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1. Supplementary Materials and Methods

1.1 Reagents 

All of the chemicals and solvents in this work were used as received without further purification. 

Thiourea was bought from Shanghai Macklin Biochemical Technology Co., Ltd. Triethanolamine 

(TEOA, 99.8%), acetonitrile (MeCN, 99.9%), Cu(NO3)2∙3H2O and ethylene glycol (EG) were 

purchased from Sinopharm Chemical Reagent Co., Ltd. (China). Ethylenediamine (> 99.5%), 

Cd(NO3)2∙4H2O and Na2SO4 were purchased from Aladdin Ltd. (Shanghai, China). Na2S.9H2O 

(99.5%) was bought from Shanghai Titan Scientific Co., Ltd. Reaction solutions and stock solutions 

were prepared by using deionized water supplied with a UPT–I–5T ultrapure water system.

1.2 Characterizations

The crystal structure was characterized by X–ray powder diffraction (PXRD) by using a PANalytical 

X’PertPRO diffractometer (Cu radiation, λ = 0.154 nm) operated at 40 kV and 40 mA (PANalytical, 

Holland) in 2θ range of 10–80°. Scanning electron microscopy (SEM) images were photographed by 

using a SU8020 with a working voltage of 10 kV. Transmission electron microscopy (TEM) and 

high–resolution TEM (HR–TEM) images were recorded by using a Tecnai G2 F30 S–TWIN 

working at 200 kV. The inter–planer distances and the inverse Fast Fourier Transform (FFT) were 

calculated using the Digital Micrograph software. X–ray photoelectron spectroscopy (XPS) 

measurements were performed on a Thermo Fisher ESCALAB 250Xi spectrometer with Al Kα X–

ray source (15 kV, 10 mA). In order to compensate effects related to charge shifts C 1s peak at 284.8 

eV was used as internal standard. Diffuse reflectance spectra (DRS) were recorded on a Shimadzu 

UV–vis spectrophotometer (UV–2600) with BaSO4 as the background. The photoluminescence (PL) 

and time-resolved PL spectra were collected on a FLS 1000 fluorescence spectrometer at room 

temperature, moreover the excitation wavelength was 350 nm. Cd and Cu were determined using a 

Jobin Yvon Ultima2 inductively coupled plasma atomic emission spectrometer (ICP–AES). The 

specific surface area was determined by the Brunauer–Emmett–Teller (BET) method with N2 

adsorption at 77 K (TriStar II 3020). 
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2. Supplementary Tables
Table S1. ICP–AES results of the CdS–CuS–x (x = 1/2/3/4/5).

Composite photocatalyst Cd (mol%) Cu (mol%) Cd : Cu (molar ratio)

CdS–CuS–1 46.0 10.5 1 : 0.23

CdS–CuS–2 42.8 13.7 1 : 0.32

CdS–CuS–3 37.6 18.7 1 : 0.5

CdS–CuS–4 25.8 26.6 1 : 1.0

CdS–CuS–5 6.45 55.0 1 : 8.5

Table S2. ICP–AES results of the CdS/CuS–x (x = 1/2/3/4/5).

Composite photocatalyst Cd (mol%) Cu (mol%) Cd : Cu (molar ratio)

CdS/CuS–1 63.6 8.6 1:0.14

CdS/CuS–2 59.9 14.1 1:0.24

CdS/CuS–3 55.9 20.3 1:0.36

CdS/CuS–4 50.4 27.8 1:0.55

CdS/CuS–5 42.1 41.2 1:0.97

Table S3. BET surface area results of the CdS, CdS–CuS–2, CdS/CuS–2 and CuS.

Photocatalyst BET surface area (m² g-1)

CdS 25.2

CuS 26.9

CdS–CuS–2 26.4

CdS/CuS–2 24.8
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Table S4. Rations of H2/CO of the CdS–CuS photocatalytic reduction of CO2 to syngas.

Composite
photocatalyst

H2 production rate
(μmol·h–1·g–1)

CO production rate
(μmol·h–1·g–1)

H2:CO

CdS–CuS–1 1499.8 45.3 33:1

CdS–CuS–2 2416.5 203.4 12:1

CdS–CuS–3 1251.6 98.9 13:1

CdS–CuS–4 487.0 23.6 21:1

CdS–CuS–5 16.0 18.5 1:1

Table S5. Rations of H2/CO of the CdS/CuS photocatalytic reduction of CO2 to syngas.

Composite
photocatalyst

H2 production rate
(μmol·h–1·g–1)

CO production rate
(μmol·h–1·g–1)

H2:CO

CdS/CuS–1 1213.0 13.5 90:1

CdS/CuS–2 1329.6 34.4 39:1

CdS/CuS–3 1319.2 33.9 39:1

CdS/CuS–4 1143.4 27.3 42:1

CdS/CuS–5 561.7 20.8 27:1
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Table S6. Comparison of various CdS–based catalysts for the photocatalytic CO2 reduction.

Photocatalyst
Sacrificial

agent

CO production 
rate

(μmol·h–1·g–1)

CH4 production 
rate

(μmol·h–1·g–1)

Reference

ZnS/CdS/rGO TEOA 9.69 / S1

CdS/Ni(bpy)3Cl2 TEOA 46.9 / S2

CdS/TiO2 / 3.62 / S3

CdS/CdV2O6 Na2S/Na2O3 / 2.98 S4

CdS/Ni9S8/Al2O3 TEOA 121 / S5

CdS/NH2–UiO–66/chitosan TEOA  96.98 / S6

CdS/FeTCPP TEOA 7.16 / S7

Ni/CdS QDs TEOA 9.5 1.1 S8

NG/CdS / 2.6 0.3 S9

FeOOH/CdS / 12.55 5.88 S10

CdS–CuS TEOA 203.4 ± 15.7 2.8 ± 0.3 this work
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3. Supplementary figures

Fig. S1. Photographs of as–prepared materials.

Fig. S2. EDX spectrum of CdS–CuS–2.

Fig. S3. PXRD of the as–prepared samples of CdS/CuS–x (x = 1/2/3/4/5). 
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Fig. S4. (a) SEM images of CdS–CuS–2; (b) SEM images of CdS/CuS–2 (c, d) TEM images of 
CdS/CuS–2; (e) HRTEM of CdS/CuS–2.

Fig. S5. PXRD of the as–prepared and recycled samples of CdS–CuS–2.
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Fig. S6. TEM images of CdS−CuS−2 after photocatalytic reactions.

Fig. S7. High–resolution XPS spectra of Cu 2p spectra of the as–prepared and recycled samples of 
CdS–CuS–2.

Fig. S8. Mott–Schottky plots of CdS (a) and CuS (b).
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Fig. S9. VB–XPS curves of CdS (a) and CuS (b).

Fig. S10. Time–resolved PL spectra of CdS, CuS, CdS–CuS–2 and CdS/CuS–2.
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Fig. S11. Transient photocurrent response plots of CdS, CuS, CdS–CuS–2 and CdS/CuS–2.
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