Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Polymerization of α -olefins and their copolymerization with ethylene by half-sandwich

scandium catalysts with an N-heterocyclic carbene ligand

Yinran Wang,^{*a*} Lin Huang,^{*b,c*} Zhaomin Hou^{*a,b,c} and Fang Guo^{*a}

^a State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of

Technology, Dalian 116012, China. E-mail: guofang@dlut.edu.cn

^b Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. E-mail: houz@riken.jp

^c Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Fig. S1 ¹H-NMR spectrum of {Fluorenyl-H-(CH₂)₄-NHC-H}Br.

Fig. S5. ¹H-NMR spectrum of scandium complex **3a**.

Fig. S9 ¹H-NMR spectrum of the precipitate. (In a glovebox, 5 mL toluene solution of [Ph₃C][B(C₆F₅)₄] (46.1mg, 50µmol) was added to 10mL toluene solution of 2 (30.5mg, 50µmol) at room temperature and stirred for 1h. The participate was filtered and washed by toluene and 1-hexene. Then the participate was dried and dissolved in CDCl₃ for ¹H-NMR analysis. ¹H-NMR spectrum referred to: J. M. Farrell, J. A. Hatnean and D. W. Stephan, *J. Am. Chem. Soc.* 2012, **134**, 15728–15731.)

Fig. S10 Polymerization activity and molecular weight of polymer products before the 3rd addition and after the final reaction. (In a glovebox, 2 mmol 1-hexene was added to 12 mL toluene solution of **3b** (5.3 mg, 10 μmol) and [Ph₃C][B(C₆F₅)₄] (9.2 mg, 10 μmol) every 1 h for a total of five additions. The resulting mixture was poured into a large amount of methanol to precipitate the polymer product before the 3rd addition and after the final reaction.)

Fig. S11 ¹H-NMR spectrum of a 1-hexene homopolymer prepared by 3c at 25 °C.

Fig. S12 13 C-NMR spectrum of a 1-hexene homopolymer prepared by complex 3b at 25 °C.

Fig. S13 ¹H-NMR spectrum of a 1-octene homopolymer prepared by 3b at 25 °C.

45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 f1 (ppm)

Fig. S15 ¹H-NMR spectrum of a 1-dodecene homopolymer prepared by 3b at 25 °C.

Fig. S16 $\,^{13}\text{C-NMR}$ spectrum of a 1-dodecene homopolymer prepared by complex 3b at 25 °C.

Fig. S17 GPC curves of 1-hexene homopolymers prepared by complexes 3a, 3b and 3c at 25 °C.

Fig. S18 GPC curves of 1-hexene homopolymers prepared by 1 at -30 °C.

Fig. S19 GPC curves of 1-hexene homopolymers prepared by 2 at -30 °C.

Fig. S20 GPC curves of 1-hexene homopolymers prepared by 3b at 25 °C.

Fig. S21 GPC curves of 1-hexene homopolymers prepared by 3b at 80 °C.

Elution Time (min)

Fig. S22 GPC curves of 1-hexene homopolymers prepared by 3b at -30 °C.

Fig. S23 GPC curves of 1-hexene homopolymers prepared by 3a at 25 °C.

Fig. S24 DSC curves of 1-hexene, 1-octene and 1-dodecene homopolymers prepared by 3b.

Fig. S25 GPC curves of ethylene homopolymers prepared by 1, 3a, 3b and 3c.

Fig. S26 DSC curves of ethylene homopolymers prepared by 1, 2, 3a, 3b and 3c.

Fig. S27 ¹H-NMR spectra of 1-hexene-ethylene copolymers prepared by **3b** with different polymerization time.

Fig. S28 DSC curves of 1-hexene-ethylene copolymers prepared by 3b with different polymerization time.

Fig. S29 GPC curves of 1-hexene-ethylene copolymers prepared by 3b at different temperature.

Fig. S30 $\,^{1}$ H-NMR spectra of 1-hexene-ethylene copolymers prepared by complex 1, 3a, 3b and 3c.

Fig. S31 ¹³C-NMR spectra of 1-hexene-ethylene copolymers prepared by 1 and 3b.

Fig. S32 ¹³C-NMR spectra of 1-hexene-ethylene copolymers prepared by **3b** at different temperature.

Fig. S33 ¹³C-NMR spectra of 1-hexene-ethylene copolymers prepared by 3b.

Fig. S34 ¹³C-NMR spectra of 1-octene-ethylene copolymers prepared by 3b.

Fig. S35 ¹³C-NMR spectra of 1-dodecene-ethylene copolymers prepared by 3b.

Fig. S36 DSC curves of 1-hexene-ethylene copolymers prepared by 1, 2, 3a, 3b, 3c.

Fig. S37 ¹H-NMR spectra of 1-hexene-ethylene copolymers prepared by **3b** with different 1-hexene content.

Fig. S38 ¹H-NMR spectra of 1-octene-ethylene copolymers prepared by **3b** with different 1-octene content.

Fig. S39 ¹H-NMR spectra of 1-dodecene-ethylene copolymers prepared by 3b with different 1-dodecene content.

Fig. S40 GPC curves of 1-hexene-ethylene copolymers prepared by 3b different 1-hexene content.

Fig. S41 GPC curves of 1-octene-ethylene copolymers prepared by 3b with different 1-octene content.

Fig. S42 GPC curves of 1-dodecene-ethylene copolymers prepared by 3b with different 1-dodecene content.

Fig. S43 Plot of ethylene consumption (solid triangle), 1-hexene consumption (solid circle) and 1-hexene molar content (solid diamond) as a function of polymerization time.

Fig. S44 Computed energy profiles for1-hexene or ethylene insertion after an ethylene insertion into Sc-C bond (a) and1-hexene or ethylene insertion after an 1-hexene insertion into Sc-C bond (b).

	2	3a	3b
Formula	C33 H55 N2 Sc Si3	C31 H47 N2 Sc Si2	C30 H45 N2 Sc Si2
Mw	609.02	548.84	534.82
Crystal system	monoclinic	monoclinic	tetragonal
Space group	P1 _{21/n1}	P1 _{21/c1}	P-4 _{21c}
a[Å]	11.6387(8)	10.3315(8)	17.6502(16)
b[Å]	17.0971(12)	17.5787(12)	17.6502(16)
c[Å]	19.0816(12)	18.0108(13)	20.387(3)
α[°]	90	90	90
β[°]	93.598(2)	99.520(2)	90
γ[°]	90	90	90
V[ų]	3789.5(4)	3226.0(4)	6351.2(14)
Z	4	4	8
$ ho_{calcd}$ [Mg/m ³]	1.067	1.130	1.119
μ [mm ⁻¹]	0.311	0.323	0.327
F (000)	1320	1184	2304
θ range [°]	2.45 to 27.68	2.310 to 26.020	2.307 to 27.546
no. of reflns	55814	34148	30781
collected			
no. of indep reflns	6450	4605	6518
GOF	1.187	1.037	1.267
R [I >2σ (I)]	0.0858	0.0486	0.0609
Rw	0.1517	0.1137	0.1212

Table S1 Crystal data, data collection and processing parameters for complexes 2, 3a and 3b

Run	Cat	1-hexene	Т	t	Yield	Activity	$M = (1 \cap 4)$	
	Cal.	(mmol)	(°C)	(min)	(%)	Activity	<i>W</i> _n (10)	w/w/wn
1	1	2.5	-30	30	99	42	11.0	1.34
2	1	5	-30	30	93	78	17.1	1.53
3	1	10	-30	120	95	40	23.6	1.58
4	1	15	-30	120	97	61	25.6	1.96
5	1	20	-30	120	95	80	26.5	1.74
6	2	2.5	-30	30	99	42	14.9	1.66
7	2	5	-30	30	98	82	30.2	1.44
8	2	10	-30	120	99	42	58.8	1.51
9	2	15	-30	120	90	89	75.1	1.52
10	2	20	-30	120	85	71	106.0	1.47
11	3b	2.5	25	5	99	252	1.7	2.11
12	3b	5	25	5	94	477	3.8	2.12
13	3b	10	25	5	95	960	7.8	2.14
14	3b	15	25	30	99	250	9.2	2.23
15	3b	20	25	30	92	328	12.4	2.12
16	3b	2.5	-30	120	99	11	9.5	1.45
17	3b	5	-30	120	97	20	17.8	1.61
18	3b	10	-30	120	94	39	34.9	1.50
19	3b	15	-30	120	91	63	39.1	1.70
20	3b	20	-30	120	90	76	40.5	1.73
21	3c	2.5	25	120	95	10	1.7	1.75
22	3c	5	25	120	92	19	1.8	1.87
23	3c	10	25	180	90	25	1.9	1.87
24	3c	15	25	720	95	10	2.2	1.82
25	3c	20	25	720	95	13	1.8	2.21

Table S2 Polymerization of 1-hexene by scandium complexes^a

^{*a*} Condition: [**Sc**] (10 μmol), [Ph₃C][B(C₆F₅)₄] (10 μmol), monomer concentration (0.83 mol/L). ^{*b*} Given in kg polymer mol⁻¹s_c·h⁻¹. ^{*c*} Determined by GPC.

Table S3 Polymerization of ethylene by scandium complexes ^a

Run	Cat	т (°С)	Yield (g)	Activity ^b	<i>M</i> _n ^{<i>c</i>} (10 ⁴)	$M_{\rm w}/M_{\rm n}^{c}$	7 ^m ^d (°C)
1	1	-30	1.18	1416	169.6	2.61	138
2	2	-30	0.29	348	n.d. ^e	n.d.	139
3	3a	25	0.32	384	15.1	15.63	138
4	3b	25	0.95	1140	47.2	2.51	140
5	3c	25	0.45	540	21.1	6.62	136

^{*a*} Condition: [**Sc**] (10 μ mol), [Ph₃C][B(C₆F₅)₄] (10 μ mol), toluene (30 mL), time (5 min), ethylene (0.1 MPa). ^{*b*} Given in kg polymer mol⁻¹_{Sc}·h^{-1. c}

Determined by GPC. ^d Determined by DSC. ^e not determined because of the very low solubility in organic solvents.