Supporting Information

Ba₁₀LuB₁₈O₃₂F₁₃: the First Example of Borate in Lu-B-O-F System with the Unprecedented FBB [B₉O₂₂] Group

Jiongquan Chen,^{a,b} Wenqi Jin,^{a,b}, Yanhui Zhang,^a Yun Yang,^{a,b,*} Zhihua Yang^{a,b} and Shilie Pan^{a,b,*}

^{a.} CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^{b.} Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

*Corresponding authors: yangyun@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn.

Atom	x/a	y/b	z/c	U(eq)	BVS
Ba(1)	6235(1)	6177(1)	9340(1)	12(1)	1.926
Ba(2)	5000	5000	4788(1)	11(1)	2.279
Ba(3)	2870(1)	5000	6391(1)	12(1)	2.049
Ba(4)	5000	2230(1)	1420(1)	15(1)	1.879
Ba(5)	5000	5000	1867(1)	18(1)	1.233
Lu(1)	5000	5000	7387(1)	10(1)	2.872
B(1)	2500	2500	6131(9)	7(2)	3.102
B(2)	3426(6)	3008(5)	4816(6)	11(2)	3.075
B(3)	3217(6)	4244(5)	3861(6)	9(2)	3.057
B(4)	4232(6)	3299(5)	3369(7)	10(2)	3.091
B(5)	2944(6)	3412(5)	2449(7)	11(2)	3.047
O(1)	2553(4)	3230(3)	6695(4)	11(1)	1.996
O(2)	3236(3)	2449(3)	5515(4)	11(1)	2.056
O(3)	2965(3)	3654(3)	4637(4)	11(1)	1.941
O(4)	3030(5)	5000	4295(6)	9(1)	1.903
O(6)	4114(3)	2836(3)	4307(4)	13(1)	2.005
O(7)	3632(4)	2993(3)	2650(4)	14(1)	2.050
O(8)	4063(3)	4140(3)	3587(4)	8(1)	1.853
O(9)	5000	3185(4)	2946(5)	9(2)	1.994
O(10)	2711(4)	4068(3)	2987(4)	13(1)	2.200
F(1)	5000	5000	9213(7)	19(2)	0.864
F(2)	5000	6249(4)	8038(5)	16(2)	1.047
F(3)	6211(4)	5000	8025(5)	14(1)	1.234
F(4)	4241(3)	4221(2)	6299(3)	15(1)	1.037
F(5)	1358(5)	5000	5722(5)	18(2)	1.085
F(6)	5000	3683(4)	627(5)	16(2)	1.086

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence sums (BVS) for Ba₁₀LuB₁₈O₃₂F₁₃. U(eq) is defined as one third of the trace of the orthogonalized *Uij* tensor.

Table S2. Selected bond distances (Å) and angles (deg) for $Ba_{10}LuB_{18}O_{32}F_{13}$.				
Lu(1)-F(1)	2.487(10)	Ba(4)-O(2)#13	3.218(6)	
Lu(1)-F(2)	2.273(6)	Ba(4)-O(2)#12	3.218(6)	
Lu(1)-F(2)#1	2.273(6)	Ba(4)-O(6)#12	3.233(6)	
Lu(1)-F(3)	2.187(7)	Ba(4)-O(6)#13	3.233(6)	
Lu(1)-F(3)#1	2.187(7)	Ba(4)-O(7)#2	3.095(6)	
Lu(1)-F(4)	2.342(4)	Ba(4)-O(7)	3.095(6)	
Lu(1)-F(4)#2	2.342(4)	Ba(4)-O(9)	2.624(7)	
Lu(1)-F(4)#3	2.342(4)	Ba(4)-F(2)#14	2.749(7)	
Lu(1)-F(4)#1	2.342(4)	Ba(4)-F(4)#12	2.743(4)	
Ba(1)-O(3)#7	2.909(6)	Ba(4)-F(4)#13	2.743(4)	
Ba(1)-O(10)#7	3.091(6)	Ba(4)-F(6)	2.665(6)	
Ba(1)-O(6)#9	2.841(5)	Ba(5)-O(8)	3.159(5)	
Ba(1)-O(2)#9	2.807(5)	Ba(5)-O(8)#1	3.159(5)	
Ba(1)-F(1)	2.8483(8)	Ba(5)-O(8)#3	3.159(5)	
Ba(1)-F(2)	2.711(4)	Ba(5)-O(8)#2	3.159(5)	
Ba(1)-F(3)	2.666(4)	Ba(5)-F(5)#10	2.739(8)	
Ba(1)-F(5)#6	2.735(5)	Ba(5)-F(5)#11	2.739(8)	
Ba(1)-F(6)#8	2.705(4)	Ba(5)-F(6)	2.780(6)	
Ba(2)-O(8)#3	2.677(5)	Ba(5)-F(6)#1	2.780(6)	
Ba(2)-O(8)	2.677(5)	B(1)-O(1)	1.446(8)	
Ba(2)-O(8)#2	2.677(5)	B(1)-O(2)#15	1.483(8)	
Ba(2)-O(8)#1	2.677(5)	B(1)-O(2)	1.483(8)	
Ba(2)-F(4)	2.742(5)	B(2)-O(2)	1.373(10)	
Ba(2)-F(4)#2	2.742(5)	B(2)-O(3)	1.348(10)	
Ba(2)-F(4)#1	2.742(5)	B(2)-O(6)	1.365(11)	
Ba(2)-F(4)#3	2.742(5)	B(3)-O(3)	1.507(9)	
Ba(3)-O(1)	3.042(5)	B(3)-O(4)	1.432(8)	
Ba(3)-O(1)#3	3.042(5)	B(3)-O(4)#3	1.432(9)	
Ba(3)-O(3)	3.291(5)	B(4)-O(6)	1.508(10)	
Ba(3)-O(3)#3	3.291(5)	B(4)-O(7)	1.487(10)	
Ba(3)-O(4)	2.868(7)	B(4)-O(9)	1.411(10)	
Ba(3)-F(3)#1	2.697(7)	B(4)-O(9)#2	1.411(10)	
Ba(3)- $F(4)$	2.625(5)	B(5)-O(1)#5	1.352(10)	
Ba(3)-F(4)#3	2.625(5)	B(5)-O(7)	1.367(10)	
Ba(3)- $F(5)$	2.666(8)	B(5)-O(10)	1.377(10)	
O(1)#15-B(1)-O(1)	115.9(9)	O(4)-B(3)-O(3)	103.4(6)	
O(1)-B(1)-O(2)#15	107.5(3)	O(4)-B(3)-O(10)	112.6(7)	
O(1)-B(1)-O(2)	107.4(3)	O(10)-B(3)-O(3)	105.9(6)	
O(1)#15-B(1)-O(2)#15	107.4(3)	O(8)-B(4)-O(6)	107.4(6)	
O(1)#15-B(1)-O(2)	107.5(3)	O(8)-B(4)-O(7)	109.7(6)	
O(2)#15-B(1)-O(2)	111.1(9)	O(9)-B(4)-O(8)	112.6(7)	
O(3)-B(2)-O(6)	123.5(7)	O(9)-B(4)-O(6)	113.2(7)	
O(3)-B(2)-O(2)	123.0(8)	O(9)-B(4)-O(7)	106.7(7)	

O(6)-B(2)-O(2)	113.5(7)	O(7)-B(4)-O(6)	107.1(6)
B(2)-O(2)-B(1)	122.8(6)	O(1)#25-B(5)-O(10)	114.5(7)
O(8)-B(3)-O(3)	111.5(6)	O(1)#25-B(5)-O(7)	123.0(7)
O(8)-B(3)-O(10)	108.2(6)	O(7)-B(5)-O(10)	122.5(7)
O(4)-B(3)-O(8)	114.8(7)		
Symmetry transformat	tions used to generate equ	ivalent atoms:	
#1 -x+1,-y+1,z	#2 -x+1,y,z	#3 x,-y+1,z	#4 -x+1/2,-y+1,z+1/2
#5 -x+1/2,y,z+1/2	#6 x+1/2,y,z+1/2	#7 x+1/2,-y+1,z+1/2	#8 -x+1,-y+1,z+1
#9 -x+1,y+1/2,z+1/2	#10 x+1/2,y,z-1/2	#11 -x+1/2,-y+1,z-1/2	#12 -x+1,-y+1/2,z-1/2
#13 x,-y+1/2,z-1/2	#14 x,y-1/2,z-1/2	#15 -x+1/2,-y+1/2,z	#16 -x+1,y,z-1
#17 x,-y+1,z-1	#18 -x+1,-y+1,z-1	#19 x-1/2,-y+1,z-1/2	#20 x-1/2,y,z-1/2
#21 x-1/2,y,z+1/2	#22 -x+1,-y+1/2,z+1/2	#23 x,y+1/2,z+1/2	#24 -x+1,y-1/2,z-1/2
#25 -x+1/2,y,z-1/2			

Compound	Space Group	FBB		ICSD Code
Ba _{8.35} Pb _{0.65} (B ₃ O ₆) ₆	R3	[B ₃ O ₆] 3:[(3Δ)]	Ŷ	243527
$Ba_{8.019}Pb_{0.981}B_{18}O_{36}$	<i>P</i> 3 <i>m</i> 1	[B ₃ O ₆] 3:[(3Δ)]	Ŷ	432451
$Pb_{1.13}Ba_{7.87}B_{18}O_{36}$	R32	[B ₃ O ₆] 3:[(3Δ)]	Ŷ	189013
Cs ₂ O(B ₂ O ₃) ₉	<i>P</i> 2 ₁	$[B_9O_{17}] 9: [(3:2\Delta + T) + 2(3:3\Delta)]$	Jo.d.	15331
Na ₂ Cs ₂ Sr(B ₉ O ₁₅) ₂	P2 ₁ /c	[B ₉ O ₁₉] 9:[3(3:2Δ+T)]		193498
$\mathrm{Na_2Cs_2BaB_{18}O_{30}}$	P2 ₁ /c	[B ₉ O ₁₉] 9:[3(3:2Δ+T)]	to a solution	433333
Na ₂ Cs ₂ PbB ₁₈ O ₃₀	P2 ₁ /c	[B ₉ O ₁₉] 9:[3(3:2Δ+T)]	fogo.	433334
$Na_2Rb_2PbB_{18}O_{30}$	P2 ₁ /c	[B ₉ O ₁₉] 9:[3(3:2Δ+T)]	of goo	433335
$Ba_4K_2Zn_5(B_3O_6)_3(B_9O_{19})$	<i>P</i> 2 ₁ / <i>n</i>	$[B_{3}O_{6}]+[B_{9}O_{19}]$ 3:[(3 Δ)]+ 9:[3(3:2 Δ + T) + 3 Δ + 3(3:2 Δ +	Ŷ	193185

Table S3. The fundamental building blocks (FBBs) of the anhydrous borates with 18 compositions of Boron in chemical formula.

Fig. S1. (a) The coordination environment of Lu^{3+} in $Ba_2Lu(BO_3)_2Cl$. (b) The coordination environment of Lu^{3+} in $Ba_{10}LuB_{18}O_{32}F_{13}$.

Fig. S2. The crystal of $Ba_{10}LuB_{18}O_{32}F_{13}$ for EDS measurement.

Fig. S3. The result of EDS for $Ba_{10}LuB_{18}O_{13}F_{13}$.

Fig. S4. Powder XRD patterns of Ba₁₀LuB₁₈O₃₂F₁₃.

Fig. S5. The IR spectrum of $Ba_{10}LuB_{18}O_{32}F_{13}$.

Fig. S6. The band gap of $Ba_{10}LuB_{18}O_{32}F_{13}$ calculated by using GGA.

