## One pot synthesis of thiol-functional nanoparticles

Aaron Priester<sup>1\*</sup>, Jimmy Yeng<sup>1</sup>, Krista Hilmas<sup>1</sup> and Anthony J. Convertine<sup>1\*</sup>

<sup>1</sup>Missouri University of Science and Technology, Rolla, Missouri 65409



## **Supporting Information**

**SI Figure 1**. DLS traces and z-average sizes for PS80-SH nanoparticles before and after concentrating over 60°C heat for 6 hours. As shown, there was little to no change in the number average distribution of particle sizes. A slight increase from 22 to 27 nm in z-average size was observed.



SI Figure 2. <sup>1</sup>H NMR and structures of starting reagents SiSH and PS80 in addition to peak assignments



**SI Figure 3.** <sup>1</sup>H NMR studies of PS80-SiSH conjugate synthesis. Disappearance of the cis C-C double bond (~5.1 ppm) indicates that the double bond has been reacted. Peak reduction indicates a reaction efficiency of 95%.

| Monomer                          | Thiol-to-Alkene<br>Ratio | VA-086<br>conc. (wt%) | TEA<br>conc. (wt%) | Time (hrs) | Conversion<br>(%) |
|----------------------------------|--------------------------|-----------------------|--------------------|------------|-------------------|
| H <sub>2</sub> N<br>(Allylamine) | 0.5                      | 0.5                   | 0                  | 4          | 94                |
| он<br>(НЕМА)                     | 0.5                      | 0.5                   | 0                  | 4          | 99                |
| (DMA)                            | 0.5                      | 0.5                   | 0                  | 4          | 99                |
| (VBTAC)                          | 0.5                      | 0.5                   | 0                  | 8          | 92                |
| (NaSS) Na*                       | 0.5                      | 0.5                   | 0                  | 8          | 93                |
| (HEAc)                           | <sup>H</sup> 0.5         | 0                     | 2.27               | 1          | 92                |

SI Figure 4. Summary of monomer conjugation trials including conditions, reactions times and conversions



SI Figure 5. <sup>1</sup>H NMR spectra of allylamine before (red) and after (blue) thiol-ene reaction



SI Figure 6. <sup>1</sup>H NMR spectra of N,N-dimethylacrylamide before (red) and after (blue) thiol-ene reaction



SI Figure 7. <sup>1</sup>H NMR spectra of 2-hydroxyethyl acrylate before (red) and after (blue) thiol michael reaction



SI Figure 8. <sup>1</sup>H NMR spectra of hydroxyethyl methacrylate before (red) and after (blue) thiol-ene reaction



SI Figure 9. <sup>1</sup>H NMR spectra of sodium 4-vinylbenzenesulfonate before (red) and after (blue) thiol-ene reaction



**SI Figure 10.** <sup>1</sup>H NMR spectra of (vinylbenzyl)trimethylammonium chloride before (red) and after (blue) thiol-ene reaction



**SI Figure 11.** Change in % transmittance as a function of alkene-to-thiol ratio for resins with fixed 40 wt% PEGdMA concentration (a) and resins with fixed 50 wt% solids concentration. As the alkene-to-thiol ratio is reduced towards unity, % transmittance of light through the material over the entire visible range is reduced, indicating the material is transitioning from transparent to opaque.



**SI Figure 12**. Curing and 3D printing of BMAP/PS80-SH resins. As shown on the left, the resins were transparent and stiff when cured in plates under UV light. However, the resin completely gelled / cured during printing as shown in the middle. On the right, the faint outline of the intended print (dogbone) could be seen under light embedded in a gel-like matrix.