OEGMA_{51}-b-SPA_{10}-b-MMA_{14})$ -TREN under UV irradiation.