Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Material

A Nickel–Salen as a Model for Bifunctional OER/UOR Electrocatalysts: Pyrolysis

Temperature–Electrochemical Activity Interconnection

Li Li^a, Lu Wang^a, Xu Peng^{a,*}, Shi Tao^{b*}and Ming-Hua Zeng^{a,c*}

^a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China. ^b School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, P. R. China.

^c School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guilin, 541004, P. R. China.

Contents

Table S1	Crystallographic data for compound S-Ni.
Table S2	Selected Bond lengths (Å) and angles (°) for compound S-Ni.
Table S3	Element Ni content at different pyrolysis temperatures of S-Ni.
Table S4	Phase information and phase changes for S-Ni-T (700, 800,900).
Table S5	Fitting results for C 1s spectra of various catalysts with different pyrolysis temperatures.
Table S6	Fitting results for O 1s spectra of various catalysts with different pyrolysis temperatures.
Table S7	Fitting results for Ni 2p spectra of various catalysts with different pyrolysis temperatures.
Table S8	Fitting results for N 1s spectra of various catalysts with different pyrolysis temperatures.
Table S9	EXAFS fitting parameters at the Ni K-edge for various samples.
Table S10	Summary of TOF and TON of catalysts in this study.
Table S11	EXAFS fitting parameters at the Ni K-edge for After OER/UOR.
Table S12	The estimated volatile products released during the various stages of the thermal decomposition process of the product.
Table S13	Representative high-efficiency OER/UOR catalysts formed by different processing methods from different Ni-based precursors.
Figure S1	View of the S-Ni Complex showing the intramolecular.
Figure S2	The IR spectrum for compound for S-Ni.
Figure S3	TEM images of the S-Ni-T at different pyrolysis temperatures.
Figure S4	High resolution XPS spectra of C 1s peak of S-Ni-T at different pyrolysis temperatures.
Figure S5	High resolution XPS spectra of O 1s peak of S-Ni-T at different pyrolysis temperatures.
Figure S6	Composition of S-Ni-T materials as a function of their pyrolysis temperatures: percentages of the different: (a) C and (b) O species present in S-Ni-T.
Figure S7	High resolution XPS spectra of Ni 2p peak of S-Ni-T at different pyrolysis temperatures.
Figure S8	High resolution XPS spectra of N 1s peak of S-Ni-T at different pyrolysis temperatures and N species present in S-Ni-T.
Figure S9	Composition of S-Ni-T materials as a function of their pyrolysis temperatures: percentages of the different: Ni species present in S-Ni-T.
Figure S10	BET results at 77K from N_2 adsorption isothermals for all samples.

Figure S11	TG profile of 3-MeOsalophen-ligand (Bis[3-Methoxysalicylydene]-1,2				
	Iminophenylenediamine).				
Figure S12	MS curve of 3-MeOsalophen-ligand on pyrolysis.				
Figure S13	Cyclic voltammetry curves of S-Ni-T at different sweeping speeds in 1.0 M KOH aqueous solution.				
Figure S14	Cyclic voltammetry curves of S-Ni-T at different sweeping speeds at 1 M KOH+0.33M Urea solution.				
Figure S15	C _{dl} values of S-NI-T(700, 800, 900) catalysts according to CV curve fitting.				
Figure S16	Powder XRD patterns of S-Ni-800 before and after.				
Figure S17	HRTEM image of S-Ni-800 after UOR.				
Figure S18	High resolution XPS spectrum of S-Ni-800 after OER.				
Figure S19	High resolution XPS spectrum of S-Ni-800 after long lime UOR.				

Table S1 Crystallographic data for S-Ni.

Compounds	S-Ni
Formula	C ₂₆ H ₂₈ Ni N ₃ O ₄
Formula weight	505.22
Т (К)	293
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> (Å)	13.4241(3)
b (Å)	14.0617(2)
<i>c</i> (Å)	13.1673(3)
α (°)	90
в (°)	107.797(2)
γ (°)	90
<i>V</i> (ų)	2366.59(9)
Ζ	4
D_{c} .(g cm ⁻³)	1.418
μ (mm ⁻¹)	1.496
Reflns coll.	12376
Unique reflns	4228
<i>R</i> _{int}	0.0163
$R_1^a[l \ge 2\sigma(l)]$	0.0350
wR_2^b (all data)	0.1084
GOF	1.060

 ${}^{a}R_{1}=\sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot {}^{b}wR_{2}=[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

Table S2 Selected Bond lengths (Å) and angles (°) for S-Ni.

Ni1-03	1.8414(12)	Ni1-02	1.8420(12)	Ni1-N2	1.8522(13)
O3-Ni1-N2	95.16(6)	03-Ni1-N1	178.80(6)	02-Ni1-03	83.64(5)
02-Ni1-N1	95.18(6)	N2-Ni1-N1	86.02(6)	Ni1-N1	1.8562(14)
O2-Ni1-N2	178.59(6)				

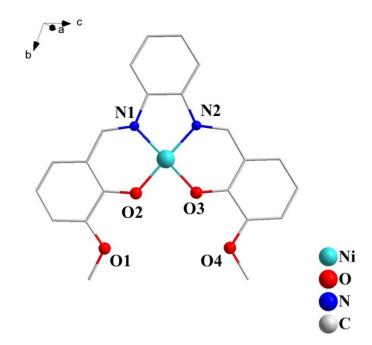


Figure S1 View of the S-Ni Complex showing the intramolecular.

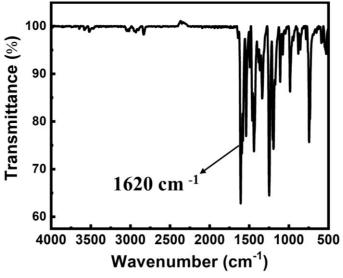
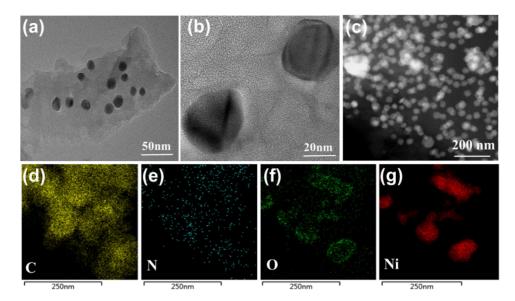



Figure S2 The IR spectrum for S-Ni.

Pyrolysis Temperature	Ni (wt %)
700 °C	61.2
800 °C	67.9
900 °C	66.1

 Table S4 Phase information and phase changes for S-Ni-T (700, 800,900).

Phases Samples	NiO JCPDS 47-1049	Ni JCPDS 04-0840
S-Ni-700	(111) (200) (220)	(111) (200) (220)
S-Ni-800	(200) (220)	(111) (200) (220)
S-Ni-900	(111) (200) (220)	(111) (200) (220)

Figure S3 HRTEM image of S-Ni-T synthesized by S-Ni at pyrolysis temperature of (a) 700°C, (b) 900 °C. (c) HAADF image of S-Ni-800. (d-g) Elemental mapping images of S-Ni-800.

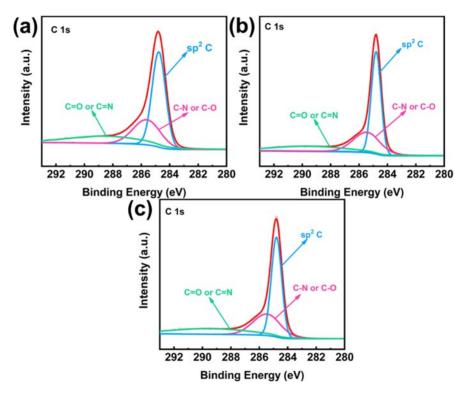


Figure S4 High resolution XPS spectrum of C 1s Peak of S-Ni-T synthesized by S-Ni at (a) 700 °C, (b) 800 °C. (c) 900 °C.

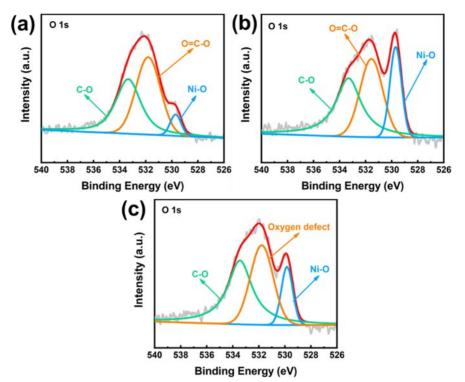
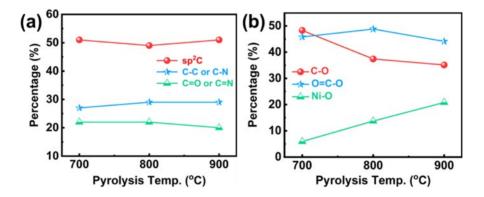



Figure S5 High resolution XPS spectrum of O 1s Peak of S-Ni-T synthesized by S-Ni at (a) 700 °C, (b) 800 °C, (b) 900 °C.

Figure S6 Composition of S-Ni-T as a function of pyrolysis temperatures: percentages of the difference: (a) C and (b) O species presented in S-Ni-T.

Species	sp²C (%)	C-N or C-O (%)	C=N or C=O (%)
Samples	284.8 eV	285.4-285.6 eV	288.3-288.7 eV
700 °C	50.9	26.7	22.4
800 °C	49.5	28.5	22.0
900 °C	51.1	28.8	20.1

Table S6 Fitting results for O 1s spectra of S-Ni with different pyrolysis temperatures.

Species	Ni-O (%)	O-C=O (%)	C-O (%)
Samples	530.0 eV	531.8 eV	533.5 eV
700 °C	5.9	48.3	45.8
800 °C	13.8	37.4	48.8
900 °C	20.8	35.1	44.1

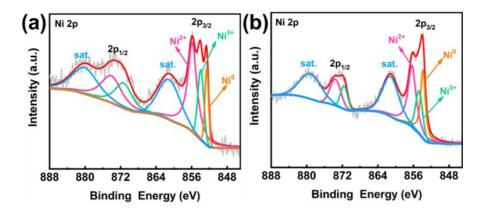


Figure S7 High resolution XPS spectra of Ni 2p peaks of S-Ni-T synthesized by S-Ni (a) 700 °C, (b) 900 °C.

Table S7 Fitting results of Ni 2p spectra of S-Ni with different pyrolysis temperatures.

Species	Ni (%)	Ni ²⁺ (%)	Ni ³⁺ (%)
Samples	852.6-853.0 eV	855.7-856.2 eV	853.7-854.3 eV
700 °C	15.5	62.4	22.1
800 °C	8.4	61.2	30.4
900 °C	28.7	48.5	22.8

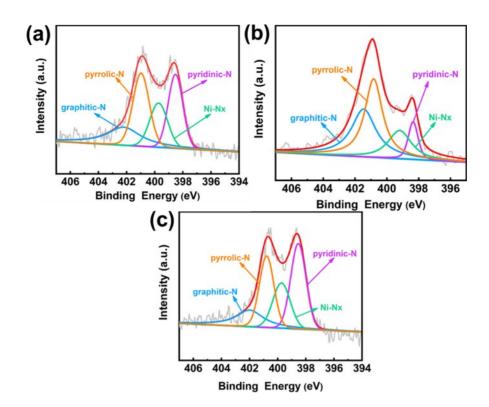
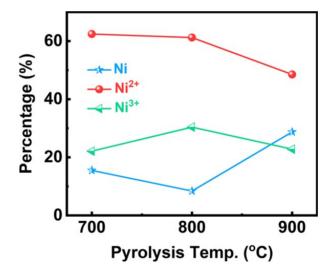



Figure S8 High resolution XPS spectrum of N 1s peak of S-Ni-T synthesized by S-Ni at (a) 700 °C, (b) 800 °C, (c) 900 °C.

Figure S9 Composition of S-Ni-T as a function of pyrolysis temperatures: percentages of the difference: Ni species presented in S-Ni-T.

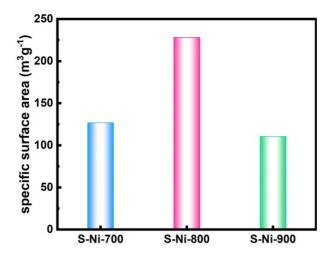


Figure S10 BET results at 77K from N_2 adsorption isothermals for all samples.

Table S8 Fitting results for N 1s spectra of S-Ni with different pyrolysis temperatures.

Species	Graphitic-N (%)	Ni-N _x (%)	Pyridine-N (%)	Pyrrolic-N (%)
Samples	402.2 eV	399.7 eV	398.8 eV	400.9 eV
700 °C	22.7	19.6	26.9	30.8
800 °C	33.0	17.1	19.7	31.2
900 °C	34.1	17.8	8.5	39.7

 Table S9 EXAFS fitting parameters at the Ni K-edge for various samples.

Sample	Shell	CN	<i>R</i> (Å)	σ²(Ų)	R _f (%)
Ni foil	Ni-Ni	12	2.48	0.006	0. 3
Nicompound	Ni-N/O	5.73	1.859	0.002	0.7
Ni-compound	Ni-Ni	8.5	2.48	0.002	0.7
S-Ni-700	Ni-N/O	0.74	2.00	0.010	
5-INI-700	Ni-Ni	9.26	2.48	0.006	1.1
C NI: 800	Ni-N/O	0.90	2.06	0.004	1.2
S-Ni-800	Ni-Ni	9.87	2.48	0.006	1.2
	Ni-N/O	0.81	2.07	0.0045	1.0
S-Ni-900	Ni-Ni	9.92	2.48	0.0055	1.0

CN: coordination numbers; *R*: bond distance; σ^2 : Debye-Waller factors; *R* factor: goodness of fit. *S*02 was set to 0.815, according to the experimental EXAFS fit of Ni foil reference by fixing CN as the known crystallographic value.

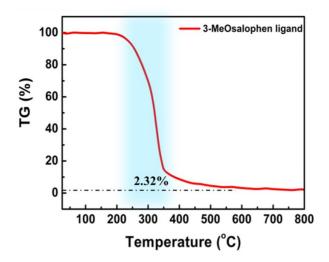
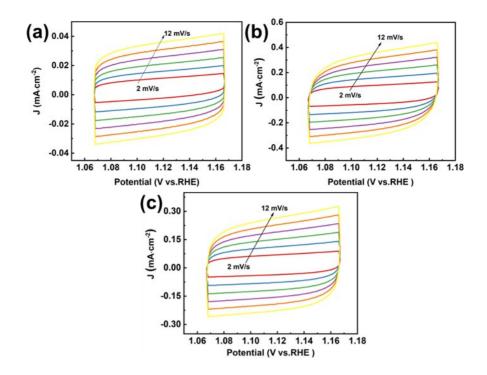


Figure S11 Thermogravimetric curves of 3-MeOsalophen-ligand.

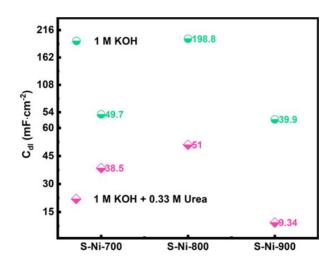
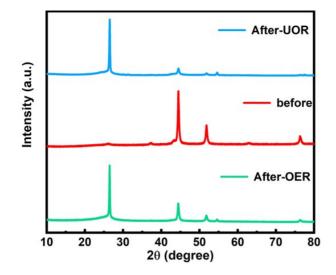

Figure S12 MS curve of 3-MeOsalophen-ligand.

Figure S13 Cyclic voltammograms (CV) measured at scan rates of 2, 4, 6, 8, 10, and 12 mV \cdot s⁻¹ on the modified electrode of the pyrolysis product of S-Ni in 1 M KOH aqueous solution in the double-layer capacitor charging region. (a) S-Ni-700, (b) S-Ni-800, (c) S-Ni-900.

Figure S14 Cyclic voltammograms (CV) measured at scan rates of 2, 4, 6, 8, 10, and 12 mV \cdot s⁻¹ on the modified electrode of the pyrolysis product of S-Ni in 1 M KOH + 0.33 M urea aqueous solution in the double-layer capacitor charging region. (a) S-Ni-700, (b) S-Ni-800, (c) S-Ni-900.

Figure S15 C_{dl} values of S-NI-T(700, 800, 900) catalysts according to CV curve fitting. Green; in 1 M KOH. Pink; in 1 M KOH +0.33 M Urea.

The TOF value was calculated according to the following equation^[S15-S17]:


$$TOF = \frac{j * A}{n * F * N} \tag{1}$$

j is obtained at a given overpotential, A is the surface area of the electrode (both front and back sides total about 0.25 cm²), n is the number of electrons transferred in the electrocatalytic reaction, F is the Faraday constant (96485 C/mol), N is the mole number of metal atoms on the electrode. In this work, since some of these metal sites in the catalyst were electrochemically non-accessible, all the metal ions were assumed to exist on the reactive surface. The turnover frequencies (TOFs) were calculated to assess the intrinsic activity of the S-Ni-700, S-Ni-800 and S-Ni-900 catalysts. The TOF values of S-Ni-700, S-Ni-800 and S-Ni-900 catalysts were 0.11, 0.21 and 0.08 s⁻¹ at 1.53 V in 1 M KOH, In 1 M KOH+0.33 M Urea solution, the TOF values are 0.44 s⁻¹, 0.48 s⁻¹, and 0.33 s⁻¹, respectively, indicating that S-Ni-800 exhibits higher intrinsic activity than other catalysts.

 $TON = \frac{The number of electrons participating in the reaction}{TON}$

Table S10 Summary of TOF and TON of catalysts in this study.

Sample	1M KO	н	1M KOH+0	.33M Urea
	TOF/s ⁻¹	TON/%	TOF/s ⁻¹	TON/%
S-Ni-700	0.11	23.6	0.44	3.0
S-Ni-800	0.21	90.0	0.48	5.5
S-Ni-900	0.08	18.8	0.33	4.0

Figure S16 Powder XRD patterns of S-Ni-800 before and after the catalysis were in 1M KOH solution and 1 M KOH+0.33 M Urea.

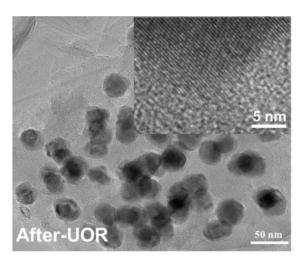


Figure S17 HRTEM image of S-Ni-800 after UOR.

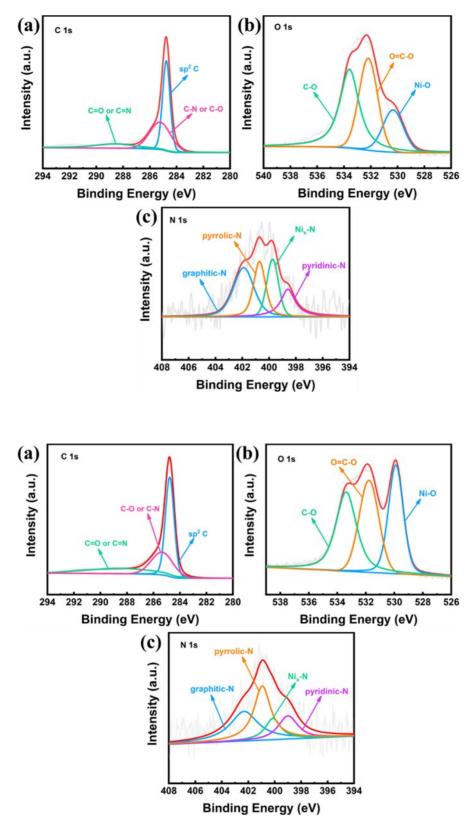


Figure S18 High resolution XPS spectrum of S-Ni-800 after long lime OER. (a) C1s. (b) O1s. (c) N1s.

Figure S19 High resolution XPS spectrum of S-Ni-800 after long lime UOR. (a) C1s. (b) O1s. (c) N1s.

		-				
Sample	Shell	СN	<i>R</i> (Å)	σ²(Ų)	<i>R_f</i> (%)	
Ni foil	Ni-Ni	12	2.48	0.006	0. 5	
Beifore	Ni-N/O	0.90	2.06	0.004	1.2	
	Ni-Ni	9.87	2.48	0.006		
After OER	Ni-N/O	1.03	2.03	0.006	1.4	
	Ni-Ni	9.29	2.48	0.018	1.4	
After UOR	Ni-N/O	1.69	2.04	0.007	1.3	
	Ni-Ni	8.30	2.48	0.006		

 Table S11 EXAFS fitting parameters at the Ni K-edge for After OER/UOR.

CN: coordination numbers; *R*: bond distance; σ^2 : Debye-Waller factors; *R* factor: goodness of fit. *S*02 was set to 0.803, according to the experimental EXAFS fit of Ni foil reference by fixing CN as the known crystallographic value.

Table S12 The estimated volatile products released during the various stages of the thermal decomposition process of the product.

350°C-450 °C	450 °C -900 °C	Selectivity	Total mass released/mg
$H_2(m/z = 2)$	$H_2(m/z = 2)$	73.28%	1.5700
C+ (m/z = 12)	C ⁺ (m/z = 12)	0.26%	0.0055
CH ₄ + (m/z = 15)		4.98%	0.1070
CO+ (m/z = 28)		2.54%	0.0545
CH ₃ O ⁺ (m/z = 31)		1.34%	0.0287
$C_3H_3^+$ (m/z = 39)		0.61%	0.0131
CO_2^+ (m/z = 44)	CO_2^+ (m/z = 44)	6.79%	0.1459
C ₄ H ₄ ⁺ (m/z = 52)		0.38%	0.0081
$C_6 H_6^+ (m/z = 78)$		0.25%	0.0054

Most of the ion peaks have a peak between 350 °C and 450 °C. After 600 °C, the intensity begins to increase. This is due to the water vapor reaction produced by the carbon skeleton and steam in the previous pyrolysis process (Eq. ($H_2O+C\rightarrow H+CO$, $C+CO_2\rightarrow CO$) to produce H_2 and C-H bonds breaking at the higher temperatures.

$$\label{eq:Selectivity} \begin{split} \text{Selectivity} = & \frac{\textit{Current product peak area}}{\textit{Total product peak area}} \times \% \end{split}$$

Total mass released = Selectivity × (raw sample mass – Remaining mass)

Among them, the raw sample mass is 2.948 mg, and the remaining product mass is 0.800 mg. The remaining missing parts were undetected as hydrocarbons.

Table S13 Representative high-efficiency OER/UOR catalysts formed by different processing methods from different Ni-based precursors.

Catalyst	J _{(mA cm} - ²)	Overpotent.m V (1 M KOH)	Tafel slope (mV·dec ⁻¹)	Potent.V 1 M KOH+0.33M Urea	Tafel slope (mV·dec ⁻¹)	Ref.
Ni-MOF/LDH	10	220	36	/	/	S1
Ni-MOF (BTC)	10	346	64	63.15 (1.5 V <i>vs</i> . RHE)	/	S2
NP/NiO	10	332	65.6	/	/	S3
FN-2	10	275	56.7	/	/	S4
NiCo/Fe ₃ O ₄ /M OF-74	10	238	/	/	/	S5
Ni@NiO/N-C NW (250 °C)	10	390	100	/	/	S6
Ni₄N/Cu₃N nanotube	10	/	/	1.34 (1.0 M KOH +0.5 M Urea)	55.7	S7
Ni/NiO@NC 400	10	390	/	1.35 V	19	S8
Ni ₃ N/Ni _{0.2} Mo _{0.8} N	10	257	/	1.328 (1.0 M KOH +0.5 M Urea)	17	S9
Ni-Sn sulfide	10	330	/	1.36	32.3	S10
NP-Ni _{0.7} Fe _{0.3}	10	260	29.3	1.55	63.8	S11
NiFeMo	10	230	59.9	1.38	43.3	S12
NiFe-LDH nanosheets	10	225	29	1.35	35	S13
NiFe(OH) ₂ - SD/NF	10	220	47	1.32	41	S14
S-Ni-700	10	318	209	1.392	110	
S-Ni-800	10	268	86	1.353	80.9	This work
S-Ni-900	10	343	390	1.442	117	

References

S1. W. D. Zhang, Q. T. Hu, L. L. Wang, J. Gao and Z. G. Gu, In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction, *Appl. Catal. B*, 2021, **286**, 119906.

S2. V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy, and S. Muralidharan, An Insight on the Electrocatalytic Mechanistic Study of Pristine Ni MOF (BTC) in Alkaline Medium for Enhanced OER and UOR, *Chemelectrochem*, 2018, **5**, 2795-2807.

S3. P. Bhanja, Y. Kim, B. Paul, Y. V. Kaneti and Y. Yamauchi, Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction, *Chemical Engineering Journal*, 2021, **405**, 126803.

S4. M. Liu, L. Kong, X. Wang, J. He and X. Bu, Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient Oxygen Evolution, *Small*, 2019, **15**, 1903410.

S5. X. Wang, H. Xiao, A. Li and Z. Li, Constructing NiCo/Fe₃O₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions, *J. Am. Chem. Soc.* 2018, **45**, 15336–15341.

S6. A. Xie, J. Zhang, X. Tao, J. Zhang and S. Luo, Nickel-based MOF derived Ni@NiO/N-C nanowires with core-shell structure for oxygen evolution reaction, *Electrochimica Acta*, 2019, **324**, 134814.

S7. J. Li, C. Yao, X. Kong, Z. Li and X. Lei, Boosting hydrogen production by electrooxidation of urea over 3D hierarchical Ni₄N/Cu₃N nanotube arrays, *ACS Sustainable Chem. Eng.* 2019, **15**, 13278–13285.

S8. X. Ji, Y. Zhang, Z. Ma and Y. Qiu, Vacancy-rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction, *ChemSusChem*, 2020, **13**, 5004-5014.

S9. R. Q. Li, X. Y. Wan, B. L. Chen, R. Y. Cao and Y. C. Zhu, Hierarchical Ni₃N/Ni_{0.2}Mo_{0.8}N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis, *Chem. Eng. J*, 2021, **409**, 1385-8947.

S10. Z. Ji, J. Liu, D. Yang, S. Zhang and X. Lu, Accurate Synergy Effect of Ni-Sn Dual Active Sites Enhances Electrocatalytic Oxidation of Urea for Hydrogen Evolution in Alkaline Medium, *J. Mater. Chem. A*, 2020, **8**, 14680-14689.

S11. Z. Cao, T. Zhou, X. Ma, Y. Shen and Y. Zhao, Hydrogen Production from Urea Sewage on NiFe-based Porous Electrocatalysts, *ACS Sustainable Chem. Eng.* 2020, **29**, 11007–11015.

S12. Z. Lv, Z. Li, X. Tan, Z. Li, R. Wang, M. Wen, X. Liu, G. Wang, G. Xie and L. Jiang, One-step electrodeposited NiFeMo hybrid film for efficient hydrogen production via urea electrolysis and water splitting, *Appl. Surf. Sci.*, 2021, **552**, 149514.

S13. H. Sun, W. Zhang, J. G. Li, Z. Li, X. Ao, K. H. Xue, K. K. Ostrikovc, J. Tang and C. Wang, Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis, *Appl. Catal. B*, 2020, **284**, 119740.

S14. P. Babar, A. Lokhande, V. Karade, I. J. Lee and J. H. Kim, Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine, *J. Colloid Interface Sci.*, 2019, **557**, 10-17.

S15. J. Masud, S. Umapathi, N. Ashokaan, and M. Nath, Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution. Journal of Materials Chemistry A, 2016, **4**, 9750-9754.

S16. Z. Gao, Y. Wang, L. Xu, Q. Tao, X. Wang, Z. Zhou, Y. Lu, J. Yu and Y. Huang, Optimizing local charge distribution of metal nodes in bimetallic metal–organic frameworks for efficient urea oxidation reaction, Chem. Eng. J., 2022, **433**: 133515.

S17. G. Li, S. Li, J. Ge, C. Liu and W. Xing, Uncontinuously covered IrO₂-RuO₂@Ru electrocatalysts for oxygen evolution reaction: How high activity and long-term durability can meet up in the synergistic and hybrid nano-structure? J. Mater. Chem. A, 2017, **5**, 17221-17229.