Electronic Supplementary Information (ESI)

Multi-stimuli-responsive metallosupramolecular gel based on pillararene hierarchical assembly

Yong-Fu Li, ${ }^{a}$ Wen-Li Guan, ${ }^{b}$ Chun-Yu Wang, ${ }^{,, c}$ Yan Wang, ${ }^{*, a}$ Qi Lin*,b and Ying-Wei Yang*,a
${ }^{\text {a }}$ International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
${ }^{\mathrm{b}}$ Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
${ }^{\text {c }}$ State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
*Email addresses: wangy2011@jlu.edu.cn (Y.W.); linqi2004@126.com (Q.L.); ywyang@jlu.edu.cn(Y.-W.Y.)

Table of contents

1. Materials and methods
2. Experimental section
3. Synthetic procedures and characterizations
4. 2D ROESY spectra of host SHP5
5. Stoichiometry determination between DMP5 and DSPy
6. FT-IR characterization of the host-guest assembly DSPyCSHP5
7. DLS characterization of the host-guest complexation of SHP5 and DSPy
8. SEM images of DSPycSHP5 and DSPyCSHP5@Zn in solution state
9. The data of theoretical calculations and statistical analysis
10. The concentration-dependent ${ }^{1} \mathrm{H}$ NMR spectra of DSPyCSHP5
11. Metal-ligand coordination between SHP5 and Zn^{2+}
12. ${ }^{1} \mathrm{H}$ NMR spectra of Job's Plot studies between SHP5 and Zn^{2+}
13. PXRD patterns of DSPy \subset SHP5@Zn
14. Photoluminescence of DSPyCSHP5@Zn
15. Photos of different concentrations of DSPyCSHP5@Zn
16. Rheological measurements for DSPyCSHP5@Zn-G and DSPyCSHP5-G
17. Characterization research of DSPyCSHP5@Zn toward various stimuli
18. Dual-channel sensing of OH^{-}by DSPyCSHP5@ Zn in solution state
19. Determination of the UV-vis detection limit for OH^{-}
20. Determination of the fluorescent detection limit for OH^{-}
21. Sensing mechanism research of DSPyCSHP5@Zn toward OH^{-}
22. The practical application of DSPyCSHP5@Zn
23. References

1. Materials and methods

Materials: Reactions were performed in an N_{2} atmosphere unless otherwise stated and were monitored by thin-layer chromatography. All reagents and chemicals were obtained from commercial sources at the highest purity available and used without further purification unless noted otherwise. All solvents were of AR quality. Twice-distilled water, purified by Experimental Water System (Lab-UV-20), was used in relevant experiments. Anions (including $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{AcO}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{OH}^{-}$) were prepared in DMSO solution from their tetra- n-butylammonium (TBA) salts, $\mathrm{CN}^{-}, \mathrm{SCN}^{-}$and $\mathrm{N}_{3}{ }^{-}$were used as their sodium salts, which were purchased from Sigma-Aldrich Chemical and stored in a vacuum desiccator. Methods: NMR spectra were recorded at 298 K on Bruker 400 MHz Ultrashield spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ NMR; 101 MHz for ${ }^{13} \mathrm{C}$ NMR). Deuterated solvents used are indicated in each case. Chemical shifts (δ) are expressed in ppm and referred to the residual peak of the solvent peak. Coupling constants (J) are given in Hz. Multiplicity is abbreviated as s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublets; and m: multiplet. ROESY and DOSY NMR were recorded with a Bruker Avance DMX 600 spectrophotometer at room temperature. Fourier transform infrared (FT-IR) spectra were recorded on a Vertex 80 V spectrometer. Lowresolution electrospray ionization (LR-ESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were obtained on a Bruker 7-Tesla FT-ICR mass spectrometer equipped with an electrospray ionization (ESI) probe operating in positive-ion mode with direct infusion (Billerica, MA, USA). Hydrodynamic diameters of dynamic light scattering (DLS) were measured on a Zetasizer Nano ZS instrument. Ultraviolet-visible (UV-vis) absorption spectra were measured on a Shimadzu UV-2550 spectrophotometer in a $2-\mathrm{mm}$ quartz cuvette. Fluorescence spectra were collected on a Shimadzu RF-5301PC spectrofluorometer. Powder X-ray diffraction (PXRD) analysis was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation ($\lambda=$ 1.54073 Å). Rheological Properties Test were performed on a Rheolaser Lab Diffusing Wave Spectroscopy instrument (Rheolaser LAB 6 master, Formulaction, France). Density functional theory (DFT) calculations were performed with the Gaussian 09 program. Geometry optimizations were calculated by means of density functional theory B3LYP level with the basis set of $6-31 \mathrm{G}^{*}$ (B3LYP, $6-31 \mathrm{G}^{*}$). ${ }^{[\mathrm{[1]}]}$ The orbital representations were generated with Gaussview 6.0 (scaling radii of 75%, isovalue $=0.02$). HOMO-LUMO energy gap: $\Delta \mathrm{E}=\mathrm{E}_{\text {LUMO }}$ - Еномо. Electrostatic surface potential (ESP) was simulated by Multiwfn 3.6 program and visualized using VMD software. ${ }^{[52]}$ Electrochemical measurements were conducted on a CHI 760 E electrochemical workstation at a scan rate of $100 \mathrm{mV} / \mathrm{s}$. The electrochemical cell was a standard three-compartment cell composed of a glass carbon working electrode, a Pt counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. All tests were performed using potassium chloride (0.2 M in water) as the supporting electrolyte.

2. Experimental section

2.1 ${ }^{1} \mathrm{H}$ NMR titration experiments

First, two stock solutions were prepared in DMSO- d_{6}, one containing the DSPy \subset SHP5 only and the second containing an appropriate concentration of Zn^{2+} ions. Second, a stock solution of DSPy CSHP5 was mixed with a solution of Zn^{2+} with gradually increased concentration, whereas the total solvent volume in each NMR tube remained constant $(0.5 \mathrm{~mL})$. The resulting solutions were well-mixed, and then their ${ }^{1} \mathrm{H}$ NMR spectra were recorded.

$2.2{ }^{1} \mathrm{H}$ NMR Job's plot experiments

In this method, the total concentration of model host DMP5 and guest DSPy was kept at 5 mM , and the molar ratio of DSPy $\left(\mathrm{X}_{\mathrm{DSPy}}: \mathrm{X}_{\text {total }}=[\mathrm{DSPy}] /\{[\mathrm{DMP5}]+[\mathrm{DSPy}]\}\right)$ was changed from 0 to 1 . Similarly, the total concentration of host SHP5 and Zn^{2+} was kept at 5 mM , and the molar ratio of host SHP5 ($\left.\mathrm{X}_{\text {SHP5 }}: \mathrm{X}_{\text {total }}=[\mathrm{SHP} 5] /\left\{[\mathrm{SHP} 5]+\left[\mathrm{Zn}^{2+}\right]\right\}\right)$ was also changed from 0 to 1 . The resulting samples were shaken for 10 s . Subsequently, the ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz}$, DMSO- $d_{6}, 298 \mathrm{~K}$) of all samples were recorded.

2.3 Concentrations-Dependent ${ }^{1} \mathrm{H}$ NMR experiments

A series of DMSO- d_{6} solutions of DSPyCSHP5@ Zn^{2+} ([DSPy]: [SHP5]: $\mathrm{Zn}^{2+}=1: 2: 2$) with different concentrations ($2.5 \mathrm{mM}, 5.0 \mathrm{mM}, 10.0 \mathrm{mM}, 25.0 \mathrm{mM}, 40.0 \mathrm{mM}$, and 60.0 mM) as well as DSPy CSHP5 ([DSPy]: [SHP5] = 1:2) with different concentrations ($3.0 \mathrm{mM}, 15.0 \mathrm{mM}$, 30.0 mM , and 50.0 mM) were prepared and then recorded their ${ }^{1} \mathrm{H}$ NMR spectra, respectively.

2.4 General procedure for UV-vis absorption spectra experiments

The solution of metallosupramolecular polymer network DSPy \subset SHP5@ $\mathrm{Zn}\left(2 \times 10^{-3} \mathrm{M}\right)$ in DMSO was prepared and stored in a dry atmosphere. The resulting solution was used for all spectroscopic studies after appropriate dilution. The DMSO solutions of each anion (1×10^{-2} M) were prepared, respectively, via tetra- n-butylammonium (TBA) salts for $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{AcO}^{-}$, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{OH}^{-}$and sodium salts for $\mathrm{CN}^{-}, \mathrm{SCN}^{-}, \mathrm{N}_{3}-$. All the UV-vis experiments were carried out in DMSO- $\mathrm{H}_{2} \mathrm{O}$ (7:3, v:v) binary solution on a Shimadzu UV-2550 spectrometer. Any changes in the UV-vis spectra of the DSPyCSHP5@Zn were recorded upon adding anions while keeping the concentration of DSPyCSHP5@Zn $\left(2.0 \times 10^{-4} \mathrm{M}\right)$ in all experiments.

2.5 General procedure for fluorescence emission spectra experiments

The solution of metallosupramolecular polymer network DSPyCSHP5@Zn $\left(2 \times 10^{-3} \mathrm{M}\right)$ in DMSO was prepared and stored in a dry atmosphere. The resulting solution was used for all spectroscopic studies after appropriate dilution. The DMSO solutions of each anion (1×10^{-2} M) were prepared, respectively, via tetra- n-butylammonium (TBA) salts for $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{AcO}^{-}$, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{OH}^{-}$and the sodium salts for $\mathrm{CN}^{-}, \mathrm{SCN}^{-}, \mathrm{N}_{3}{ }^{-}$. All the fluorescence experiments were carried out in DMSO- $\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v}: \mathrm{v})$ binary solution and the fluorescence spectra were obtained on a Shimadzu RF-5301PC spectrophotometer, the excitation wavelength was 375 nm and the excitation slit widths were 5 nm as well as the emission slit widths were 5 nm , respectively. Any changes in the fluorescence spectra of DSPy \subset SHP5@ Zn were recorded upon adding anions while keeping the concentration of DSPycSHP5@Zn (2.0 $\left.\times 10^{-4} \mathrm{M}\right)$ in all experiments.

2.6 Preparation of metallosupramolecular gel

The mixture of SHP5 ($33.0 \mathrm{mg}, 50 \mathrm{mmol}$), $\mathrm{Zn}^{2+}(11.2 \mathrm{mg}, 50 \mathrm{mmol}$), and DSPy ($17.0 \mathrm{mg}, 25$ mmol) were weighed and added into DMSO- $\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v} / \mathrm{v})$ mixed solvent $(0.6 \mathrm{~mL})$, the resulting mixture was heated until all the monomers were dissolved. Subsequently, the system was allowed to equilibrate at room temperature, obtaining stable metallosupramolecular gel.

2.7 SEM sample preparation

The solution of DSPy CSHP5 and DSPyCSHP5@Zn in DMSO- $\mathrm{H}_{2} \mathrm{O}$ binary solution ($\mathrm{c}=200$ $\mu \mathrm{M}$, DMSO: $\mathrm{H}_{2} \mathrm{O}=7: 3$, v:v) was dropped onto the silicon slice to get SEM samples, respectively. Meanwhile, the xerogel of DSPyCSHP5@Zn-G, DSPyCSHP5@Zn-G + adiponitrile, DSPy treatment with DTT and I_{2} were prepared by freeze-drying and adhered to conductive tape to obtain corresponding SEM samples, respectively.

3. Synthetic procedures and characterizations

Scheme S1. Synthetic route to host compound SHP5.

Compounds M-2Br and DP5 were synthesized according to reported procedure. ${ }^{[53]}$
Synthesis of M-2Br: Following a previously reported procedure, $\mathrm{K}_{2} \mathrm{CO}_{3}(16.6 \mathrm{~g}, 120 \mathrm{mmol})$, KI ($6.6 \mathrm{~g}, 40 \mathrm{mmol}), 1,6$-dibromohexane ($34.6 \mathrm{~g}, 160 \mathrm{mmol}$), PEG-400 $(1 \mathrm{~mL})$ as a phase transfer catalyst and acetone (400.0 mL) were added in a 500 mL round-bottom flask at room temperature, and the mixture was stirred for 30 min under N_{2} atmosphere. Then hydroquinone $(2.3 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added into the above mixture and was heated at reflux under a nitrogen atmosphere for 72 h . After the solid was filtered off, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate $(\mathrm{v} / \mathrm{v}=10: 1)$ as an eluent to give the product a white solid (6.5 g , yield: 71.6%). The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathrm{M}-2 \mathrm{Br}$ is shown in Figure S1. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}): 6.81(\mathrm{~s}, 4 \mathrm{H}), 3.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{p}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.77(\mathrm{p}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 8 \mathrm{H})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound M2Br is shown in Figure S2. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}): 153.14,115.39,68.35$, 33.79, 32.68, 29.19, 27.92, 25.29. LRESIMS is shown in Figure S3: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{O}_{2}$, 437.05; found 437.01.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathrm{M}-2 \mathrm{Br}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathrm{M}-2 \mathrm{Br}$.

Figure S3. ESI-MS of M-2Br.

Synthesis of DP5: To a solution of $\mathrm{M}-2 \mathrm{Br}(2.18 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 1,4-dimethoxybenzene (2.76 $\mathrm{g}, 20.0 \mathrm{mmol})$ in 1, 2-dichloroethane (100 mL), paraformaldehyde ($0.75 \mathrm{~g}, 25.0 \mathrm{mmol}$) was added under nitrogen atmosphere. Then boron trifluoride diethyl etherate ($6.75 \mathrm{~mL}, 25 \mathrm{mmol}$) was added to the solution and the mixture was stirred at $30^{\circ} \mathrm{C}$. After reacting for ca. 25 min , water $(300 \mathrm{~mL})$ was poured into the reaction mixture to quench the reaction. The aqueous layer was extracted with dichloromethane and the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After that, the combined organic phase was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether: dichloromethane: ethyl acetate $=100: 50: 1$) to give the product as a white solid (1.6 g , yield: 30.4%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}): 6.98-6.86(\mathrm{~m}, 10 \mathrm{H}), ~ 4.21-3.48(\mathrm{~m}, 42 \mathrm{H}), 1.93-1.43(\mathrm{~m}$, 8 H), $\left.1.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$: 150.42 , 150.19, $150.15,149.61,128.07$, 128.02, 127.93, 127.87, 127.80, 114.01, 113.03, $112.87,68.15,55.57,55.28,55.21,33.63,33.52,31.94,29.68,29.38,29.26,29.08,28.10$, 28.02, 27.82, 26.94, 25.46, 22.71. HRESIMS is shown in Figure S6: m/z calcd for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ $\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{Br}_{2} \mathrm{NO}_{10}, 1066.3497$; found 1066.3496, error 0.4 ppm .

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DP5.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DP5.

Figure S6. HR-ESI-MS of DP5.

DSP5: Compound DP5 ($2.09 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, then $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20$ $\mathrm{mmol})$ and $\mathrm{KI}(3.98 \mathrm{~g}, 24 \mathrm{mmol})$ were also added into the mixture, and the resulting reaction mixture was stirred for 30 min under nitrogen atmosphere. Then, ethyl thioglycolate (4.5 mL , 40 mmol) was added into the reaction. The reaction mixture was heated at $95^{\circ} \mathrm{C}$ for 72 h under nitrogen protection. Then, the mixture was filtered and the solvent was dried and evaporated under reduced pressure to afford the crude product, which was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) to get the product as a white solid (1.06 g , yield: 48.6%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}):$ 6.85-6.69 (m, $10 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 10 \mathrm{H}), 3.71-3.58(\mathrm{~m}$, $24 \mathrm{H}), 3.20(\mathrm{~s}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 4 \mathrm{H}), 1.76(\mathrm{q}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.64-1.34(\mathrm{~m}, 12 \mathrm{H}), 1.24(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}): 170.55,150.84,150.81,150.75,150.70$, $150.01,128.36,128.31,128.28,128.14,128.08,115.00,114.23,114.20,114.09,113.95,68.36$, $61.28,55.86,55.81,55.80,55.75,33.77$, 32.59, 29.72, 29.55, 28.88, 28.58, 25.87, 14.13. HRESIMS is shown in Figure S9: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{63} \mathrm{H}_{83} \mathrm{O}_{14} \mathrm{~S}_{2}$, 1127.52187; found 1127.52182, error -0.04848 ppm.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DSP5.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DSP5.

Figure S9. HR-ESI-MS of DSP5.

SHP5: Hydrazine hydrate ($0.1591 \mathrm{~g}, 3 \mathrm{mmol}, 80 \%$) was added to a solution of the DSP5 $(0.5355 \mathrm{~g}, 0.5 \mathrm{mmol})$ in alcohol $(30 \mathrm{~mL})$. The mixture was heated in a round-bottomed flask at $80^{\circ} \mathrm{C}$ for 24 h . Then, the mixture was concentrated under reduced pressure, and after washing with EtOH for 3 times, the crude product was crystallized by slow diffusion of petroleum ether into dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The pure SHP5 was obtained after filtrating and drying in vacuum ($0.4915 \mathrm{~g}, 96.75 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum of compound SHP5 is shown in Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$) $\delta 9.11(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 10 \mathrm{H}), 4.27(\mathrm{~s}$,
$4 \mathrm{H}), 3.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.74-3.59(\mathrm{~m}, 34 \mathrm{H}), 3.05(\mathrm{~s}, 4 \mathrm{H}), 2.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.75$ (dd, $J=9.1,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.62-1.36(\mathrm{~m}, 12 \mathrm{H})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound SHP5 is shown in Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}): 169.71,150.76,150.74$, $150.70,150.63,149.91,128.49,128.44,128.27,115.03,114.30,114.27,114.13,113.97,68.58$, $56.07,56.06,55.92,55.89,34.45,32.76,29.72,29.55,29.42,28.66,28.50,25.57$. HRESIMS is shown in Figure $\mathrm{S} 12: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{59} \mathrm{H}_{79} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}, 1099.5130$; found 1099.5131, error 0.05034 ppm .

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of SHP5.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of SHP5.

Figure S12. HR-ESI-MS of SHP5.

Scheme S2. Synthetic routes of guest DSPy.

Synthesis of compound BPy: Compound BPy was synthesized according to previously reported literature. ${ }^{[54]}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of BPy is shown in Figure S13. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}): 8.88-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.71-8.58(\mathrm{~m}, 2 \mathrm{H}), 8.35-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{dt}$, $J=4.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 3 \mathrm{H})$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of BPy.

Synthesis of DSBr: In a 100 mL round-bottom flask, 3,3'-disulfanediyldipropionic acid (0.42 $\mathrm{g}, 2.0 \mathrm{mmol})$, 6-bromo-1-hexanol ($1.07 \mathrm{~g}, 5.9 \mathrm{mmol}$) and DMAP ($24.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in 10 mL dry dichloromethane. Subsequently, DCC ($4.13 \mathrm{~g}, 20 \mathrm{mmol}$) in dry dichloromethane (15 mL) was added dropwise into the above reaction flask in an ice bath. The mixture was reacted at room temperature for one day. After that, the reaction mixture was filtered off and the filtrate was evaporated; the crude product was purified by column chromatography on silica gel using dichloromethane as eluent to afford product DSBr as a pale yellow oil (0.54 g , yield: 50%). The ${ }^{1} \mathrm{H}$ NMR spectrum of DSBr is shown in Figure $\mathrm{S} 14 .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- $d, 298 \mathrm{~K}$) $\delta(\mathrm{ppm})$: $4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $4 \mathrm{H}), 3.01-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.86(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 1.53-1.32(\mathrm{~m}, 8 \mathrm{H})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of DSBr is shown in Figure $\mathrm{S} 15 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d, 298 K) $\delta(\mathrm{ppm}): 171.70,64.69,34.13,33.70,33.22,32.59,28.42$, 27.76, 25.14. HRESIMS is shown in Figure S16: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, 537.0161; found 537.0161.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DSBr .

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of DSBr .

Figure S16. ESI-MS of DSBr.

Synthesis of guest compound DSPy: Compound $\operatorname{DSBr}(1.07 \mathrm{~g}, 2 \mathrm{mmol})$ and 1-methyl-[4,4'-bipyridin]-1-ium iodide ($1.80 \mathrm{~g}, 6 \mathrm{mmol}$) were added into a flask. Then acetonitrile (50 mL) was added at room temperature. Then the mixture was heated at reflux for 72 h . After cooling to room temperature, the precipitate was filtered and washed with MeCN and DCM to produce a dark red product (1.36 g , yield: 60%). The ${ }^{1} \mathrm{H}$ NMR spectrum of DSPy is shown in Figure S17. ${ }^{1}$ H NMR (400 MHz, DMSO- $_{6}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}): 9.38(\mathrm{dd}, J=45.1,6.3 \mathrm{~Hz}, 8 \mathrm{H}$), 8.81 (dd,
$J=12.3,6.2 \mathrm{~Hz}, 8 \mathrm{H}), 4.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.46(\mathrm{~s}, 6 \mathrm{H}), 4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.91(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.58(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.43-$ $1.29(\mathrm{~m}, 8 \mathrm{H})$. The ${ }^{13} \mathrm{C}$ NMR spectrum of DSPy is shown in Figure S18. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}): 171.05,148.35,147.96,146.49,145.64,126.41,125.95,63.86$, $60.59,47.91,33.25,32.52,30.46,27.68,24.87,24.60$. ESIMS is shown in Figure S19: m/z calcd for $[\mathrm{M}]^{+} \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}, 1132.6329$; found 1132.6404.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of DSPy.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of DSPy.

Figure S19. ESI-MS of DSPy.

4. 2D ROESY spectra of host SHP5

Figure S20. Partial 2D ROESY spectrum (600 MHz , DMSO- d_{6}, 298 K) of SHP5 (20 mM) with a mixing time of 200 ms .

5. Stoichiometry determination between DMP5 and DSPy

Figure S21. (A) Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of DMP5 and DSPy at different molar ratios, [DMP5]+[DSPy] $=5 \mathrm{mM}$. (1) [DMP5]/[DSPy] $=10: 0$, (2) [DMP5]/[DSPy]=9:1, (3) [DMP5]/[DSPy]= 8:2, (4) [DMP5]/[DSPy] = 7:3, (5) [DMP5]/[DSPy] $=6: 4$, (6) [DMP5]/[DSPy] = 5:5, (7) [DMP5]/[DSPy] = 4:6, (8) [DMP5]/[DSPy] = 3:7, (9) [DMP5]/[DSPy] $=2: 8,(10)[\mathrm{DMP5]} /[\mathrm{DSPy}]=1: 9$, (11) [DMP5]/[DSPy] $=0: 10$. (B) Job Plot showing the $2: 1$ stoichiometry of the complexation between DMP5 and DSPy in DMSO- d_{6} by plotting the $\Delta \delta$ in chemical shift of the proton H_{1} observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy against the mole fraction of DSPy ([DMP5] $+[$ DSPy $]=5 \mathrm{mM}$).

6. FT-IR characterization of the host-guest assembly DSPy CSHP5

Figure S22. FT-IR spectra of SHP5 (black), and DSPy CSHP5 (red).
7. DLS characterization of the host-guest complexation of SHP5 and DSPy

Figure S23. Selected DLS profiles of SHP5 ($0.02 \mathrm{mmol} / \mathrm{L}$), DSPy ($0.02 \mathrm{mmol} / \mathrm{L}$) and DSPycSHP5 ($0.02 \mathrm{mmol} / \mathrm{L}$) in DMSO solution at 298 K .

8. SEM images of DSPyCSHP5 and DSPyCSHP5@Zn in solution state

Figure S24. Representative SEM images showing the morphology of (A) DSPyCSHP5; and (B) DSPyᄃSHP5@Zn in DMSO- $\mathrm{H}_{2} \mathrm{O}$ binary solution $\left(\mathrm{c}=200 \mu \mathrm{M}, \mathrm{DMSO}: \mathrm{H}_{2} \mathrm{O}=7: 3\right.$, v:v).
9. The data of theoretical calculations and statistical analysis

Table S1. Coordinates (\AA) for the optimized structure (B3LYP, 6-31G*) of SHP5

atom	X	Y	Z	atom	X	Y	Z
C	3.6913	-2.5341	-0.062	H	0.2877	3.5034	5.4332
C	4.9945	-2.6415	0.7206	H	-2.5204	0.0367	5.5282
C	6.213	-2.86	-0.1848	H	-3.4865	-1.014	4.4555
C	7.5276	-2.9716	0.599	H	-2.9929	0.612	3.9036
C	8.7506	-3.1924	-0.3028	H	4.34	0.8896	2.2423
C	10.0489	-3.3085	0.5005	H	4.6554	0.3536	3.9183
S	11.4829	-3.5464	-0.627	H	5.2321	1.9517	3.3686
C	12.8396	-3.6522	0.6145	H	-1.7807	-2.3299	1.7072
C	14.1719	-4.1861	0.0598	H	1.7805	-2.3303	-1.7069
N	14.0295	-5.1967	-0.8564	H	1.6027	-2.7872	3.0451
O	15.2303	-3.7523	0.4711	H	-0.122	-2.8079	3.4256
N	15.1502	-5.8001	-1.4389	H	-2.8267	-0.6849	-2.934
C	-0.7708	5.4973	2.0526	H	1.132	1.691	-4.6721
C	-0.5468	4.6742	3.1596	H	0.1218	-2.8081	-3.4253
C	0.7558	4.2571	3.4783	H	-1.6029	-2.7874	-3.0447
C	1.807	4.7012	2.671	H	-5.232	1.9517	-3.3687

C	1.5826	5.5214	1.5619	H	-4.34	0.8896	-2.2424
C	0.2784	5.9248	1.2335	H	-4.6555	0.3536	-3.9183
O	2.5899	5.9771	0.7372	H	2.9929	0.6117	-3.9032
O	-1.5522	4.2275	3.991	H	2.5205	0.0362	-5.5278
C	0.0002	6.7703	-0.0002	H	3.4865	-1.0144	-4.455
C	-2.8707	4.6767	3.7417	H	-2.806	4.3635	-2.9179
C	3.9252	5.6563	1.0782	H	1.7745	5.8049	-1.7846
C	-0.2651	1.1548	4.306	H	-0.2875	3.503	-5.4333
C	-0.3715	-0.1741	3.8862	H	-2.0122	3.525	-5.0531
C	0.7526	-0.8484	3.3828	H	-4.1911	6.033	-2.0755
C	1.968	-0.1594	3.3343	H	-4.5536	6.1456	-0.3308
C	2.0737	1.1699	3.7522	H	-4.1041	4.5728	-1.049
C	0.9454	1.8505	4.2378	H	3.2353	4.3463	-2.7594
O	3.2519	1.8862	3.7196	H	2.945	5.7709	-3.7983
O	-1.5466	-0.8944	3.9334	H	3.493	4.2342	-4.5237
C	1.0204	3.3149	4.6433	H	3.5233	-3.4425	-0.6601
C	-2.6888	-0.2681	4.4863	H	3.7256	-1.6811	-0.7565
C	4.423	1.222	3.2864	H	4.9043	-3.4682	1.4371
C	-1.0063	-2.3498	0.9499	H	5.1273	-1.7259	1.3126
C	-1.3364	-2.352	-0.4083	H	6.2903	-2.0332	-0.906
C	-0.3236	-2.3387	-1.3814	H	6.0686	-3.7729	-0.7805
C	1.0061	-2.35	-0.9496	H	7.4503	-3.7984	1.3196
C	1.3362	-2.3522	0.4087	H	7.674	-2.0589	1.1946
C	0.3234	-2.3386	1.3817	H	8.8369	-2.3618	-1.0158
O	2.6347	-2.3658	0.8739	H	8.6084	-4.1035	-0.8992
O	-2.6349	-2.3655	-0.8736	H	9.9985	-4.1573	1.193
C	0.6526	-2.2761	2.8659	H	10.2159	-2.3998	1.0903
C	-1.9681	-0.1595	-3.3342	H	12.516	-4.3144	1.4274
C	-2.0736	1.1698	-3.7522	H	13.0526	-2.668	1.0357
C	-0.9453	1.8502	-4.2378	H	13.0925	-5.4534	-1.1529
C	0.2652	1.1545	-4.3059	H	15.1366	-5.6481	-2.4452
C	0.3714	-0.1744	-3.8859	C	-3.6915	-2.5337	0.0623
C	-0.7527	-0.8486	-3.3826	C	-4.9946	-2.6411	-0.7203
O	1.5466	-0.8947	-3.9331	C	-6.2132	-2.8596	0.185

O	-3.2518	1.8861	-3.7197	C	-7.5277	-2.9712	-0.5988
C	-0.6527	-2.2762	-2.8656	C	-8.7508	-3.1921	0.3029
C	-4.423	1.222	-3.2865	C	-10.049	-3.3082	-0.5005
C	2.6888	-0.2686	-4.4859	S	-11.4831	-3.5461	0.627
C	-1.8068	4.7012	-2.6712	C	-12.8397	-3.652	-0.6146
C	-1.5823	5.5213	-1.5621	C	-14.172	-4.1861	-0.06
C	-0.2781	5.9247	-1.2338	N	-14.0296	-5.1967	0.8562
C	0.7711	5.4971	-2.0529	N	-15.1502	-5.8003	1.4386
C	0.547	4.674	-3.1598	O	-15.2305	-3.7525	-0.4715
C	-0.7555	4.2569	-3.4785	H	-3.5236	-3.442	0.6605
O	1.5524	4.2272	-3.9911	H	-3.7258	-1.6806	0.7567
O	-2.5896	5.9772	-0.7375	H	-4.9044	-3.4678	-1.4368
C	-1.0202	3.3146	-4.6434	H	-5.1275	-1.7255	-1.3123
C	-3.9249	5.6564	-1.0784	H	-6.2906	-2.0329	0.9063
C	2.871	4.6762	-3.7419	H	-6.0688	-3.7726	0.7807
H	-1.7742	5.8051	1.7843	H	-7.4505	-3.798	-1.3195
H	2.8062	4.3636	2.9177	H	-7.6742	-2.0585	-1.1944
H	0.8611	7.4153	-0.1966	H	-8.8371	-2.3615	1.016
H	-0.8608	7.4154	0.1962	H	-8.6086	-4.1032	0.8993
H	-2.9447	5.7713	3.798	H	-9.9986	-4.157	-1.193
H	-3.4928	4.2348	4.5236	H	-10.2161	-2.3994	-1.0902
H	-3.2351	4.3467	2.7592	H	-12.5159	-4.3142	-1.4275
H	4.1044	4.5727	1.0487	H	-13.0528	-2.6678	-1.0358
H	4.1914	6.033	2.0752	H	-13.0926	-5.4534	1.1527
H	4.5539	6.1454	0.3305	H	-15.1367	-5.6483	2.4449
H	-1.1319	1.6914	4.6722	H	-15.1294	-6.8013	1.2576
H	2.8266	-0.6849	2.9341	H	15.1295	-6.8012	-1.2579
H	2.0124	3.5252	5.0529				

Table S2. Coordinates (\AA) for the optimized structure (B3LYP, 6-31G*) of DSPy

atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{a t o m}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
C	-4.0544	-4.0513	0.3256	C	7.3953	-3.2673	0.4854
C	-3.2883	-5.2703	-0.1602	C	8.436	-2.309	-0.1091

C	-1.8908	-5.3338	0.4539	C	9.6232	-2.0566	0.8304
S	-1.0087	-6.8029	-0.2379	C	10.6431	-1.0683	0.2481
O	-5.3214	-4.0666	-0.1387	C	11.8097	-0.8258	1.2123
O	-3.6026	-3.1728	1.028	N	12.8012	0.1366	0.6923
C	-6.1462	-2.943	0.243	C	13.6916	-0.3014	-0.2516
C	-7.5284	-3.16	-0.3546	C	14.6314	0.6148	-0.776
C	-8.4896	-2.0154	-0.0057	C	14.766	1.8791	-0.2395
C	-9.8928	-2.2135	-0.5947	C	13.9044	2.2471	0.8397
C	-10.8526	-1.0689	-0.2402	C	12.9647	1.3598	1.2808
C	-12.2421	-1.2861	-0.8486	C	15.7629	2.8328	-0.7648
N	-13.1856	-0.1917	-0.5396	C	17.0565	2.437	-1.0585
C	-14.2778	-0.4088	0.2548	C	17.9955	3.3667	-1.5418
C	-15.1951	0.5751	0.4945	N	17.5728	4.6138	-1.9121
C	-15.033	1.8509	-0.1258	C	16.3329	5.0497	-1.5406
C	-13.9535	2.0327	-0.9695	C	15.424	4.2039	-0.9683
C	-13.058	0.9782	-1.2317	C	18.5771	5.5541	-2.4178
C	-16.0158	2.9256	0.1042	H	-3.2382	-5.2235	-1.2559
C	-16.5679	3.1466	1.3553	H	-3.8723	-6.1675	0.0773
C	-17.5367	4.1423	1.5461	H	-1.9454	-5.4312	1.5404
N	-17.8591	4.9746	0.5149	H	-1.3308	-4.4256	0.2198
C	-17.3784	4.7316	-0.7425	H	-5.6821	-2.0214	-0.1254
C	-16.4588	3.7466	-0.9744	H	-6.1784	-2.8817	1.3362
C	-18.9361	5.9466	0.7344	H	-7.9306	-4.1133	0.0122
C	4.1028	-4.5476	-0.4292	H	-7.437	-3.2547	-1.4443
C	3.2129	-5.4929	0.3601	H	-8.0751	-1.0644	-0.3701
C	1.8255	-5.6126	-0.2687	H	-8.5646	-1.9188	1.0871
S	0.8111	-6.7589	0.7667	H	-10.3082	-3.1651	-0.2332
O	5.2787	-4.3572	0.2054	H	-9.8218	-2.3037	-1.6874
O	3.8118	-4.0276	-1.4847	H	-10.4352	-0.1198	-0.6018
C	6.2131	-3.4712	-0.4506	H	-10.9428	-0.9778	0.8507
H	-12.6849	-2.2119	-0.4712	H	8.8066	-2.7122	-1.0624
H	-12.2048	-1.3503	-1.943	H	10.1236	-3.0086	1.0545
H	-14.3631	-1.402	0.6787	H	9.2496	-1.6718	1.7903
H	-16.0597	0.3631	1.1128	H	10.1516	-0.1117	0.0243

H	-13.7841	2.9727	-1.4808	H	11.025	-1.4569	-0.7053
H	-12.1122	1.1471	-1.7188	H	12.3647	-1.7479	1.4237
H	-16.2882	2.5454	2.2122	H	11.4416	-0.4297	2.1628
H	-17.8696	4.4421	2.527	H	13.4037	-1.1806	-0.8038
H	-17.7655	5.3678	-1.5289	H	15.2579	0.2793	-1.5938
H	-16.1075	3.5709	-1.9846	H	14.0103	3.2035	1.3376
H	-18.6866	6.5868	1.5844	H	12.297	1.5782	2.1055
H	-19.8549	5.3871	0.9525	H	17.3965	1.4294	-0.8476
H	-19.06	6.5606	-0.158	H	18.9606	3.0592	-1.9129
H	3.1557	-5.1316	1.3939	H	16.1122	6.0882	-1.7553
H	3.711	-6.47	0.4085	H	14.4353	4.5758	-0.7262
H	1.8901	-6.0073	-1.2846	H	18.091	6.487	-2.7051
H	1.3395	-4.6348	-0.3117	H	19.0786	5.1233	-3.288
H	5.7063	-2.5275	-0.6782	H	19.3089	5.7264	-1.6175
H	6.5176	-3.92	-1.4029	Br	15.2164	-2.0845	0.9392
H	7.8571	-4.2389	0.7027	I	19.6436	3.9293	0.8133
H	7.026	-2.8729	1.4411	Br	-13.6739	0.4239	-3.7879
H	7.9542	-1.3497	-0.3485	I	-19.926	2.4269	1.9954

Table S3. Coordinates (\AA) for the optimized structure (B3LYP, 6-31G*) of DSPy \subset SHP5.

atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	atom	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
C	-4.1209	-6.1667	0.6701	C	4.0238	-6.1085	-0.6042
C	-3.3153	-7.2716	0.0069	C	3.2386	-7.2044	0.0975
C	-1.8805	-7.3102	0.5303	C	1.8062	-7.2911	-0.4267
S	-0.9614	-8.6332	-0.3753	S	0.9125	-8.599	0.5248
O	-5.4092	-6.2118	0.2732	O	5.3104	-6.1099	-0.1991
O	-3.6792	-5.3459	1.445	O	3.5692	-5.3284	-1.4129
C	-6.2717	-5.1842	0.8121	C	6.1542	-5.0858	-0.7732
C	-7.674	-5.4276	0.275	C	7.5574	-5.277	-0.2178
C	-8.6698	-4.3735	0.7778	C	8.5345	-4.2225	-0.7555
C	-10.0904	-4.599	0.2442	C	9.9553	-4.397	-0.2036
C	-11.0727	-3.5163	0.7119	C	10.9189	-3.3131	-0.7061
C	-12.4698	-3.7678	0.1389	C	12.3162	-3.515	-0.1141

N	-13.4218	-2.6696	0.4597	N	13.2493	-2.4108	-0.4687
C	-14.4016	-2.8378	1.3811	C	14.2387	-2.594	-1.3768
C	-15.2935	-1.8277	1.6687	C	15.1142	-1.5787	-1.6943
C	-15.1983	-0.5878	1.0015	C	14.9915	-0.3177	-1.0727
C	-14.1762	-0.4467	0.0524	C	13.959	-0.1608	-0.1376
C	-13.3018	-1.4916	-0.2021	C	13.1021	-1.2121	0.1487
C	-16.1495	0.5005	1.308	C	15.9272	0.7749	-1.4106
C	-17.4568	0.2019	1.7133	C	17.2447	0.4834	-1.7867
C	-18.3136	1.2108	2.0923	C	18.0886	1.4912	-2.1965
N	-17.9156	2.5018	2.0858	N	17.6678	2.774	-2.2482
C	-16.6801	2.8316	1.64	C	16.4207	3.0995	-1.8319
C	-15.7874	1.8535	1.2383	C	15.5403	2.1227	-1.4007
C	-18.7971	3.5466	2.6344	C	18.5377	3.8108	-2.8301
H	-3.3372	-7.1004	-1.0773	H	3.2546	-6.9936	1.1748
H	-3.8292	-8.2261	0.1722	H	3.772	-8.1537	-0.0323
H	-1.86	-7.5314	1.5998	H	1.7927	-7.5509	-1.4875
H	-1.3913	-6.347	0.3705	H	1.2971	-6.3329	-0.3023
H	-5.8846	-4.2046	0.5111	H	5.7438	-4.1037	-0.5139
H	-6.2374	-5.231	1.9062	H	6.1287	-5.1767	-1.8647
H	-8.0027	-6.4313	0.575	H	7.9097	-6.2846	-0.4756
H	-7.6454	-5.418	-0.8216	H	7.5205	-5.2248	0.8773
H	-8.3279	-3.3749	0.4717	H	8.1694	-3.2202	-0.4912
H	-8.6829	-4.3737	1.8782	H	8.5559	-4.2658	-1.8548
H	-10.4473	-5.5906	0.5601	H	10.335	-5.3925	-0.4779
H	-10.0756	-4.5936	-0.8529	H	9.9319	-4.349	0.8923
H	-10.72	-2.5436	0.349	H	10.5443	-2.3348	-0.3828
H	-11.1138	-3.4716	1.8098	H	10.9674	-3.3095	-1.8046
H	-12.9078	-4.692	0.5264	H	12.7753	-4.444	-0.4636
H	-12.4063	-3.8064	-0.958	H	12.2445	-3.5139	0.9828
H	-14.4377	-3.8031	1.8713	H	14.2963	-3.5755	-1.8316
H	-16.0519	-2.0064	2.4203	H	15.8815	-1.7695	-2.4339
H	-14.0646	0.4514	-0.5411	H	13.8259	0.7562	0.4217
H	-12.5383	-1.4662	-0.9867	H	12.3319	-1.1726	0.9262
H	-17.8215	-0.8121	1.7431	H	17.627	-0.5244	-1.7698

H	-19.3184	1.0128	2.4365	H	19.1011	1.2975	-2.5199
H	-16.432	3.884	1.6439	H	16.1545	4.1463	-1.8827
H	-14.8001	2.1623	0.9255	H	14.5436	2.4256	-1.1128
H	-18.7766	4.4605	2.0224	H	18.4868	4.7515	-2.2622
H	-18.4471	3.7965	3.638	H	18.2001	4.0067	-3.8499
H	-19.8168	3.1631	2.6739	H	19.5654	3.4473	-2.8348
C	-15.6251	-2.1837	-3.5494	C	15.3739	-1.7089	3.5788
C	-15.6932	-3.6908	-3.7563	C	15.4453	-3.2071	3.8409
C	-14.6653	-4.1738	-4.7892	C	14.4436	-3.6462	4.9185
C	-14.6511	-5.6997	-4.9494	C	14.4105	-5.1669	5.1188
C	-13.6086	-6.1773	-5.9728	C	13.4268	-5.599	6.2178
C	-13.6302	-7.6986	-6.1424	C	13.396	-7.1199	6.3903
S	-12.3572	-8.4199	-7.2604	S	12.2087	-7.782	7.6323
C	-12.8282	-7.6751	-8.8701	C	12.9347	-7.1464	9.1941
C	-12.3514	-6.2514	-9.1819	C	12.6388	-5.6959	9.5909
N	-11.1661	-5.8802	-8.6321	N	11.3942	-5.2345	9.2866
O	-12.9843	-5.5303	-9.9467	O	13.4613	-5.0277	10.2078
N	-10.5735	-4.6303	-8.891	N	11.0052	-3.9093	9.564
C	-18.1345	0.7009	5.4217	C	17.9578	0.8327	-5.5014
C	-19.0872	-0.194	4.9152	C	18.9191	-0.0229	-4.9458
C	-18.7172	-1.5036	4.5602	C	18.568	-1.3239	-4.5431
C	-17.3881	-1.8841	4.7892	C	17.2498	-1.7385	-4.7757
C	-16.4386	-0.9907	5.3022	C	16.2918	-0.8846	-5.3377
C	-16.7963	0.3375	5.6022	C	16.6292	0.4371	-5.6857
O	-15.1278	-1.341	5.537	O	14.9913	-1.269	-5.5761
O	-20.4007	0.1596	4.6918	O	20.2224	0.3643	-4.7184
C	-15.7802	1.3382	6.1425	C	15.6025	1.3962	-6.2788
C	-20.9283	1.2693	5.4133	C	20.7412	1.4512	-5.48
C	-14.8069	-2.7184	5.6313	C	14.6971	-2.6549	-5.6181
C	-20.567	-1.3537	1.7827	C	20.3734	-1.0312	-1.7449
C	-20.4809	-1.0411	0.4211	C	20.2603	-0.6671	-0.3982
C	-19.5201	-1.6732	-0.3946	C	19.2952	-1.2808	0.4263
C	-18.7427	-2.682	0.1825	C	18.542	-2.323	-0.1229
C	-18.8384	-3.005	1.544	C	18.6652	-2.698	-1.469

C	-19.7219	-2.3003	2.3803	C	19.5522	-2.0133	-2.3181
O	-18.0357	-3.9598	2.142	O	17.887	-3.6882	-2.041
O	-21.2707	-0.1003	-0.1879	O	21.027	0.308	0.1861
C	-19.7015	-2.4662	3.8972	C	19.5596	-2.24	-3.8272
C	-22.3689	0.4366	0.5334	C	22.1318	0.8296	-0.5363
C	-17.579	-5.0306	1.3245	C	17.4374	-4.7352	-1.1893
C	-18.586	1.1906	-1.8843	C	18.2972	1.6245	1.7768
C	-17.6581	2.2102	-2.1317	C	17.3532	2.641	1.9685
C	-16.3518	1.8911	-2.5596	C	16.0476	2.3236	2.4
C	-16.0296	0.5402	-2.7226	C	15.7428	0.9774	2.6225
C	-16.9559	-0.4837	-2.4663	C	16.6847	-0.0445	2.4206
C	-18.2606	-0.1636	-2.0493	C	17.9886	0.2746	2.0006
O	-16.6517	-1.8169	-2.6089	O	16.3951	-1.3737	2.6201
O	-17.9451	3.5436	-1.9996	O	17.6223	3.971	1.776
C	-19.3132	-1.2533	-1.844	C	19.0581	-0.8082	1.8547
C	-15.0038	4.5566	-0.8964	C	14.672	4.8941	0.608
C	-14.3709	4.9334	0.2956	C	14.0456	5.206	-0.606
C	-13.2618	4.2056	0.7687	C	12.9585	4.4344	-1.0602
C	-12.7473	3.1911	-0.0479	C	12.4556	3.4446	-0.2068
C	-13.3689	2.8306	-1.2512	C	13.0697	3.1499	1.018
C	-14.5507	3.4761	-1.6618	C	14.2324	3.8378	1.4138
O	-12.9302	1.7884	-2.0382	O	12.6435	2.1335	1.8447
O	-14.8195	5.9519	1.095	O	14.4819	6.1994	-1.4428
C	-15.3349	2.9885	-2.8742	C	15.0122	3.4191	2.6545
C	-15.6166	6.9819	0.4959	C	15.2443	7.274	-0.8777
C	-11.5505	1.4229	-1.9743	C	11.2732	1.7345	1.7805
C	-14.6101	4.2011	3.8541	C	14.3474	4.3263	-4.1246
C	-15.379	3.4629	4.7675	C	15.1429	3.5667	-4.9968
C	-15.0131	2.1442	5.0955	C	14.8068	2.2286	-5.2749
C	-13.8782	1.6055	4.4749	C	13.6746	1.6932	-4.6464
C	-13.1243	2.3371	3.5506	C	12.8946	2.4469	-3.7623
C	-13.4851	3.6584	3.2231	C	13.2249	3.7877	-3.4858
O	-12.0114	1.8356	2.9141	O	11.7836	1.9497	-3.1192
3.9638	5.3728	O	16.2703	4.0645	-5.6079		

C	-12.7126	4.4509	2.169	C	12.4223	4.6076	-2.4761
C	-16.7084	5.382	5.3737	C	16.4427	5.4855	-5.6651
C	-11.5217	0.57	3.315	C	11.3237	0.6594	-3.474
H	-18.4199	1.7155	5.679	H	18.2283	1.8414	-5.7953
H	-17.1075	-2.9038	4.5479	H	16.9845	-2.7531	-4.4978
H	-15.0546	0.7935	6.7543	H	14.8952	0.8139	-6.8776
H	-16.3028	2.0392	6.7985	H	16.121	2.08	-6.9558
H	-20.7177	1.18	6.4857	H	20.5487	1.3114	-6.5504
H	-22.0074	1.2494	5.2492	H	21.8178	1.4583	-5.2995
H	-20.53	2.2244	5.0483	H	20.3205	2.4138	-5.1631
H	-14.8511	-3.2202	4.654	H	14.7376	-3.1155	-4.6205
H	-15.4757	-3.24	6.3274	H	15.3846	-3.1917	-6.2838
H	-13.7823	-2.7657	6.0059	H	13.6786	-2.7368	-6.0033
H	-21.2682	-0.8314	2.4226	H	21.0778	-0.5238	-2.3935
H	-18.0162	-3.1818	-0.4501	H	17.8129	-2.8087	0.5173
H	-19.4216	-3.4929	4.1479	H	19.3028	-3.2811	-4.0407
H	-20.7052	-2.2844	4.292	H	20.5658	-2.0547	-4.2135
H	-23.0367	-0.3557	0.8946	H	22.8147	0.0318	-0.8547
H	-22.9063	1.0747	-0.17	H	22.6493	1.5008	0.1509
H	-22.0401	1.0444	1.3876	H	21.8115	1.3999	-1.4192
H	-16.7828	-4.715	0.637	H	16.6267	-4.4079	-0.5248
H	-18.4	-5.4613	0.739	H	18.2576	-5.129	-0.5771
H	-17.1834	-5.7866	2.0073	H	17.064	-5.5234	-1.8479
H	-19.5956	1.4375	-1.5761	H	19.3063	1.8711	1.4667
H	-15.0305	0.2908	-3.0637	H	14.7441	0.73	2.9659
H	-19.0137	-2.1298	-2.4239	H	18.7594	-1.6658	2.4628
H	-20.2666	-0.8974	-2.2446	H	20.0001	-0.4251	2.2573
H	-15.8995	5.0735	-1.2203	H	15.5525	5.4438	0.9193
H	-11.8739	2.651	0.2988	H	11.5982	2.8713	-0.5399
H	-14.6333	2.6076	-3.6214	H	14.3093	3.0627	3.4126
H	-15.8657	3.8386	-3.3124	H	15.5261	4.2967	3.0572
H	-15.6759	7.7802	1.2359	H	15.2972	8.0401	-1.6515
H	-16.6361	6.6428	0.2912	H	16.268	6.9692	-0.6424
H	-15.1402	7.3492	-0.4211	H	14.744	7.6693	0.0147

H	-11.2857	1.0042	-0.9946	H	11.0305	1.2675	0.817
H	-10.9109	2.2906	-2.177	H	10.6121	2.5955	1.9373
H	-11.4072	0.6457	-2.7267	H	11.1373	0.9879	2.5646
H	-14.8975	5.2136	3.5951	H	14.6114	5.3543	-3.9045
H	-13.5948	0.5933	4.7388	H	13.4145	0.6655	-4.8717
H	-11.6581	4.1637	2.2019	H	11.3746	4.2965	-2.5095
H	-12.7816	5.5163	2.4043	H	12.472	5.6631	-2.7562
H	-15.8063	5.9024	5.7165	H	15.5357	5.9728	-6.0418
H	-17.5243	5.5645	6.0753	H	17.2649	5.6549	-6.3626
H	-17.0037	5.7606	4.3874	H	16.7165	5.9106	-4.6916
H	-12.2421	-0.2322	3.099	H	12.0568	-0.1188	-3.2172
H	-11.2791	0.5496	4.3857	H	11.0949	0.591	-4.5457
H	-10.6116	0.4009	2.7355	H	10.4099	0.4958	-2.8987
H	-15.7957	-1.6487	-4.4937	H	15.5486	-1.1388	4.5016
H	-14.6329	-1.9026	-3.1748	H	14.379	-1.4454	3.1988
H	-16.7111	-3.9652	-4.0655	H	16.47	-3.4725	4.1351
H	-15.5112	-4.1859	-2.7914	H	15.2366	-3.7385	2.9012
H	-13.6667	-3.8258	-4.4949	H	13.441	-3.2925	4.6449
H	-14.8853	-3.7117	-5.7626	H	14.7024	-3.1618	5.8713
H	-15.6497	-6.0521	-5.2494	H	15.4187	-5.5333	5.365
H	-14.4406	-6.1655	-3.9749	H	14.1296	-5.65	4.1709
H	-12.6087	-5.8546	-5.6585	H	12.4206	-5.236	5.9751
H	-13.8077	-5.6936	-6.9377	H	13.7172	-5.124	7.1637
H	-14.6135	-8.0376	-6.491	H	14.3916	-7.5054	6.6426
H	-13.442	-8.1937	-5.1822	H	13.092	-7.6045	5.4549
H	-13.9151	-7.687	-8.9877	H	14.0214	-7.2647	9.1802
H	-12.4152	-8.3433	-9.6348	H	12.5458	-7.8007	9.9831
H	-10.6902	-6.4684	-7.9622	H	10.8163	-5.726	8.6179
H	-11.1706	-3.9091	-8.481	H	11.7471	-3.2931	9.2258
C	-19.3127	3.9574	-1.9041	C	18.9846	4.4	1.6733
C	-19.3571	5.4746	-2.0148	C	19.0051	5.9214	1.7083
C	-20.7863	6.0275	-1.9377	C	20.4259	6.4927	1.6137
C	-20.8187	7.5607	-1.9804	C	20.4337	8.0265	1.5852
C	-22.2445	8.1276	-1.9232	C	21.8504	8.6134	1.5057

C	-22.2486	9.658	-1.896	C	21.8295	10.1407	1.4055
S	-23.9768	10.2983	-1.8784	S	23.5473	10.8074	1.3627
C	-23.6559	12.1054	-1.8587	C	23.1976	12.6061	1.2553
C	-23.1584	12.7953	-3.1442	C	22.6859	13.3493	2.5052
N	-23.4043	12.0975	-4.2953	N	22.9372	12.7105	3.6889
N	-23.0706	12.6286	-5.547	N	22.5913	13.2957	4.9129
O	-22.6327	13.8915	-3.0777	O	22.1451	14.4335	2.3849
H	-19.8947	3.4814	-2.7066	H	19.565	3.9734	2.5042
H	-19.7369	3.6322	-0.9424	H	19.4239	4.0334	0.7334
H	-18.8843	5.7715	-2.9603	H	18.5204	6.2575	2.6345
H	-18.7662	5.9063	-1.198	H	18.4137	6.3028	0.8671
H	-21.251	5.6963	-0.9993	H	20.9018	6.1256	0.6943
H	-21.3921	5.6158	-2.7598	H	21.0331	6.1294	2.4572
H	-20.3208	7.9143	-2.8959	H	19.9269	8.4139	2.4818
H	-20.2408	7.9413	-1.1286	H	19.8529	8.3578	0.7149
H	-22.7507	7.7504	-1.0256	H	22.3661	8.2025	0.6285
H	-22.8231	7.7722	-2.7879	H	22.4314	8.309	2.388
H	-21.7331	10.0637	-2.7742	H	21.3041	10.5793	2.2616
H	-21.7368	10.0226	-0.999	H	21.3155	10.4533	0.4904
H	-22.9416	12.3495	-1.0678	H	22.4815	12.8002	0.4523
H	-24.6081	12.5719	-1.5815	H	24.1429	13.0739	0.9577
H	-23.8613	11.1935	-4.2123	H	23.4072	11.8102	3.6504
H	-23.9148	12.7484	-6.1032	H	23.4314	13.4529	5.4658
H	-22.4495	11.9857	-6.0332	H	21.9766	12.6683	5.4267
H	-10.6296	-4.4851	-9.8997	H	11.0111	-3.8023	10.5788
Br	-11.4848	-2.4185	-2.9736	Br	11.2737	-2.0684	2.9335
I	-11.5329	-2.4571	4.1042	I	14.7821	-6.6077	-2.8448

10. The concentration-dependent ${ }^{1}$ H NMR spectra of DSPyCSHP5

Figure S25. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of DSPyCSHP5 at various concentrations: (I) $3.0 \mathrm{mmol} / \mathrm{L}$, (II) $15.0 \mathrm{mmol} / \mathrm{L}$, (III) $30.0 \mathrm{mmol} / \mathrm{L}$, and (IV) $50.0 \mathrm{mmol} / \mathrm{L}$.

11. Metal-ligand coordination between SHP5 and Zn^{2+}

Figure S26. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , DMSO- d_{6}, 298 K) of (a) 5 mM SHP5; (b) 5 mM SHP5 and $10 \mathrm{mM} \mathrm{Zn}^{2+}$.
12. ${ }^{1} \mathrm{H}$ NMR spectra of Job's Plot Experiments between SHP5 and $\mathbf{Z n}^{\mathbf{2 +}}$

Figure S27. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) of SHP5 and Zn^{2+} at different molar ratios while $[$ SHP5 $]+\left[\mathrm{Zn}^{2+}\right]=5 \mathrm{mM}$. (1) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=2: 8$, (2) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=3: 7$, (3) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=4: 6$, (4) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=5: 5$, (5) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=$ $6: 4$, (6) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=7: 3$, (7) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=8: 2$, (8) $[\mathrm{SHP} 5] /\left[\mathrm{Zn}^{2+}\right]=9: 1$, (9) free SHP5.

Figure S28. 2D DOSY values (600 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) for DSPyCSHP5 and DSPyCSHP5@Zn at $10 \mathrm{mmol} / \mathrm{L}$.

13. PXRD patterns of DSPyCSHP5@Zn

Figure S29. PXRD patterns of xerogel powder formed by the DSPy \subset SHP5@Zn.

14. Photoluminescence of DSPyCSHP5@Zn

Figure S30. Fluorescence spectra of the DSPyCSHP5@Zn (200 $\mu \mathrm{M}$) in DMSO- $\mathrm{H}_{2} \mathrm{O}$ binary solutions with different volumetric fractions of water (vol \%). (Experimental conditions: $\lambda_{\mathrm{ex}}=$ $375 \mathrm{~nm} ; \lambda_{\mathrm{em}}=452 \mathrm{~nm}$; slit widths: Ex. 5 nm , Em. $5 \mathrm{~nm} ; 25^{\circ} \mathrm{C}$) Inset: Fluorescence photographs of the DSPycSHP5@Zn $(200 \mu \mathrm{M})$ in DMSO/water binary solutions with different volumetric fractions of water (vol \%).

15. Photos of different concentrations of DSPy \subset SHP5@Zn

Figure S31. Vial inversion test to estimate the critical gelation concentration (CGC) of DSPyCSHP5@Zn in DMSO- $\mathrm{H}_{2} \mathrm{O}$ (7: 3, v/v) mixed solvent at room temperature, suggesting a CGC of ca. 25 mM . The samples were aged overnight.

Figure S32. The gel-sol transitions of the supramolecular gel DSPyCSHP5-G triggered by temperature change.
16. Rheology measurements for DSPy \subset SHP5@Zn-G and DSPy \subset SHP5-G

Figure S33. (A) Graph of mean squared displacement (MSD) of metallosupramolecular gel DSPyCSHP5@Zn-G and supramolecular gel DSPyCSHP5-G against decorrelation time curves; (B) EI of DSPy

17. Characterization research of DSPyCSHP5@Zn toward various stimuli

Figure S34. Variable temperature partial ${ }^{1} \mathrm{H}$ NMR spectra of DSPycSHP5@Zn (40 mM , $\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$): (a) 298 K ; (b) 303 K ; (c) 308 K ; (d) 313 K ; (e) 318 K and (f) 323 K .

Figure S35. Absorbance spectra of DSPyCSHP5@Zn (20 $\mu \mathrm{M}$) at different temperatures in DMSO- $\mathrm{H}_{2} \mathrm{O}(v / v=7 / 3)$ binary solution.

Figure S36. Representative SEM images showing the morphology of xerogels of DSPyCSHP5@Zn + adiponitrile.

Figure S37. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of (a) DMP5 and (b) DMP5 with excess I_{2}.

Figure S38. 2D DOSY spectra (600 MHz, DMSO- $d_{6}, 298 \mathrm{~K}$) of (A) DSPy ${ }^{(1)}$ SHP5@Zn (25 mM), (B) DSPyCSHP5@Zn + DTT, (C) DSPyCSHP5@Zn-DTT + I 2 .

Figure S39. PXRD patterns of xerogels of DSPy CSHP5@Zn, DSPy \subset SHP5@Zn + DTT, and DSPyCSHP5@Zn-DTT treated with iodine.

Figure S40. Representative SEM images showing the morphology of xerogels of (A)

Figure S41. Cyclic voltammetry curves (298 K , scan rate $100 \mathrm{mV} / \mathrm{s}$) of 0.1 mM DSPy in the solution of potassium chloride (0.2 M in water).

Figure S42. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , DMSO- d_{6}, 298 K) of (a) 20 mM DSPyCSHP5@Zn; (b) 20 mM DSPy \subset SHP5@Zn $+\mathrm{CH}_{3} \mathrm{COOH}$.

18. Dual-channel sensing of OH^{-}by DSPy \subset SHP5@ Zn in solution

Figure S43. UV-vis spectra of DSPyCSHP5@Zn upon the addition of 5.0 equivalents of various anions: $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{AcO}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{OH}^{-}, \mathrm{SCN}^{-}, \mathrm{CN}^{-}$, and N_{3}^{-}. Inset: Photographs showing the color change of the solution of DSPyCSHP5@Zn alone and after the addition of 5.0 equivalents of various anions at room temperature (Experimental conditions: DMSO- $\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v} / \mathrm{v})$ binary solution as solvent; $298 \mathrm{~K} ;[\mathrm{DSPy} \subset \mathrm{SHP} 5 @ \mathrm{Zn}]=2.0 \times 10^{-4}$ $\mathrm{mol} / \mathrm{L}$).

Figure S44. Absorbance data of DSPyCSHP5@Zn at 401 nm in the presence of 5 equivalents of various anions and equal equiv. of OH^{-}.

Figure S45. Fluorescence response of DSPyCSHP5@Zn in the presence of 5 equivalents of various anions and 5 equivalents of OH^{-}.

19. Determination of the $\mathbf{U V}$-vis detection limit for OH^{-}

Figure S46. UV-vis spectra of DSPy \subset SHP5@ $\mathrm{Zn}\left(2.0 \times 10^{-4} \mathrm{M}\right)$ in the presence of increasing amounts of $\mathrm{OH}^{-}($from 0 to 1.87 mM$)$ in DMSO- $\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v} / \mathrm{v})$ mixed solvent. Inset: A plot of absorption at 401 nm versus number of equivalents of OH^{-}.

Figure S47. The linear fitting between the absorbance intensity of DSPyCSHP5@Zn at 401 nm and the concentration of OH^{-}in $\mathrm{DMSO}-\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v} / \mathrm{v})$ mixed solvent.

The lowest limit of detection (LOD) was determined from the equation $\mathrm{LOD}=\mathrm{K} \times \delta / S$, where $\mathrm{K}=3, A_{i}$ is the absorbance of DSPyCSHP5@Zn at $401 \mathrm{~nm} ; A_{a}$ is the average of the $F_{i} . \delta$ is the standard deviation of blank measurements of DSPy \subset SHP5@ Zn , and S is the slope of the linear fitting.
The result of the analysis is as follows:
Linear Equation: $\mathrm{Y}=0.093+809.38^{*} \mathrm{x}$

$$
\begin{gathered}
\mathrm{R}^{2}=0.9917 \\
\mathrm{~S}=8.094 \times 10^{2} \\
\delta=\sqrt{\frac{\sum\left(A_{i}-A_{a}\right)^{2}}{n-1}}=0.0018(n=20) \\
\mathrm{K}=3 \\
\mathrm{LOD}=\mathrm{K} \times \delta / S=6.67 \mu \mathrm{M}
\end{gathered}
$$

20. Determination of the fluorescent detection limit for OH^{-}

Figure S48. Fluorescence spectra of DSPyCSHP5@Zn ($2.0 \times 10^{-4} \mathrm{M}$) with increasing concentration of OH^{-}(from 0 to 1.77 mM). Inset: A plot of emission at 446 nm versus the number of equivalents of OH^{-}. Conditions: DMSO- $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=7: 3)$ as solvent; $\lambda_{\mathrm{ex}}=375 \mathrm{~nm}$; slit width: Ex. 5 nm, Em. 5 nm; 298 K.

Figure S49. The linear fitting between the emission intensity of DSPy concentration of OH^{-}in $\mathrm{DMSO}-\mathrm{H}_{2} \mathrm{O}(7: 3, \mathrm{v} / \mathrm{v})$ binary solution.

The lowest limit of detection (LOD) was determined from the equation $\mathrm{LOD}=\mathrm{K} \times \delta / S$, where $\mathrm{K}=3, F_{i}$ is the fluorescence intensity of DSPyCSHP5@Zn; F_{a} is the average of the $F_{i .} \delta$ is the standard deviation of blank measurements of DSPyCSHP5@Zn, and S is the slope of the linear fitting.

The result of the analysis is as follows:

$$
\begin{gathered}
\text { Linear Equation: } \mathrm{Y}=272.8422-210982^{*} \mathrm{x} \\
\mathrm{R}^{2}=0.9977 \\
\mathrm{~S}=2.11 \times 10^{5} \\
\delta=\sqrt{\frac{\sum\left(F_{i}-F_{a}\right)^{2}}{n-1}}=5.486(n=20) \\
\mathrm{K}=3 \\
\mathrm{LOD}=\mathrm{K} \times \delta / S=78 \mu \mathrm{M}
\end{gathered}
$$

21. Sensing mechanism research of DSPyCSHP5@Zn toward OH^{-}

Figure S50. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , DMSO- d_{6}, 298 K) showing the assembly and disassembly of metallosupramolecular polymer network: (a) host-guest complex DSPyCSHP5, (b) after the addition of 2 equiv. Zn^{2+} to DSPy \subset SHP5, (c) further adding a slight excess of OH^{-} into DSPycSHP5@Zn.

Figure S51. High-resolution mass data of DSPyCSHP5@Zn after being treated with OH^{-}(top: experimental, bottom: simulated).

Figure S52. PXRD diagrams of xerogel powder formed by the gelator of DSPy \subset SHP5@Zn in DMSO- $\mathrm{H}_{2} \mathrm{O}(7 / 3, \mathrm{v} / \mathrm{v})$ binary solution and xerogel of DSPyCSHP5@Zn treated with OH^{-}.

Figure S53. FT-IR spectra of DSPyCSHP5@Zn and DSPy \subset SHP5@Zn after the addition of OH^{-}.

Figure S54. Representative SEM images showing the morphology of xerogels of (a) DSPyCSHP5@Zn, and (b) DSPyCSHP5@Zn $+\mathrm{OH}^{-}$.

22. The practical applications of DSPyCSHP5@Zn

Figure S55. Photographs of test strips of DSPyCSHP5@Zn and DSPyCSHP5@Zn + OH under nature light (A), under irradiation at 365 nm using a UV lamp (B).

19. References

[S1] J.-F. Chen, X. Yin, B. Wang, K. Zhang, G. Meng, S. Zhang, Y. Shi, N. Wang, S. Wang and P. Chen, Angew. Chem. Int. Ed., 2020, 59, 11267-11272.
[S2] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.
[S3] Q. Lin, Y.-Q. Fan, P.-P. Mao, L. Liu, J. Liu, Y.-M. Zhang, H. Yao and T.-B. Wei, Chem. Eur. J., 2018, 24, 777-783.
[S4] H. Zhang, F. Liang and Y.-W. Yang, Chem. Eur. J., 2020, 26, 198-205.

