Supporting Information

Nickel phosphonate-derived $Ni_2P@N$ -doped carbon co-catalyst with built-in electron-bridge for boosting the photocatalytic hydrogen evolution

Li-Jiao Gao[†], Xin-Lian Song[†], Jin-Tao Ren, Zhong-Yong Yuan^{*}

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

* Corresponding author. *E-mail address:* zyyuan@nankai.edu.cn

[†] These two authors contribute equally.

1. Experimental section

1.1 Materials

All the chemical reagents of analytical grade were used as received. Cadmium acetate (Cd(Ac)₂·2H₂O, \geq 99.5%) and Zinc acetate (Zn(Ac)₂·2H₂O, \geq 99.5%) were purchased from Shengfeier Biotechnology Service Center, Tianjin. 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP, \geq 99.5%) was purchased from Tianjin Hongfengweili Technology Development Co., Ltd. Nickel nitrate (Ni(NO₃)₂, \geq 98.0%), sodium sulfide nonahydrate (Na₂S·9H₂O, 98.0%) and melamine (C₃H₆N₆, \geq 99.0%) were purchased from Tianjin Damao Chemical Reagent Works (China). Sodium hypophosphite (NaH₂PO₂, \geq 99.0%) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Nonionic triblock copolymer F127 (EO₁₀₆PO₇₀EO₁₀₆) were purchased from Beijing Fenglijingqiu Pharmaceutical Co., Ltd. Sodium sulfite anhydrous (Na₂SO₃, 97.0%) was from Tianjin Jiangtian Chemical Technology Co., Ltd.

1.2 Apparent quantum efficiency (AQE) calculation

The power of light after the bandpass filter (420 nm) and the irradiation area were measured to be 25.22 mW·cm⁻² and 63.62 cm². The apparent quantum efficiency (AQE) was defined by the following equation:

AQE(%) = $\frac{\text{the number of hydrogen molecules } \times 2}{\text{the number of incident photons}} \times 100\%$

2. Supplementary Figures

Figure S1. The TG curve of $Ni_2P@CN$.

The mass ration of Ni₂P to CN was calculated according to the equations:

$$m_{Ni_2P} = \frac{3m_{Ni_3(PO_4)_2}}{2M_{Ni_3(PO_4)_2}} M_{Ni_2P}$$
(1)

$$\frac{m_{Ni_2P}}{m_{CN}} = \frac{m_{Ni_2P}}{m_0 - m_{Ni_2P}}$$
(2)

In the two equations, $m_{Ni_3(PO_4)_2}$ is the remaining mass at the end of thermogravimetric curve (Figure S1), 6.294 mg. m₀ is the initial mass of Ni₂P@CN, 7.742 mg. The $M_{Ni_3(PO_4)_2}$ and M_{Ni_2P} refer to the molar mass of Ni₃(PO₄)₂ and Ni₂P, 366.02 g/mol and 148.35 g/mol, respectively. The m_{Ni_2P} and m_{CN} represent the mass of Ni₂P and CN in Ni₂P@CN, respectively.

Figure S2. XRD patterns of CZS/Ni₂P@CN-*x*% composites with various cocatalyst contents.

Figure S3. Survey XPS spectra of (a)Ni₂P@CN, (b) CZS/Ni₂P@CN-5% and Cd_{0.5}Zn_{0.5}S.

Figure S4. PL spectra of CZS/Ni₂P@CN-*x* (*x* represents 1%, 3%, 5% and 7%)

3. Supplementary Table

Sample	$S_{BET}/m^2 \ g^{-1}$	Pore volume/cm ³ g ⁻¹
Cd _{0.5} Zn _{0.5} S	52	0.22
CZS/Ni ₂ P@CN-5%	75	0.21
CZS/Ni ₂ P	70	0.38
CZS/Ni ₂ P/CN	51	0.26

Table S1. Surfaces area and pore structures of the prepared samples.

Table S2. The molar ratio of Cd(Zn)/Ni and H_2 production of the samples.

Samples	Molar ratio of Cd(Zn)/Ni	H_2 production (mmol h ⁻¹ g ⁻¹)
CZS		12.35
CZS/Ni ₂ P@CN-1%	1:0.016	12.57
CZS/Ni ₂ P@CN-3%	1:0.048	21.42
CZS/Ni ₂ P@CN-5%	1:0.080	28.52
CZS/Ni ₂ P@CN-7%	1:0.112	22.06