Flexibility-driven 1D-structural preference in *bis*-terpyridine-Fe(II)-Metallo-supramolecular polymer possessing potential tricolor electrochromism

Shivani Tripathi, [#] Sayan Halder, [#] Banchhanidhi Prusti, Chanchal Chakraborty* and Manab

Chakravarty *

Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani,

Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad-500078, India

Emails-

Content

- 1. DFT Optimised structure of **DPATPY** (Fig.S1)
- 2. FT-IR spectrum of **DPATPY** (Fig.S2)
- 3. FT-IR spectrum of FeDPATPY (Fig.S3)
- 4. Comparative spectra of **DPATPY** and **FeDPATPY** (Fig.S4)
- 5. ¹HNMR spectrum of **N-heptyl diphenylamine** (1) (Fig.S5)
- 6. ¹³C NMR spectrum of N-heptyl diphenylamine (1) (Fig.S6)
- 7. ¹HNMR spectrum of **N-heptyl DPA dialdehyde** (2) (Fig.S7)
- 8. ¹³CNMR spectrum of N-heptyl DPA dialdehyde (2) (Fig.S8)
- 9. ¹HNMR spectrum of **DPATPY** (Fig.S9)
- 10. ¹³CNMR spectrum of **DPATPY** (Fig.S10)
- 11. ESI-MS spectrum of **DPATPY** (Fig.S11)
- 12. ¹HNMR spectrum of FeDPATPY (Fig.S12)
- 13. Lifetime decay profile of DPATPY and FeDPATPY (Fig.S13)
- 14. Lifetime parameters (Table S1)
- 15. Crystallographic parameters of the ligand **DPATPY** (Table S2)
- 16. Cross-sectional SEM image to derive the **Fe-DPATPY** film thickness on ITO-coated glass. (Fig.S14)

Fig S1: (a) DFT optimized structure using B3lyp/6-31g(d) functional; the angles (°) are determined using mercury software. For the simplicity of DFT calculation, the N-alkyl chain is truncated to N-Methyl. (b) HOMO (Highest occupied molecular orbital) (c) LUMO (Lowest unoccupied molecular orbital) with their individual energy in eV for DPATPY.

Fig. S2: FT-IR spectrum of DPATPY

Fig. S3: FT-IR spectrum of Fe-DPATPY

Fig. S4: Comparative FT-IR spectra of **DPATPY** and **Fe-DPATPY** (a) Full IR spectra (b) expanded spectra from 2000 to 500 cm⁻¹.

Fig.S5: ¹H NMR spectrum of N-heptyl diphenylamine (1) in CDCl₃

Fig.S6: ¹³C NMR spectrum of N-heptyl diphenylamine (1) in CDCl₃

Fig.S7: ¹H NMR of N-heptyl DPA dialdehyde; DPACHO in CDCl₃

Fig.S8: ¹³C-NMR of N-heptyl DPA dialdehyde; DPACHO in CDCl₃

Fig. S9: ¹H-NMR spectrum of DPATPY in CDCl_{3.}

Fig. S10: ¹³C-NMR spectrum of DPATPY in CDCl₃.

Fig. S11: ESI- MS spectrum of DPATPY

Fig. S12: ¹H NMR spectrum of FeDPATPY in CD₃OD

Fig. S12a: ¹H NMR spectrum of (a) FeDPATPY in CD₃OD (b) DPATPY in CDCl₃

Fig. S13: Life Time decay profile of DPATPY and FeDPATPY

 Table S1a:
 The lifetime parameters

Samples α_1 α_2 α_3 τ_1 τ_2 τ_3 χ^2 τ (ns

DPATPY	0.34	0.66	-	0.43	6.42	-	1.2	6.22
Fe DPATPY	0.13	0.71	0.16	0.16	3.34	6.81	1.0	4.42

 Table S1b:
 Other fluorescence parameters

Samples	λ_{em} (nm)	Φ _f (%)	τ (ns)	k _r (10 ⁶ s ⁻¹)	k _{nr} (10 ⁸ s ⁻¹)
DPATPY	499	2.5	6.22	4.02	1.57
FeDPATPY	482	2.6	4.42	5.88	2.20

Where, $\lambda_{em} = \text{Emission maxima}$, $\Phi_f = \text{relative quantum yield}$, $\tau = \text{Fl. lifetime } k_r = \text{Radiative rate constant} = \Phi_f / \tau$, $k_{nr} = \text{Nonradiative rate constant} = (1/\tau) - k_r$

Table S2: All the crystallographic parameters of the ligand DPATPY

Compounds	DPATPY				
Emp. formula	C ₄₉ H ₄₃ N ₇				
Formula weight	729.90				
Crystal system	monoclinic				
Space group	$P2_1/n$				
a/Å	14.5275(2)				
b/Å	8.93710(10)				
c/Å	31.1191(5)				
α/°	90				
β/°	102.802(2)				
γ/°	90				
Volume/Å ³	3939.87(10)				
Ζ	4				
$D_{calc}/g \ cm^3$	1.231				
µ/mm ⁻¹	0.573				
F (000)	1544.0				
Data/restraints/par ameters	8357/0/506				
S	1.100				
	$R_1 = 0.0488,$				
$KI [I \ge 2\sigma (I)]$	$wR_2 = 0.1338$				
wDO [all data]	$R_1 = 0.0558,$				
WKZ [all data]	$wR_2 = 0.1385$				
Max./min.					
residual electron	0.23/-0.26				
dens. [e Å ⁻³]					

Fig. S14: Cross-sectional SEM image to derive the Fe-DPATPY film thickness on ITO-coated glass.

Fig. S15. (a) Emission spectra (excitation at 372 nm) and (b) the emission color change of the Fe-DPATPY-based ECD during the electrofluorochromism study. The photos are taken upon 365 nm UV-light irradiation.