Electronic Supplementary Information

Alkynyl transmetalation triggered by a nucleophilic attack

Jiwei Wang,^{‡ab}Lin Liu,^{‡c} Licheng Zhan,^a and Jun Zhang^{*a}

^aKey Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^bShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry & Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China

^cSchool of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^dState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Table of contents

General methods	S2
Preparation and characterization	S2
Synthesis of 3b	S2
Synthesis of 3c	S3
NMR spectra	S7
X-Ray crystallography	S13
Computational details	S15
References	S34

General methods

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. NMR spectra were recorded by using a Bruker 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standar (¹H NMR CDCl₃: 7.26 ppm; ¹³C NMR CDCl₃: 77.0 ppm). Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods. X-ray diffraction analysis was performed by using a Bruker Smart-1000X-ray diffractometer.

The group 10 metal acetylides $1a \sim 1c$ were synthesized by the procedures previously reported.¹

Preparation and characterization

Cyclization of 1a in presence of PPh₃AuOTf at room temperature:

The mixture of **1a** (100 mg, 0.12 mmol) and PPh₃AuOTf (75 mg, 0.12 mmol) was stirred in the DCE (3 mL) at 25 °C. After stirring for 2 h, the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford pure **2a** as a white solid (162 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ = 8.57 (d, *J* = 2.0 Hz, 1H, N-C<u>H</u>=N), 7.55-7.47 (m, 2H, H_{Ar}), 7.45-7.40 (m, 3H, H_{Ar}), 7.31 (d, *J* = 7.8, 4H, H_{Ar}), 7.17-7.06 (m, 13H, H_{Ar}), 6.68 (d, *J* = 8.0 Hz, 2H, PO-C=C<u>H</u>), 2.84-2.75 (m, 2H, C<u>H</u>(CH₃)₂), 2.64-2.55 (m, 2H, C<u>H</u>(CH₃)₂), 2.41-2.26 (m, 4H, C<u>H</u>(CH₃)₂), 1.26-1.17 (m, 42H, CH₃), 1.15-1.10 (m, 6H, CH₃). Our characterization data for **2a** are in full agreement previously reported literature data.¹

Synthesis of 3b

The mixture of **1b** (100 mg, 0.12 mmol) and PPh₃AuOTf (75 mg, 0.12 mmol) was stirred in the DCE (3 mL) at -20 °C. After stirring for 2 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford pure **3b** as an orange solid (154 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ = 9.42 (s, 1H, N-C<u>H</u>=N), 7.55-7.45 (m, 5H, H_{Ar}), 7.34-7.27 (m, 10H, H_{Ar}), 7.25-7.21 (m, 3H, H_{Ar}), 7.13-7.01 (m, 4H, H_{Ar}), 6.53 (d, J = 8.0 Hz, 2H, PO-C=C<u>H</u>), 2.76-2.64 (m, 2H, C<u>H</u>(CH₃)₂), 2.64-2.54 (m, 2H, C<u>H</u>(CH₃)₂), 2.52-2.40 (m, 2H, C<u>H</u>(CH₃)₂), 2.06-1.95 (m, 2H, C<u>H</u>(CH₃)₂), 1.32-1.22 (m, 20H, CH₃), 1.20-1.14 (m, 22H, CH₃), 0.83 (dd, J = 16.4, 7.6 Hz, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 165.6 (s, Ni-<u>C</u>-Au), 157.5 (d, $J_{P-C} = 10.0$ Hz, <u>C</u>(Ni)=C-O), 145.7 (d, $J_{P-C} = 8.6$ Hz, <u>C</u>=O), 143.9 (s, C_{Ar}), 134.6-133.7 (m, C_{Ar}), 132.8 (s, C_{Ar}), 131.5 (s, C_{Ar}), 131.1 (s, C_{Ar}), 130.9-128.3 (m, C_{Ar}), 126.8 (s, C_{Ar}), 124.3 (s, C_{Ar}), 104.3 (s, C_{Ar}), 31.8 (s, <u>C</u>H(CH₃)₂), 29.1 (s, <u>C</u>H(CH₃)₂), 28.7 (s, <u>C</u>H(CH₃)₂), 26.1 (s, <u>C</u>H(CH₃)₂), 23.8 (d, $J_{P-C} = 8.8$ Hz, P<u>C</u>H(CH₃)₂), 22.4 (s, CH₃), 17.3 (s, CH₃), 17.0 (s, CH₃), 16.8 (s, CH₃), 16.5 (s, CH₃); ³¹P NMR (162 MHz, CDCl₃) $\delta = 189.40$, 40.59 (s, <u>P</u>Ph₃); HRMS (MALDI): m/z [M-OTf]⁺ calcd. for C₆₄H₈₁AuN₂NiO₃P₃⁺: 1273.4479; found: 1273.4589; Anal. calcd. for C₆₅H₈₁AuF₃N₂NiO₆P₃S: C, 54.83; H, 5.73; N, 1.97; found: C, 54.57; H, 5.73; N, 1.90.

Cyclization of 1b in presence of PPh₃AuOTf at room temperature:

The mixture of **1b** (100 mg, 0.12 mmol) and PPh₃AuOTf (85 mg, 0.14 mmol) was stirred in the DCE (3 mL) at room temperature. After stirring for 2 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford a mixture of **2b** and **3b** in the ratio of 13:87 as an orange solid (166 mg, 97%).

Figure S1. ¹H NMR spectra (400 MHz, CDCl₃) of the mixtures of 2b and 3b. Synthesis of 2b from the isomerization of 3b at 50 °C:

In a nitrogen-filled round-bottom flask, was charged with **3b** (50 mg, 0.035 mmol) and stirred in the DCE (1 mL) at 50 °C. After stirring for 1 h, the volatiles were removed under vacuum to afford **2b** with a conversion of one hundred percent determinded by 1H NMR

analysis. ¹H NMR (400 MHz, CDCl₃) δ = 8.44 (s, 1H, N-C<u>H</u>=N), 7.65 (t, *J* = 7.8 Hz, 1H, H_{Ar}), 7.52-7.41 (m, 4H, H_{Ar}), 7.37 (d, *J* = 7.8 Hz, 2H, H_{Ar}), 7.30 (d, *J* = 7.8 Hz, 2H, H_{Ar}), 7.28-7.26 (m, 2H, H_{Ar}), 7.25-7.21 (m, 4H, H_{Ar}), 6.99 (t, *J* = 7.8 Hz, 1H, PO-C=CH-C<u>H</u>), 6.92 (dd, *J* = 12.4, 7.8 Hz, 6H, H_{Ar}), 6.44 (d, *J* = 8.0 Hz, 2H, PO-C=C<u>H</u>), 2.90-2.77 (m, *J* = 2H, C<u>H</u>(CH₃)₂), 2.74-2.61 (m, 2H, C<u>H</u>(CH₃)₂), 2.61-2.50 (m, 2H, C<u>H</u>(CH₃)₂), 2.50-2.37 (m, 2H, C<u>H</u>(CH₃)₂), 1.35 (dd, *J* = 16.6, 7.8 Hz, 6H, CH₃), 1.26 (d, *J* = 6.8 Hz, 6H, CH₃), 1.24-1.14 (m, 36H, CH₃). Our characterization data for **2b** are in full agreement previously reported literature data.¹

Synthesis of 3c

The mixture of 1c (100 mg, 0.11 mmol) and PPh₃AuOTf (79 mg, 0.13 mmol) was stirred in the DCE (3 mL) at -20 °C. After stirring for 2 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford pure 3c as an orange solid (163 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ = 9.55 (s, 1H, N-C<u>H</u>=N), 7.53-7.45 (m, 4H, H_{Ar}), 7.35-7.27 (m, 10H, H_{Ar}), 7.25-7.20 (m, 4H, H_{Ar}), 7.07-6.90 (m, 4H, H_{Ar}), 6.63 (d, *J* = 8.0Hz, 2H, PO-C=C<u>H</u>), 2.77-2.65 (m, 2H, C<u>H</u>(CH₃)₂), 2.65-2.53 (m, 2H, C<u>H</u>(CH₃)₂), 2.48-2.33 (m, 2H, CH(CH₃)₂), 2.20-2.05 (m, 2H, CH(CH₃)₂), 1.27-1.15 (m, 30H, CH₃), 1.09 (dd, J = 15.6, 7.6 Hz, 12H, CH₃), 0.83 (dd, J = 17.2, 7.6 Hz, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.2$ (t, $J_{P-C} = 5.8$ Hz, Pt-C-Au), 158.1 (d, $J_{P-C} = 11.4$ Hz, C(Pt)=C-O), 145.8 (s, C=O), 145.3 (s, C_{Ar}), 144.4 (s, C_{Ar}), 143.9 (s, C_{Ar}), 134.5-133.5 (m, C_{Ar}), 132.8 (s, C_{Ar}), 131.5 (s, C_{Ar}), 131.1 (s, C_{Ar}), 129.9 (t, J_{P-C} = 5.8 Hz, C_{Ar}), 129.5 (s, C_{Ar}), 129.4 (s, C_{Ar}), 129.0 (s, C_{Ar}), 128.7 $(s, C_{Ar}), 128.6 (s, C_{Ar}), 127.1 (s, C_{Ar}), 124.7 (s, C_{Ar}), 124.2 (d, J_{P-C} = 8.2 Hz, C_{Ar}), 104.4 (s, C_{Ar}),$ 32.1 (t, $J_{P-C} = 15.6$ Hz, PCH(CH₃)₂), 29.2 (s, CH(CH₃)₂), 28.9 (s, CH(CH₃)₂), 25.8 (s, CH(CH₃)₂), 23.7 (s, CH₃), 23.0 (s, CH₃), 16.5 (s, CH₃), 16.0 (s, CH₃); ³¹P NMR (162 MHz, CDCl₃) $\delta = 174.27$ (t, $J_{Pt-P} = 1550.9$ Hz, 2P), 39.84 (s, PPh₃); HRMS (MALDI): m/z [M-OTf]⁺ calcd. for $C_{64}H_{81}AuN_2O_3P_3Pt^+$: 1410.4773; found: 1410.4375; Anal. calcd. for C₆₅H₈₁AuF₃N₂O₆P₃PtS (1.25 CH₂Cl₂): C, 47.75; H, 5.05; N, 1.68; found: C, 47.95; H, 5.02; N, 1.60.

Cyclization of 1c in presence of PPh₃AuOTf at room temperature:

The mixture of 1c (100 mg, 0.11 mmol) and PPh₃AuOTf (79 mg, 0.13 mmol) was stirred

in the DCE (3 mL) at room temperature. After stirring for 2 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford a mixture of 2c and 3c in the ratio of 28:72 as an orange solid (161 mg, 94%).

Figure S2. ¹H NMR spectra (400 MHz, CDCl₃) of the mixtures of 2c and 3c.

Synthesis of 2c from the isomerization of 3c at 50 °C:

In a nitrogen-filled round-bottom flask, was charged with **3c** (50 mg, 0.032 mmol) and stirred in the DCE (1 mL) at 50 °C. After stirring for 1 h, the volatiles were removed under vacuum to afford **2c** with a conversion of one hundred percent determinded by ¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ = 8.61 (d, *J* = 1.6 Hz, 1H, N-C<u>H</u>=N), 7.56-7.46 (m, 2H, H_{Ar}), 7.45-7.37 (m, 3H, H_{Ar}), 7.31 (dd, *J* = 8.0, 3.2 Hz, 4H, H_{Ar}), 7.20-7.03 (m, 13H, H_{Ar}), 6.72 (d, *J* = 8.0 Hz, 2H, PO-C=C<u>H</u>), 2.85-2.73 (m, 2H, C<u>H</u>(CH₃)₂), 2.66-2.46 (m, 4H, C<u>H</u>(CH₃)₂), 2.45-2.33 (m, 2H, C<u>H</u>(CH₃)₂), 1.27-1.06 (m, 48H, CH₃). Our data of **2c** are in full agreement with we previous reported in the literature.¹

Protodemetalation of 3b in presence of trifluoromethanesulfonic acid:

The mixture of **3b** (100 mg, 0.07 mmol) and trifluoromethanesulfonic acid (12 mg, 0.08 mmol) was stirred in the DCE (3 mL) at 25 °C. After stirring for 4 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford

pure 4 as a yellow solid (63 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ = 10.48 (d, *J* = 2.0 Hz, 1H, N-C<u>H</u>=N), 9.28 (t, *J* = 2.0 Hz, 1H, C<u>H</u>(Au)), 7.61-7.54 (m, 4H, H_{Ar}), 7.53-7.45 (m, 7H, H_{Ar}), 7.35-7.26 (m, 8H, H_{Ar}), 7.05-6.99 (m, 2H, H_{Ar}), 2.73-2.59 (m, 4H, C<u>H</u>(CH₃)₂), 1.30-1.21 (m, CH₃); Our data for 4 are in full agreement we previously reported literature data.²

Protodemetalation of 3c in presence of trifluoromethanesulfonic acid:

The mixture of 3c (100 mg, 0.06 mmol) and trifluoromethanesulfonic acid (11 mg, 0.07 mmol) was stirred in the DCE (3 mL) at 25 °C. After stirring for 4 h, all the volatiles were removed under vacuum, and the residue was dissolved in DCM and filtered. After the solvents in the filtrate were evaporated, the crude product was washed twice with diethyl ether to afford pure 4 as a yellow solid (53 mg, 86%). Our data are in full agreement with we previous reported in the literature.²

NMR spectra

Figure S4. ¹H NMR spectra (400 MHz, CDCl₃) of 2b.

Figure S6. ¹³C NMR spectra (100 MHz, CDCl₃) of **3b**.

Figure S8. ¹H NMR spectra (400 MHz, CDCl₃) of 2c.

Figure S9. ¹H NMR spectra (400 MHz, CDCl₃) of 3c.

Figure S10. ¹³C NMR spectra (100 MHz, CDCl₃) of 3c.

Figure S11. ³¹P NMR spectra (162 MHz, CDCl₃) of 3c.

Figure S12. ¹H NMR spectra (400 MHz, CDCl₃) of 4.

X-Ray crystallography

Each crystal was mounted on a glass fiber. Crystallographic measurements were made on a Bruker Smart Apex 100 CCD area detector using graphite monochromated Mo-Karadiation ($\lambda_{Mo-Ka} = 0.71073$ Å). The structures were solved by directed methods (SHELXS-97) and refined on F^2 by full-matrix least squares (SHELX-97) using all unique data. All the calculations were carried out with the SHELXTL18 program.

Key details of the crystal and structure refinement data are summarized in Table S1. Further crystallographic details may be found in the respective CIF files, which were deposited at the Cambridge Crystallographic Data Centre, Cambridge. CCDC-1977709 (**3b**), CCDC-1977706 (**3c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S13. Thermal ellipsoid (30% probability) representation of **3b**. H atoms have been omitted for clarity. Orange cube crystal of **3b** was obtained in *n*-hexane/DCM (v/v, 10:1) at 0 °C.

Figure S13. Thermal ellipsoid (30% probability) representation of **3c**. H atoms have been omitted for clarity. Orange cube crystal of **3c** was obtained in *n*-hexane/DCM (v/v, 10:1) at 0 °C.

	3 b	3c
Identification code	mo_dd19320_0m	mo_d8v19943_0m
Formula	$C_{68}H_{87}AuCl_6F_3N_2NiO_6$	$C_{68}H_{87}AuCl_6F_3N_2O_6P_3$
Formula	P_3S	PtS
Formula weight	1678.74	1815.12
<i>Т</i> , К	192(2)	193(2)
crystal system	Monoclinic	Monoclinic
space group	P 21/c	P 21/n
<i>a</i> , Å	15.7638(19)	23.8993(9)
b, Å	13.1411(13)	12.8321(6)
<i>c</i> , Å	36.828(4)	28.1024(12)
α , deg	90	90
β, deg	95.691(4)	114.5080(10)
γ , deg	90	90
Volume, Å ³	7591.4(14)	7841.9(6)
Ζ	4	4
$D_{\rm calc},{ m Mg}/{ m m}^3$	1.469	1.537
absorption	2.52(2.007
coefficient, mm ⁻¹	2.330	3.997
F(000)	3416	3616
crystal size, mm	0.170 x 0.130 x 0.100	0.170 x 0.140 x 0.100
2θ range, deg	2.131 to 26.000	2.175 to 25.999
reflections	52996/14912	116758/15398
collected /unique	[R(int) = 0.0530]	[R(int) = 0.0754]
data / restraints/		
parameters	14912 / 12 / 836	15398 / 125 / 918
goodness of	1 028	1 024
fit on F ²	1.038	1.034
final R indices	R1 = 0.0443,	R1 = 0.0359,
$[I > 2\sigma(I)]^a$	wR2 = 0.1011	wR2 = 0.0936
R indices	R1 = 0.0652,	R1 = 0.0435,
(all data)	wR2 = 0.1121	wR2 = 0.0985
largest diff peak and hole, e/Å ³	1.345 and -1.093	1.599 and -1.585

 Table S1. Crystal data, data collection, and structure refinement for 3b and 3c.

Computational details

All DFT calculations were performed with the Gaussian 09 program package.³ The structures were fully optimized using B3LYP-D3 functions in combination with the def2-SVP basis and the SMD continuum solvent model of dichloroethane.⁴ Vibrational frequencies were calculated at the same level to confirm the optimization of the structures. All minima on the potential energy surface show no imaginary frequency and all transition states show only one imaginary frequency. The electronic energies were obtained using the B3LYP-D3/def2-TZVP to get E_{SCF} energy. The Gcorr is a thermal correction to the free energy in the experimental condition and the Gsolv is the solvation free energy obtained using the SMD continuum model.⁵

Ι				Au	0.100843	0.567974	0.254119
Geo	metry with 1	55 atoms:		С	3.359711	1.746728	-0.053858
С	-0.587829	-1.637234	0.376887	С	3.491412	2.673622	1.013939
С	0.659719	-1.591106	0.567697	С	3.785451	2.067869	-1.365697
С	3.479083	-0.546885	0.137719	С	4.097239	3.908029	0.749864
Н	4.542344	-0.474380	-0.134354	С	4.399494	3.314308	-1.570559
С	1.864268	-2.374398	0.754674	С	4.560918	4.225248	-0.530216
0	1.784499	-3.520102	1.171464	Н	4.219191	4.634357	1.554628
N	3.114319	-1.861605	0.372757	Н	4.745763	3.577650	-2.572501
N	2.747567	0.495832	0.231664	Н	5.038996	5.190713	-0.715344
С	-4.281035	-1.799578	-0.300436	С	4.182191	-2.840324	0.243416
С	-4.787562	-1.793134	-1.610332	С	4.399437	-3.420790	-1.026182
С	-5.218263	-1.781715	0.745263	С	4.955663	-3.164526	1.373651
С	-6.158794	-1.781258	-1.886382	С	5.433618	-4.361778	-1.135646
С	-6.598725	-1.769415	0.518156	С	5.979750	-4.110333	1.210131
С	-7.052467	-1.771659	-0.807373	С	6.214447	-4.703839	-0.029375
Η	-6.509839	-1.775362	-2.919875	Н	5.634164	-4.837262	-2.097200
Η	-7.293003	-1.753793	1.360297	Н	6.596045	-4.389409	2.067993
Η	-8.127805	-1.761243	-1.004121	Н	7.014933	-5.440654	-0.137397
0	-4.740968	-1.751784	2.037761	С	-2.607113	2.765857	-0.344807
0	-3.884518	-1.776580	-2.651447	С	-3.234811	4.004312	-0.575305
Р	-3.053613	-1.726717	2.121451	С	-3.381113	1.601333	-0.288651
Р	-2.276352	-1.792084	-2.135213	С	-4.617883	4.065148	-0.749740
Р	-0.787969	2.709524	-0.079527	Н	-2.643997	4.922127	-0.622473
Ni	-2.395155	-1.738012	0.045866	С	-4.768242	1.664173	-0.463808

Η	-2.905041	0.635391	-0.114437	Н	5.015638	1.915868	3.258978
С	-5.386889	2.894882	-0.694156	Н	3.699349	1.043797	4.088242
Н	-5.098558	5.030075	-0.929799	С	3.596374	1.125200	-2.552808
Н	-5.356564	0.746185	-0.421554	С	4.938427	0.547322	-3.030329
Н	-6.470076	2.944900	-0.831327	С	2.852564	1.802330	-3.714069
С	-0.109148	3.579450	-1.543556	Н	2.969932	0.282011	-2.228074
С	-0.777180	3.475658	-2.777700	Н	5.449114	-0.011606	-2.230565
С	1.087179	4.310388	-1.465418	Н	4.786888	-0.135293	-3.881160
С	-0.270333	4.123771	-3.906854	Н	5.616918	1.351229	-3.360744
Η	-1.702075	2.901039	-2.859440	Н	1.888016	2.214240	-3.386127
С	1.575762	4.973778	-2.594491	Н	3.437200	2.627317	-4.150430
Н	1.644653	4.367401	-0.529149	Н	2.660117	1.073243	-4.517782
С	0.897771	4.888230	-3.813612	С	4.685966	-2.554323	2.742987
Η	-0.798290	4.038336	-4.859920	С	5.925040	-1.849822	3.315448
Η	2.501782	5.547007	-2.517750	С	4.139086	-3.615116	3.712392
Η	1.286021	5.405719	-4.694411	Н	3.905352	-1.789292	2.626501
С	-0.577667	3.794886	1.385958	Н	6.314901	-1.090467	2.618914
С	-0.690050	3.175313	2.641324	Н	5.674433	-1.343634	4.261812
С	-0.450754	5.191644	1.313626	Н	6.737250	-2.564617	3.525529
С	-0.694234	3.938383	3.810027	Н	3.232366	-4.084721	3.301665
Η	-0.777096	2.089941	2.698722	Н	4.883988	-4.406508	3.898430
С	-0.434556	5.950418	2.488399	Н	3.885131	-3.157102	4.682804
Η	-0.369586	5.694759	0.348686	С	3.521425	-3.075122	-2.226769
С	-0.563830	5.328901	3.735334	С	2.299750	-4.010624	-2.302382
Η	-0.786302	3.443573	4.780019	С	4.282913	-3.084716	-3.559162
Η	-0.327803	7.036314	2.426087	Н	3.141897	-2.052166	-2.081031
Η	-0.556318	5.928878	4.648787	Н	1.695788	-3.983485	-1.384361
С	3.034092	2.291563	2.417253	Н	1.654131	-3.730175	-3.150519
С	2.721213	3.495053	3.311863	Н	2.623691	-5.053519	-2.454629
С	4.066267	1.377141	3.103150	Н	5.208933	-2.492992	-3.504058
Η	2.104435	1.707840	2.298296	Н	4.550641	-4.107002	-3.870990
Η	2.028529	4.198397	2.827851	Н	3.651173	-2.657895	-4.354648
Η	2.255109	3.156376	4.249938	С	-1.518872	-0.330307	-2.991541
Η	3.635868	4.046565	3.583921	С	-2.252644	0.125847	-4.255759
Н	4.285675	0.481655	2.506954	С	-0.015323	-0.548466	-3.212441

Н	-1.633840	0.457978	-2.229703	
Н	-3.311498	0.341554	-4.053361	
Н	-1.779103	1.048958	-4.628730	
Н	-2.202664	-0.624255	-5.058922	
Н	0.488559	-0.936431	-2.314366	
Н	0.177287	-1.245272	-4.042405	
Н	0.452922	0.413581	-3.464493	
С	-1.642853	-3.364295	-2.865317	
С	-1.881003	-3.486977	-4.373093	
С	-2.244707	-4.541118	-2.084595	
Η	-0.559656	-3.325592	-2.658720	
Н	-1.359973	-2.703899	-4.941878	
Н	-1.509697	-4.463214	-4.725976	
Н	-2.955280	-3.428353	-4.607928	
Н	-2.056566	-4.447634	-1.003834	
Н	-3.334735	-4.604382	-2.234905	
Н	-1.799591	-5.487021	-2.432359	
С	-2.678488	-0.204214	3.117350	
С	-1.332620	-0.355898	3.839234	
С	-3.807834	0.250447	4.046306	
Н	-2.559771	0.552690	2.322584	
Н	-0.519231	-0.623900	3.146979	
Н	-1.065113	0.598858	4.318884	
Η	-1.379230	-1.117634	4.632342	
Η	-4.758794	0.363209	3.506568	
Η	-3.965162	-0.451733	4.878759	
Η	-3.540815	1.229965	4.476619	
С	-2.685129	-3.252004	3.093521	
С	-2.919089	-4.467964	2.186104	
С	-3.464612	-3.345202	4.408564	
Η	-1.603573	-3.171383	3.300502	
Η	-2.311839	-4.406955	1.269931	
Η	-2.645712	-5.392145	2.719792	
Η	-3.977561	-4.547661	1.889086	
Η	-3.211047	-2.529592	5.100656	

Η	-4.550111	-3.319036	4.225190
Η	-3.228199	-4.297829	4.910440

3b

С	-0.844652	3.664584	0.245192
С	-1.281188	4.092264	1.508575
С	-1.257227	4.417646	-0.863781
С	-2.104738	5.211212	1.681238
С	-2.081304	5.543419	-0.742093
С	-2.496815	5.926711	0.540515
Н	-2.423299	5.511460	2.681459
Н	-2.387484	6.098904	-1.630762
Н	-3.141063	6.802817	0.654109
С	0.703328	0.261687	-0.141569
Au	-1.201444	-0.553310	-0.096932
С	1.890813	-0.403992	-0.198543
Ni	0.178171	2.039816	0.039117
Р	-3.503749	-1.096624	0.082094
0	-0.868344	3.366357	2.609056
0	-0.836294	4.011200	-2.113248
Р	0.099768	2.595420	-2.083105
Р	0.305711	2.205466	2.209960
С	3.375422	-2.109721	-0.330127
Н	3.794333	-3.109517	-0.435334
С	3.238617	0.128313	0.003048
0	3.644609	1.250440	0.243846
N	4.106202	-1.007457	-0.097907
N	2.092821	-1.829305	-0.394886
С	-3.985047	-1.774085	1.716247
С	-4.881911	-1.113857	2.569875
С	-3.373783	-2.966215	2.141903
С	-5.161446	-1.642750	3.834944
Н	-5.361003	-0.184123	2.257300
С	-3.662772	-3.494478	3.401207

Η	-2.665223	-3.478607	1.488171	Н	-1.669900	-5.502898	-0.945258
С	-4.554847	-2.831176	4.252796	С	5.527608	-0.969166	0.094097
Н	-5.858211	-1.120472	4.495526	С	6.024821	-1.118030	1.405616
Н	-3.183054	-4.422570	3.722200	С	6.351395	-0.754892	-1.030174
Н	-4.775433	-3.240876	5.241833	С	7.415771	-1.052600	1.572139
С	-4.539493	0.402312	-0.139030	С	7.734767	-0.701463	-0.807477
С	-5.814610	0.347846	-0.723469	С	8.258998	-0.849455	0.478295
С	-4.030421	1.637738	0.299201	Н	7.844939	-1.156707	2.570366
С	-6.567942	1.517573	-0.866716	Н	8.411775	-0.537139	-1.647802
Η	-6.221552	-0.603884	-1.072695	Н	9.340502	-0.802116	0.630537
С	-4.787409	2.802849	0.158520	С	1.087268	-2.302938	-3.050590
Η	-3.029528	1.701046	0.730429	С	0.045134	-2.092044	-4.154497
С	-6.057181	2.743943	-0.426647	С	2.342616	-2.990726	-3.619034
Η	-7.558258	1.469460	-1.326919	Н	1.386077	-1.304011	-2.694812
Η	-4.370441	3.755497	0.492907	Н	-0.872870	-1.632541	-3.761585
Η	-6.646847	3.656555	-0.546317	Н	0.452550	-1.425960	-4.930663
С	-4.091270	-2.309172	-1.158182	Н	-0.231529	-3.037746	-4.646899
С	-5.046977	-3.297031	-0.873079	Н	3.124636	-3.120774	-2.855664
С	-3.541297	-2.229032	-2.448526	Н	2.092428	-3.989494	-4.013330
С	-5.442129	-4.194488	-1.871041	Н	2.770122	-2.395859	-4.442598
Η	-5.480712	-3.372893	0.126352	С	1.171719	-3.149333	1.984462
С	-3.944573	-3.120260	-3.444519	С	2.217143	-4.186425	2.427085
Η	-2.788670	-1.468992	-2.666622	С	0.064423	-2.978333	3.031963
С	-4.893532	-4.108038	-3.155290	Н	1.685710	-2.179116	1.911129
Η	-6.183168	-4.964686	-1.642394	Н	3.042205	-4.261066	1.700720
Н	-3.508311	-3.050060	-4.444146	Н	2.647043	-3.912152	3.404033
Η	-5.204003	-4.812754	-3.930994	Н	1.762579	-5.186346	2.523402
С	1.069811	-2.825969	-0.553012	Н	-0.688298	-2.250976	2.694665
С	0.552510	-3.065453	-1.843201	Н	-0.452285	-3.926843	3.245860
С	0.617128	-3.486768	0.604578	Н	0.492929	-2.615330	3.979547
С	-0.442497	-4.045478	-1.956416	С	5.092261	-1.275645	2.603302
С	-0.366258	-4.473080	0.431339	С	4.872051	0.087450	3.286281
С	-0.890031	-4.745460	-0.832662	С	5.570405	-2.334087	3.605485
Н	-0.881439	-4.265891	-2.930005	Н	4.112420	-1.610635	2.230678
Η	-0.732622	-5.026712	1.297930	Н	4.510367	0.837066	2.566765

Η	4.133534	-0.002314	4.100294
Η	5.813541	0.461094	3.721947
Η	5.735549	-3.307892	3.117212
Η	6.509058	-2.038402	4.101028
Н	4.815211	-2.473016	4.395932
С	5.756611	-0.522338	-2.415264
С	6.558476	-1.185408	-3.541978
С	5.583517	0.987870	-2.667387
Η	4.751365	-0.971448	-2.429495
Н	6.715716	-2.259123	-3.350467
Η	6.017430	-1.085371	-4.496774
Н	7.545801	-0.715301	-3.676995
Н	4.992442	1.462436	-1.870671
Н	6.565106	1.489136	-2.702712
Н	5.076361	1.164761	-3.630540
С	-0.833239	1.459953	-3.224358
С	-0.599088	1.585684	-4.731265
С	-2.323726	1.545851	-2.879891
Н	-0.452478	0.478003	-2.891640
Η	0.462207	1.500756	-5.007862
Η	-1.139198	0.771661	-5.242567
Η	-0.990666	2.535449	-5.126989
Η	-2.500916	1.437632	-1.802582
Η	-2.742711	2.513961	-3.193428
Η	-2.879691	0.747971	-3.396106
С	1.657403	3.137238	-2.940176
С	2.691487	3.613797	-1.914689
С	1.418868	4.206538	-4.014929
Η	2.024910	2.206866	-3.410148
Η	2.915136	2.837103	-1.172935
Η	3.629302	3.883893	-2.427589
Η	2.331457	4.507979	-1.380460
Η	0.686833	3.908449	-4.775876
Η	1.064638	5.140754	-3.553873
Η	2.370890	4.421216	-4.527990

С	-0.147694	0.746117	3.274395
С	-1.671525	0.583280	3.319540
С	0.460612	0.654546	4.676341
Н	0.270638	-0.075407	2.666552
Н	-2.122090	0.598171	2.318097
Н	-1.927803	-0.382478	3.781843
Н	-2.135640	1.385422	3.912835
Н	1.555522	0.762395	4.674388
Н	0.035114	1.407909	5.356488
Н	0.225451	-0.336900	5.097451
С	1.859661	2.991010	2.866970
С	1.641038	3.766454	4.172670
С	2.482814	3.896208	1.796823
Н	2.533234	2.132755	3.038551
Н	1.199461	3.163292	4.975654
Н	2.611412	4.146149	4.533254
Н	0.983550	4.632174	4.000144
Н	2.700507	3.334645	0.882837
Н	1.815016	4.736248	1.546567
Н	3.428523	4.318196	2.175761

Π

С	-1.160713	-3.216108	1.659283
С	-1.573667	-4.428301	1.078356
С	-1.569772	-2.994800	2.985933
С	-2.334710	-5.380724	1.764286
С	-2.326848	-3.919900	3.712853
С	-2.701383	-5.114590	3.087845
Н	-2.631679	-6.301663	1.259465
Н	-2.608494	-3.697936	4.743700
Н	-3.294484	-5.848076	3.640136
С	0.422037	-0.263335	-0.491266
Au	-1.425694	0.557343	-0.652636
С	1.585835	-0.661248	-0.335428

Ni	-0.124419	-1.928770	0.688563	С	-4.073241	-1.220523	0.814858
Р	-3.661773	1.198770	-0.490463	С	-5.797323	-0.658539	-0.802099
0	-1.228919	-4.669611	-0.227590	С	-4.709901	-2.433129	1.079204
0	-1.213409	-1.813555	3.587397	Н	-3.139165	-0.981685	1.328834
Р	-0.115540	-0.902553	2.686857	С	-6.430689	-1.878458	-0.535901
Р	-0.576513	-3.317245	-0.993581	Н	-6.223261	0.024883	-1.539585
С	3.752152	1.263621	-0.592630	С	-5.888899	-2.765297	0.399707
Н	4.566922	1.811807	-1.092583	Н	-4.270626	-3.124291	1.801283
С	2.967690	-1.089649	-0.342408	Н	-7.349605	-2.136414	-1.068447
0	3.262345	-2.265929	-0.181154	Н	-6.381025	-3.721097	0.596791
N	3.945722	-0.126664	-0.621459	С	2.518277	3.191875	0.014606
N	2.761543	1.807302	-0.025557	С	3.000826	3.941992	1.116811
С	-4.408096	1.963420	-1.969191	С	1.664564	3.781723	-0.954616
С	-3.884143	1.627435	-3.229398	С	2.658675	5.299170	1.200156
С	-5.495227	2.847249	-1.875871	С	1.350410	5.141481	-0.823391
С	-4.450297	2.166038	-4.387465	С	1.843787	5.901080	0.239760
Н	-3.031887	0.946159	-3.302267	Н	3.033434	5.895905	2.034805
С	-6.053636	3.386926	-3.038204	Н	0.704382	5.616146	-1.565113
Н	-5.904407	3.116123	-0.899127	Н	1.587182	6.960505	0.323017
С	-5.534061	3.046524	-4.292256	С	5.272740	-0.605078	-0.960446
Н	-4.039638	1.903092	-5.365452	С	5.600987	-0.771913	-2.323373
Н	-6.897934	4.076851	-2.963453	С	6.194293	-0.874116	0.074196
Н	-5.972506	3.472766	-5.198228	С	6.892341	-1.223100	-2.635049
С	-3.932180	2.344789	0.909398	С	7.467660	-1.336819	-0.289666
С	-4.968860	2.164809	1.837944	С	7.815092	-1.509701	-1.629482
С	-3.044658	3.426387	1.052065	Н	7.177687	-1.350255	-3.681567
С	-5.113144	3.061975	2.901801	Н	8.197903	-1.565557	0.489426
Н	-5.658761	1.323703	1.739375	Н	8.814323	-1.867372	-1.892014
С	-3.198700	4.322251	2.111632	С	3.894184	3.288503	2.164220
Н	-2.226000	3.562044	0.340217	С	3.575385	3.729504	3.599098
С	-4.231205	4.138902	3.039737	С	5.377916	3.522923	1.834604
Н	-5.918461	2.916239	3.626123	Н	3.712496	2.204791	2.112040
Н	-2.502819	5.157873	2.219104	Н	2.504699	3.610163	3.829166
Н	-4.345204	4.835165	3.874478	Н	4.148396	3.121572	4.318151
С	-4.613743	-0.325835	-0.128111	Н	3.843446	4.783490	3.778356

Η	5.639587	3.114572	0.845609	Н	1.715446	-2.133195	3.417558
Н	5.607705	4.601604	1.822622	Н	0.395673	-1.714610	5.534827
Н	6.028040	3.045324	2.584782	Н	2.133723	-1.365310	5.722046
С	1.131110	2.954940	-2.118069	Н	0.976108	-0.027305	5.546949
С	2.097599	2.999259	-3.312958	С	-0.873187	0.784386	2.837241
С	-0.288253	3.342941	-2.553035	С	0.069873	1.896337	2.358996
Н	1.091377	1.912706	-1.770367	С	-1.494291	1.099914	4.201731
Н	3.106442	2.671835	-3.024611	Н	-1.693295	0.693972	2.103282
Η	1.746828	2.343647	-4.127845	Н	0.622925	1.631855	1.447861
Η	2.181136	4.024071	-3.712260	Н	-0.519066	2.800856	2.146037
Η	-0.979997	3.385110	-1.697008	Н	0.801340	2.155653	3.136404
Н	-0.315752	4.322500	-3.057383	Н	-2.170393	0.303247	4.542650
Н	-0.682263	2.599569	-3.264525	Н	-0.725969	1.258923	4.973115
С	4.624922	-0.437663	-3.444429	Н	-2.079301	2.030445	4.113911
С	4.475276	-1.587620	-4.452266	С	-1.999968	-2.730518	-2.048678
С	5.049704	0.860424	-4.152293	С	-2.998257	-3.829726	-2.425436
Н	3.635843	-0.265208	-2.994383	С	-1.542837	-1.920606	-3.268506
Н	4.247612	-2.537701	-3.947158	Н	-2.502345	-2.040301	-1.350102
Н	3.658154	-1.371193	-5.159660	Н	-3.369929	-4.370025	-1.543887
Н	5.394052	-1.731905	-5.043422	Н	-3.864030	-3.363694	-2.924980
Н	5.155558	1.692506	-3.439134	Н	-2.561351	-4.563014	-3.120512
Н	6.020547	0.728567	-4.658044	Н	-0.760478	-1.185235	-3.026610
Н	4.307879	1.153092	-4.912740	Н	-1.163800	-2.578242	-4.064802
С	5.837927	-0.703841	1.545078	Н	-2.405552	-1.369245	-3.675505
С	6.890135	0.112321	2.311130	С	0.767403	-4.136929	-1.967093
С	5.607610	-2.071127	2.211559	С	1.527629	-3.194131	-2.909575
Η	4.892705	-0.146703	1.598024	С	0.309330	-5.410876	-2.687565
Η	7.107831	1.065990	1.807272	Н	1.452380	-4.414848	-1.146357
Η	6.528120	0.338469	3.327371	Н	1.739612	-2.216156	-2.460752
Η	7.838388	-0.439275	2.416819	Н	2.490674	-3.659614	-3.165792
Η	4.806970	-2.627069	1.702770	Н	0.979188	-3.029663	-3.847398
Η	6.526017	-2.680787	2.177805	Н	-0.215984	-6.102471	-2.013928
Η	5.328603	-1.945616	3.270537	Н	-0.353243	-5.176101	-3.535057
С	1.431747	-1.102300	3.696524	Н	1.193771	-5.931585	-3.090811
С	1.208784	-1.049208	5.211520	С	2.553498	-0.157434	3.248713

Η	3.514980	-0.526784	3.634489
Н	2.633843	-0.078621	2.156715
Η	2.405654	0.855469	3.646921

2b

С	1.224273	-3.165147	-0.005687
С	1.757483	-3.630833	1.205066
С	1.946428	-3.443989	-1.176451
С	2.953791	-4.355986	1.267503
С	3.158585	-4.143894	-1.162031
С	3.646153	-4.596751	0.072224
Н	3.336160	-4.705763	2.228293
Н	3.698463	-4.329827	-2.092390
Н	4.589745	-5.148247	0.103326
С	-1.011625	0.604774	-0.069946
Au	1.051640	0.780771	-0.090585
С	-1.625679	-0.625690	-0.050567
Ni	-0.350867	-2.070054	-0.047856
Р	3.394505	0.948914	0.023309
0	1.080066	-3.323855	2.367473
0	1.420318	-3.002355	-2.375186
Р	-0.139443	-2.351917	-2.194960
Р	-0.310243	-2.382329	2.100420
С	-3.128481	1.704808	-0.002033
Н	-3.715251	2.624479	0.015932
С	-3.067039	-0.733439	-0.006439
0	-3.735377	-1.758336	0.014268
N	-3.765970	0.534580	0.012513
N	-1.808960	1.774447	-0.040894
С	4.307819	-0.028354	-1.230392
С	3.726674	-0.186058	-2.499886
С	5.571354	-0.587804	-0.973191
С	4.411687	-0.875671	-3.503812
Η	2.733594	0.222813	-2.701857

С	6.244915	-1.289222	-1.976537
Н	6.030886	-0.484668	0.011730
С	5.668994	-1.430236	-3.243624
Н	3.956733	-0.990422	-4.490134
Н	7.224136	-1.726657	-1.766081
Н	6.197721	-1.978094	-4.027844
С	3.990837	2.674842	-0.146767
С	3.069563	3.730770	-0.049919
С	5.353348	2.959025	-0.345275
С	3.508018	5.055542	-0.143682
Н	2.007354	3.522041	0.098852
С	5.785533	4.283568	-0.440828
Н	6.080592	2.148249	-0.428637
С	4.864085	5.333373	-0.338683
Н	2.782206	5.868129	-0.067229
Н	6.845997	4.497368	-0.596800
Н	5.205493	6.369026	-0.414837
С	4.004667	0.364981	1.650129
С	4.409737	1.254541	2.657177
С	3.979411	-1.016521	1.909538
С	4.798230	0.761353	3.908244
Н	4.426851	2.330526	2.470566
С	4.382240	-1.502184	3.154154
Н	3.649301	-1.715311	1.138678
С	4.791379	-0.614555	4.156823
Н	5.113411	1.458555	4.688792
Н	4.363767	-2.578270	3.341078
Н	5.100454	-0.996262	5.133238
С	-1.191775	3.092055	-0.065145
С	-0.950788	3.693847	-1.315207
С	-0.840438	3.694175	1.158694
С	-0.410905	4.988610	-1.311420
С	-0.305528	4.989644	1.106279
С	-0.109892	5.637862	-0.113771
Н	-0.218052	5.489668	-2.262588

Η	-0.031049	5.491565	2.036715	Н	-4.729585	-1.772397	2.360426
Н	0.299700	6.650831	-0.132216	Н	-4.471960	-1.176132	4.027068
С	-5.214896	0.539537	0.051409	Н	-6.126773	-1.361598	3.389619
С	-5.848179	0.490275	1.308239	Н	-5.499206	2.409885	3.293774
С	-5.914790	0.580916	-1.170323	Н	-6.527880	1.158193	4.035960
С	-7.250562	0.493166	1.318053	Н	-4.835093	1.328807	4.546062
С	-7.315710	0.580005	-1.103796	С	-5.191411	0.557642	-2.511950
С	-7.975339	0.538548	0.125949	С	-5.752211	1.570894	-3.518519
Η	-7.781523	0.451429	2.271390	С	-5.194423	-0.870537	-3.085716
Н	-7.898132	0.604244	-2.026968	Н	-4.140855	0.830954	-2.336487
Н	-9.068135	0.537173	0.155095	Н	-5.772401	2.589450	-3.098508
С	-1.196138	2.966942	-2.630544	Н	-5.124894	1.588499	-4.424335
С	0.129292	2.770357	-3.385591	Н	-6.776227	1.314412	-3.834380
С	-2.242089	3.676906	-3.502503	Н	-4.750949	-1.581970	-2.372675
Н	-1.587342	1.966936	-2.401210	Н	-6.224599	-1.200505	-3.299288
Н	0.867096	2.244916	-2.758293	Н	-4.620322	-0.912097	-4.025237
Η	-0.030676	2.176644	-4.298850	С	-0.124878	-0.907958	-3.357214
Η	0.567678	3.735741	-3.685354	С	-1.567114	-0.522011	-3.713890
Η	-3.203759	3.783109	-2.975291	С	0.776575	-1.045490	-4.587320
Η	-1.904612	4.684940	-3.794022	Н	0.292955	-0.115354	-2.711654
Η	-2.423290	3.104639	-4.426866	Н	-2.197763	-0.409154	-2.820040
С	-0.972365	2.970720	2.491399	Н	-1.572661	0.437199	-4.253413
С	-1.963700	3.667659	3.434495	Н	-2.036156	-1.271654	-4.368864
С	0.406304	2.793191	3.149518	Н	1.756994	-1.462807	-4.325954
Η	-1.361676	1.964372	2.293011	Н	0.327332	-1.689540	-5.356339
Η	-2.961291	3.759936	2.975596	Н	0.933326	-0.050496	-5.036027
Η	-2.072973	3.093249	4.368897	С	-1.200124	-3.696688	-2.913597
Η	-1.620299	4.680417	3.701807	С	-1.139469	-4.924122	-1.993800
Η	1.098001	2.260923	2.477837	С	-0.861074	-4.068800	-4.360861
Η	0.861166	3.763492	3.405991	Н	-2.218385	-3.272204	-2.863462
Η	0.318081	2.209136	4.078783	Н	-1.382832	-4.666716	-0.954765
С	-5.055000	0.375963	2.604190	Н	-1.857437	-5.684952	-2.340339
С	-5.096381	-1.071640	3.125347	Н	-0.135659	-5.378439	-2.002653
С	-5.509536	1.376163	3.675606	Н	-1.070622	-3.253047	-5.065854
Η	-4.003527	0.605678	2.379703	Н	0.199621	-4.349550	-4.458494

Η	-1.467403	-4.937047	-4.668505	С	3.166724	5.272296	-1.445883
С	-0.075378	-0.935458	3.247957	С	3.042901	5.458664	0.984857
С	0.895719	-1.169521	4.407475	С	3.551053	5.887290	-0.247654
С	-1.436014	-0.405998	3.720222	Н	3.551902	5.606457	-2.411002
Н	0.370472	-0.183326	2.573687	Н	3.332024	5.938635	1.921665
Н	1.861958	-1.552170	4.055768	Н	4.257523	6.721133	-0.275448
Η	1.078139	-0.212269	4.923792	0	1.617451	3.963157	2.197733
Н	0.493518	-1.878853	5.146671	0	1.867881	3.590376	-2.551258
Н	-2.134658	-0.248428	2.884846	Р	0.527060	2.685154	2.024636
Н	-1.909061	-1.094967	4.435992	Р	0.750244	2.349774	-2.303626
Н	-1.300803	0.558884	4.231451	Р	3.031364	-1.665540	-0.058725
С	-1.651734	-3.459262	2.793764	Ni	0.539261	2.229098	-0.122239
С	-1.298005	-4.080089	4.148191	Au	0.969762	-0.583511	0.056996
С	-2.044709	-4.509552	1.748397	С	-1.728854	-2.864471	0.833569
Η	-2.502463	-2.768208	2.915270	С	-1.162496	-2.902347	2.134437
Η	-1.120534	-3.318997	4.921569	С	-1.473607	-3.884232	-0.124351
Η	-2.128737	-4.719073	4.490953	С	-0.354249	-3.997632	2.469005
Η	-0.396221	-4.707014	4.070239	С	-0.632490	-4.938453	0.256123
Η	-2.415703	-4.025230	0.833233	С	-0.079522	-5.000296	1.537658
Η	-1.193350	-5.157503	1.484016	Н	0.077507	-4.067819	3.468426
Η	-2.847513	-5.152634	2.145179	Н	-0.402175	-5.731339	-0.456285
				Н	0.571784	-5.834943	1.808948

TSI-3b

С	-0.682337	0.718927	-0.027418
С	-1.911123	0.447417	-0.037401
С	-3.708334	-1.598109	0.338463
Н	-4.468991	-2.374071	0.509147
С	-3.316465	0.700388	-0.249168
0	-3.709589	1.812649	-0.582117
N	-4.198221	-0.362660	-0.055817
N	-2.458663	-1.732358	0.473781
С	1.733436	3.728151	-0.174400
С	2.260924	4.207403	-1.385574
С	2.137917	4.391806	0.997156

Η	3.551902	5.606457	-2.411002
Н	3.332024	5.938635	1.921665
Н	4.257523	6.721133	-0.275448
0	1.617451	3.963157	2.197733
0	1.867881	3.590376	-2.551258
Р	0.527060	2.685154	2.024636
Р	0.750244	2.349774	-2.303626
Р	3.031364	-1.665540	-0.058725
Ni	0.539261	2.229098	-0.122239
\u	0.969762	-0.583511	0.056996
С	-1.728854	-2.864471	0.833569
С	-1.162496	-2.902347	2.134437
С	-1.473607	-3.884232	-0.124351
С	-0.354249	-3.997632	2.469005
С	-0.632490	-4.938453	0.256123
С	-0.079522	-5.000296	1.537658
Η	0.077507	-4.067819	3.468426
Η	-0.402175	-5.731339	-0.456285
Η	0.571784	-5.834943	1.808948
С	-5.611447	-0.165723	-0.247774
С	-6.171356	-0.510174	-1.496607
С	-6.371930	0.354629	0.818247
С	-7.549641	-0.313312	-1.661197
С	-7.745805	0.538996	0.600961
С	-8.326783	0.208011	-0.623812
Η	-8.023125	-0.562780	-2.612689
Η	-8.367368	0.949040	1.400030
Η	-9.399226	0.358670	-0.773846
С	4.221752	-0.603093	-0.963667
С	4.074398	0.794474	-0.895829
С	5.279987	-1.153287	-1.704954
С	4.977258	1.630382	-1.555503

Η	3.234573	1.238157	-0.354750	Н	-0.453040	-2.492653	4.935706
С	6.178977	-0.311551	-2.367922	Н	-3.673078	-2.041836	2.978094
Н	5.402268	-2.237035	-1.769967	Н	-2.926272	-2.907950	4.338688
С	6.030618	1.077933	-2.293012	Н	-3.133603	-1.138481	4.412118
Н	4.842612	2.713466	-1.501815	С	-2.100170	-3.805264	-1.515737
Н	6.998025	-0.745039	-2.947347	С	-2.067146	-5.124869	-2.292796
Н	6.732977	1.731422	-2.816739	С	-1.461726	-2.679654	-2.345942
С	2.984533	-3.266200	-0.941229	Н	-3.162725	-3.543747	-1.376698
С	2.345590	-3.293946	-2.193245	Н	-2.518802	-5.951476	-1.721651
С	3.513899	-4.447651	-0.402326	Н	-2.629289	-5.017111	-3.234229
С	2.241983	-4.492293	-2.900665	Н	-1.037538	-5.415918	-2.557576
Η	1.920697	-2.377449	-2.610116	Н	-1.501030	-1.717968	-1.817643
С	3.398489	-5.648527	-1.112049	Н	-0.405315	-2.908876	-2.550975
Η	4.008037	-4.438401	0.571442	Н	-1.979316	-2.560020	-3.311815
С	2.764744	-5.673244	-2.358131	С	-5.731084	0.746198	2.145033
Η	1.741843	-4.507245	-3.872193	С	-6.446503	0.122233	3.351987
Η	3.807447	-6.568140	-0.686085	С	-5.640584	2.277344	2.268691
Η	2.674720	-6.613726	-2.907627	Н	-4.701670	0.358291	2.149681
С	3.763126	-1.972514	1.587064	Н	-6.503507	-0.974759	3.263486
С	2.934858	-2.544290	2.566759	Н	-5.902424	0.360016	4.280688
С	5.079695	-1.612379	1.910469	Н	-7.473114	0.506899	3.464547
С	3.419661	-2.759989	3.857484	Н	-5.097221	2.707370	1.413904
Η	1.907101	-2.812730	2.317034	Н	-6.645466	2.730398	2.301004
С	5.558422	-1.823305	3.208130	Н	-5.112354	2.560462	3.194448
Η	5.731281	-1.158193	1.161201	С	-5.295085	-1.014147	-2.639062
С	4.732522	-2.395355	4.181331	С	-4.844009	0.165454	-3.520830
Η	2.767542	-3.202949	4.614353	С	-5.955814	-2.115381	-3.476888
Η	6.582493	-1.535140	3.458436	Н	-4.386542	-1.451564	-2.199015
Η	5.110466	-2.553613	5.194620	Н	-4.356259	0.949523	-2.922067
С	-1.485864	-1.792232	3.129929	Н	-4.134278	-0.175977	-4.292662
С	-0.443918	-1.635913	4.242549	Н	-5.709094	0.622176	-4.030035
С	-2.886491	-1.980240	3.743985	Н	-6.305865	-2.947923	-2.845406
Η	-1.503057	-0.852160	2.551817	Н	-6.817775	-1.738206	-4.050332
Η	0.574551	-1.539096	3.839701	Н	-5.232385	-2.520375	-4.203163
Н	-0.660372	-0.735463	4.836793	С	1.487666	0.938278	-3.262432

С	2.446046	1.347880	-4.384047	Н	-1.444713	4.7
С	0.386151	-0.019754	-3.726132	Н	-0.201181	4.1
Н	2.078425	0.427977	-2.485702	Н	-0.350503	5.3
Н	3.231712	2.024009	-4.019908	Н	-1.802260	4.7
Н	2.933943	0.441947	-4.780701			
Н	1.924738	1.841997	-5.217277	TSI	I-2b	
Η	-0.294058	-0.285985	-2.905665	Geo	metry with 1	55 ato
Н	-0.210241	0.412052	-4.544329	С	1.189231	3.7
Н	0.838198	-0.952028	-4.099609	С	1.686747	4.3
С	-0.758213	2.975809	-3.174861	С	1.827494	4.1
С	-0.487246	3.457418	-4.603691	С	2.729731	5.2
С	-1.421699	4.057714	-2.311495	С	2.883935	5.0
Н	-1.424336	2.095470	-3.197522	С	3.318762	5.6
Η	-0.122455	2.650564	-5.254836	Н	3.070443	5.6
Н	-1.420799	3.846245	-5.042686	Н	3.349829	5.3
Η	0.254812	4.271111	-4.612158	Н	4.140580	6.3
Н	-1.703121	3.666135	-1.324571	С	-0.737223	0.12
Η	-0.755641	4.924312	-2.168547	Au	1.165724	-0.5
Н	-2.339136	4.414976	-2.806511	С	-1.787595	0.8
С	1.205377	1.420231	3.192725	Ni	-0.238643	2.48
С	0.999555	1.690405	4.685139	Р	3.413066	-1.19
С	2.684792	1.182220	2.864710	Ο	1.122274	3.9
Η	0.628564	0.523519	2.907721	Ο	1.410656	3.5
Η	-0.061532	1.794465	4.953817	Р	0.205026	2.4
Η	1.406863	0.843407	5.260710	Р	-0.308320	3.05
Η	1.534646	2.597779	5.006381	С	-3.154034	-1.78
Η	2.846820	0.983820	1.796477	Н	-3.850498	-2.58
Η	3.292459	2.057043	3.142772	С	-3.234040	0.7
Η	3.056698	0.310728	3.424332	Ο	-3.958906	1.6
С	-1.054943	3.370374	2.717564	Ν	-3.809545	-0.56
С	-1.941171	3.902545	1.583397	N	-1.911101	-1.95
С	-0.827277	4.445959	3.788313	С	3.763007	-2.7
Η	-1.541526	2.487547	3.170782	С	3.688387	-2.6
Η	-2.190374	3.125213	0.850012	С	4.033782	-3.9
Н	-2.885414	4.289268	1.999833	С	3.881787	-3.74

Η	-1.444713	4.730271	1.051255
Η	-0.201181	4.105441	4.623154
Н	-0.350503	5.334833	3.348249
Η	-1.802260	4.753466	4.200578

oms:

С	1.189231	3.763721	0.315686
С	1.686747	4.326650	-0.876133
С	1.827494	4.149474	1.509365
С	2.729731	5.257930	-0.892161
С	2.883935	5.066854	1.534778
С	3.318762	5.620289	0.325328
Н	3.070443	5.674835	-1.841437
Н	3.349829	5.330935	2.485921
Н	4.140580	6.341050	0.329996
С	-0.737223	0.121243	-0.033496
Au	1.165724	-0.520206	-0.217995
С	-1.787595	0.800383	0.122812
Ni	-0.238643	2.487205	0.299290
Р	3.413066	-1.192366	-0.217719
Ο	1.122274	3.926133	-2.065126
Ο	1.410656	3.577045	2.685815
Р	0.205026	2.409004	2.479140
Р	-0.308320	3.059116	-1.822736
С	-3.154034	-1.785680	-0.178360
Н	-3.850498	-2.588141	-0.469800
С	-3.234040	0.709077	0.204403
Ο	-3.958906	1.672687	0.410747
Ν	-3.809545	-0.563533	0.005109
Ν	-1.911101	-1.959474	-0.024663
С	3.763007	-2.700445	-1.199242
С	3.688387	-2.606343	-2.600593
С	4.033782	-3.939527	-0.600897
С	3.881787	-3.740452	-3.390826

Η	3.485564	-1.644022	-3.077427	Н	0.318753	-5.668309	1.460679
С	4.225406	-5.073079	-1.398623	Н	0.705141	-4.615031	-2.685544
Н	4.092317	-4.031327	0.485038	Н	1.271455	-6.096506	-0.787949
С	4.147569	-4.977605	-2.790856	С	-5.258318	-0.625981	-0.030672
Н	3.821761	-3.658230	-4.478905	С	-5.908051	-0.578755	-1.282015
Н	4.434590	-6.035277	-0.924540	С	-5.962177	-0.760969	1.183825
Н	4.294971	-5.865966	-3.410187	С	-7.307991	-0.670809	-1.292806
С	3.907629	-1.557228	1.509252	С	-7.361036	-0.845012	1.119748
С	5.119852	-1.115484	2.060717	С	-8.027979	-0.801842	-0.104968
С	3.007286	-2.289520	2.304012	Н	-7.842304	-0.630656	-2.244508
С	5.426627	-1.408631	3.393880	Н	-7.935921	-0.942413	2.043352
Η	5.824917	-0.538322	1.459144	Н	-9.118859	-0.868354	-0.133948
С	3.324827	-2.590587	3.629554	С	-0.971609	-2.413120	-2.699571
Η	2.055791	-2.623805	1.883237	С	-2.202762	-2.933267	-3.460157
С	4.534124	-2.146705	4.177826	С	0.195486	-2.145200	-3.655608
Η	6.369250	-1.056322	3.820114	Н	-1.246652	-1.443605	-2.257919
Η	2.620758	-3.163166	4.237918	Н	-3.063373	-3.071148	-2.788287
Η	4.777815	-2.371943	5.219184	Н	-2.501263	-2.230334	-4.255162
С	4.553237	0.091985	-0.842668	Н	-1.988026	-3.907499	-3.930473
С	4.149566	1.437739	-0.809218	Н	1.072968	-1.765740	-3.111394
С	5.831871	-0.241279	-1.322970	Н	0.503991	-3.049236	-4.204246
С	5.021389	2.439438	-1.245534	Н	-0.092785	-1.392411	-4.406258
Н	3.153918	1.708459	-0.446719	С	-1.424090	-3.647101	2.219075
С	6.696968	0.764692	-1.760631	С	-0.515722	-4.039336	3.390170
Η	6.151584	-1.285173	-1.358886	С	-2.810267	-4.299183	2.371574
С	6.293299	2.104312	-1.721075	Н	-1.568167	-2.554968	2.267362
Η	4.696742	3.481010	-1.215310	Н	0.495407	-3.619834	3.279195
Η	7.689458	0.500440	-2.134259	Н	-0.936027	-3.662947	4.336662
Η	6.971119	2.889325	-2.066218	Н	-0.419195	-5.132750	3.488905
С	-1.173366	-3.124427	-0.256953	Н	-3.501136	-3.984080	1.574748
С	-0.829354	-3.944210	0.848133	Н	-2.727673	-5.397970	2.324660
С	-0.613854	-3.340353	-1.543215	Н	-3.263899	-4.032750	3.339898
С	0.043877	-5.017638	0.628056	С	-5.256492	-0.772517	2.534637
С	0.256512	-4.426747	-1.708331	С	-5.664139	-1.976440	3.397196
С	0.582253	-5.262208	-0.637839	С	-5.499631	0.552816	3.277382

Н	-4.174957	-0.854851	2.351261	Н	-2.394814	1.296776	3.735722
Н	-5.520684	-2.926267	2.859597	Н	-3.205849	2.847229	4.034936
Н	-5.056164	-2.009793	4.316066	С	-1.543730	4.384010	-2.217789
Н	-6.720705	-1.917361	3.704753	С	-2.982262	3.991676	-1.868524
Н	-5.184643	1.409189	2.664141	С	-1.404173	4.966064	-3.627470
Н	-6.568903	0.676003	3.517336	Н	-1.214993	5.147174	-1.488655
Н	-4.936493	0.576179	4.224427	Н	-3.061373	3.519116	-0.878337
С	-5.142657	-0.372973	-2.583568	Н	-3.615510	4.893984	-1.868305
С	-5.303060	1.081376	-3.058664	Н	-3.401989	3.296829	-2.608234
С	-5.550048	-1.365073	-3.681366	Н	-0.363492	5.239329	-3.857099
Н	-4.073664	-0.533989	-2.382841	Н	-1.758975	4.259157	-4.393111
Н	-5.010542	1.788386	-2.269061	Н	-2.019262	5.877923	-3.706432
Н	-4.680305	1.274279	-3.946928	С	-0.222608	1.737546	-3.119321
Н	-6.352214	1.290764	-3.325705	С	0.617359	2.099688	-4.348303
Н	-5.452488	-2.408043	-3.341237	С	-1.630339	1.248331	-3.487657
Н	-6.591370	-1.210083	-4.006274	Н	0.289895	0.925729	-2.573697
Н	-4.907856	-1.235179	-4.567217	Н	1.632943	2.415286	-4.069586
С	1.048881	0.888199	3.134323	Н	0.700284	1.211235	-4.996154
С	0.044500	-0.232735	3.430367	Н	0.154860	2.904386	-4.938702
С	2.028024	1.124755	4.288776	Н	-2.235994	1.006207	-2.602691
Н	1.639902	0.589362	2.250422	Н	-2.170260	2.001676	-4.079308
Н	-0.644312	-0.405863	2.591693	Н	-1.551936	0.335071	-4.096660
Н	0.591995	-1.170261	3.609950				
Н	-0.548422	-0.013007	4.331349	3b'			
Н	2.729528	1.941841	4.068765	Geo	metry with 1	55 atoms:	
Н	1.510893	1.355775	5.230806	С	-2.545723	-2.576247	0.424431
Н	2.614833	0.204494	4.443103	С	-3.262406	-3.127041	-0.647377
С	-1.092201	3.062611	3.625502	С	-3.231064	-2.449908	1.640895
С	-0.667712	3.131809	5.095225	С	-4.599833	-3.526668	-0.538286
С	-2.435373	2.351062	3.423461	С	-4.568454	-2.828448	1.801893
Н	-1.190363	4.092433	3.236265	С	-5.241805	-3.367941	0.697133
Н	0.307715	3.625044	5.221478	Н	-5.120677	-3.940416	-1.404042
Н	-1.415285	3.711651	5.661644	Н	-5.060288	-2.709107	2.769201
Н	-0.615739	2.128234	5.544687	Н	-6.287263	-3.670437	0.801504
Н	-2.764199	2.386828	2.375873	С	0.565059	-0.564273	-0.016063

Au	-0.951602	0.908708	-0.027502	Н	-1.291124	7.765705	-1.299743
С	1.856261	-0.129880	-0.074782	С	-3.921862	1.767120	-1.471480
Ni	-0.754115	-1.854745	0.201149	С	-4.833182	0.735020	-1.189054
Р	-2.790293	2.360778	-0.148397	С	-3.769454	2.207317	-2.797607
0	-2.609186	-3.241722	-1.853852	С	-5.591650	0.165480	-2.215449
0	-2.534100	-1.925646	2.711951	Н	-4.948554	0.359541	-0.170259
Р	-0.863705	-1.849511	2.412602	С	-4.539166	1.640595	-3.818129
Р	-1.136837	-2.399909	-1.878079	Н	-3.049744	2.991977	-3.040461
С	4.122817	-0.079231	-0.090538	С	-5.451131	0.619632	-3.530818
Η	5.162116	-0.384385	-0.193928	Н	-6.292020	-0.640282	-1.982162
С	2.314049	1.249764	0.167705	Н	-4.417956	1.995437	-4.844796
0	1.712849	2.287687	0.380052	Н	-6.044113	0.172178	-4.332349
N	3.740829	1.176937	0.172402	С	4.613289	2.291844	0.412238
N	3.093988	-0.890423	-0.233394	С	5.038799	2.535883	1.732931
С	-3.799299	2.371837	1.388064	С	4.971675	3.111334	-0.679517
С	-4.567537	3.478119	1.787561	С	5.886439	3.634137	1.942427
С	-3.812602	1.203413	2.170147	С	5.814478	4.199358	-0.413024
С	-5.344308	3.408684	2.947630	С	6.271401	4.454155	0.881738
Н	-4.560920	4.399399	1.202421	Н	6.241694	3.851943	2.952203
С	-4.602897	1.134223	3.320918	Н	6.112989	4.861479	-1.228134
Η	-3.207355	0.342057	1.884272	Н	6.929485	5.307353	1.066252
С	-5.368694	2.236678	3.712460	С	3.284964	-2.238899	-0.723111
Η	-5.935014	4.275905	3.253935	С	3.462778	-2.415672	-2.114746
Н	-4.611473	0.215678	3.912382	С	3.386644	-3.298683	0.206134
Н	-5.980728	2.186094	4.616755	С	3.725492	-3.716560	-2.570525
С	-2.354498	4.092086	-0.544184	С	3.654613	-4.575182	-0.310113
С	-3.290718	5.009472	-1.055167	С	3.818925	-4.782371	-1.679592
С	-1.029573	4.506181	-0.315656	Н	3.864518	-3.897720	-3.637098
С	-2.906534	6.325866	-1.322951	Н	3.739343	-5.427232	0.363089
Η	-4.317919	4.694988	-1.253396	Н	4.024244	-5.788335	-2.054356
С	-0.652510	5.825645	-0.585303	С	3.441612	-1.251421	-3.104309
Η	-0.288140	3.796524	0.062433	С	2.828788	-1.621367	-4.464392
С	-1.588701	6.735612	-1.086610	С	4.862181	-0.698438	-3.335386
Η	-3.638524	7.033591	-1.720414	Н	2.825745	-0.448227	-2.669680
Н	0.379609	6.138583	-0.407836	Н	1.869330	-2.145787	-4.361460

Н	2.658948	-0.708865	-5.056618	С	-1.578631	-1.016088	-3.040100
Н	3.502751	-2.266692	-5.049478	С	-2.467934	-1.408952	-4.224110
Н	5.342401	-0.343072	-2.413593	С	-0.352803	-0.209635	-3.474927
Н	5.509431	-1.480491	-3.764986	Н	-2.180493	-0.390132	-2.357620
Н	4.833706	0.145248	-4.042241	Н	-3.335117	-2.002566	-3.903594
С	3.242226	-3.071220	1.710689	Н	-2.844237	-0.491562	-4.703178
С	4.471889	-2.378984	2.332138	Н	-1.915872	-1.978844	-4.984812
С	2.969811	-4.366538	2.485007	Н	0.322025	0.016976	-2.636180
Н	2.375175	-2.402473	1.841812	Н	0.217926	-0.742463	-4.247854
Н	4.660931	-1.378037	1.926185	Н	-0.679794	0.750870	-3.904887
Н	4.326449	-2.262608	3.418073	С	-0.009287	-3.646085	-2.637949
Н	5.379669	-2.984469	2.175997	С	-0.425056	-4.166854	-4.015530
Н	2.117846	-4.925757	2.074654	С	0.182789	-4.779320	-1.620230
Н	3.849180	-5.030015	2.477400	Н	0.942721	-3.098665	-2.722004
Н	2.754180	-4.137102	3.539496	Н	-0.389530	-3.383086	-4.784747
С	4.592356	1.673603	2.907894	Н	0.266772	-4.967251	-4.326562
С	3.774972	2.497757	3.915640	Н	-1.441854	-4.589583	-3.995379
С	5.783748	0.975993	3.582520	Н	0.544339	-4.388637	-0.657535
Н	3.927351	0.885724	2.525574	Н	-0.761124	-5.319232	-1.442149
Н	2.894950	2.951353	3.433027	Н	0.925341	-5.499298	-1.996780
Н	3.423447	1.857235	4.740440	С	-0.384745	-0.328989	3.359859
Н	4.378804	3.308273	4.355045	С	1.133617	-0.297650	3.579831
Н	6.355112	0.368130	2.862788	С	-1.176847	-0.041244	4.638867
Н	6.476150	1.707613	4.030267	Н	-0.631802	0.456976	2.624914
Н	5.433974	0.309640	4.387609	Н	1.686494	-0.453450	2.641974
С	4.416079	2.874679	-2.079380	Н	1.424244	0.687507	3.975892
С	5.482485	2.993222	-3.176471	Н	1.457135	-1.060551	4.306053
С	3.231900	3.822866	-2.345067	Н	-2.259014	-0.139379	4.480590
Н	4.026393	1.846592	-2.120831	Н	-0.886956	-0.702967	5.467481
Н	6.337217	2.325264	-2.984675	Н	-0.974719	0.995432	4.955801
Н	5.050588	2.721677	-4.153015	С	-0.263454	-3.355569	3.307944
Н	5.867876	4.021644	-3.265461	С	-0.613073	-4.607029	2.490338
Н	2.452021	3.707253	-1.577479	C	-0.755736	-3.469294	4.754661
Н	3.565298	4.874053	-2.339163	Н	0.828468	-3.228903	3.310701
Н	2.783273	3.614190	-3.330462	Н	-0.271656	-4.524143	1.448202

Η	-0.139163	-5.492193	2.943934
Н	-1.700744	-4.781736	2.472447
Η	-0.337178	-2.685516	5.400544
Η	-1.854146	-3.415239	4.809680
Н	-0.444187	-4.442124	5.170146

2b'

	5				
С	1.509424	-0.458820	0.127649	С	-3.77909
С	0.870076	0.761774	0.097974	С	-2.70385
С	3.607911	0.680901	0.016105	С	-5.03362
Н	4.695932	0.648035	-0.023600	С	-2.88387
С	1.580442	2.012471	0.087546	Н	-1.72145
0	1.121040	3.147800	0.126179	С	-5.20721
Ν	3.020455	1.870104	0.034386	Н	-5.88022
Ν	2.929998	-0.462852	0.051478	С	-4.13366
Ni	0.085169	-1.767974	0.222974	Н	-2.04079
С	-1.669773	-2.605731	0.193483	Н	-6.18580
Р	0.104368	-2.461444	-1.879072	Н	-4.27261
Р	-0.391159	-1.695781	2.438947	С	-4.35243
С	-2.506276	-2.627591	1.321444	С	-4.81871
С	-2.201393	-3.166460	-0.977895	С	-4.40067
0	-1.445141	-3.101354	-2.123722	С	-5.33849
0	-2.047847	-2.043121	2.477533	Н	-4.76730
С	-3.782573	-3.203448	1.313948	С	-4.91584
С	-3.469621	-3.755652	-1.036995	Н	-4.03146
С	-4.253038	-3.767556	0.121788	С	-5.38708
Η	-4.385178	-3.200750	2.223927	Н	-5.69922
Η	-3.831859	-4.174399	-1.976862	Н	-4.94877
Η	-5.249444	-4.216371	0.094071	Н	-5.78971
Au	-1.206401	0.932413	-0.061490	С	3.71819
Р	-3.511697	1.383768	-0.273279	С	4.19017
С	-4.471798	0.248180	-1.343213	С	4.03490
С	-5.865801	0.097976	-1.225138	С	4.90789
С	-3.783090	-0.470810	-2.332746	С	4.74999

С	-6.556396	-0.746649	-2.097377
Н	-6.414204	0.632634	-0.446715
С	-4.479337	-1.308914	-3.207662
Н	-2.696713	-0.393375	-2.406111
С	-5.865355	-1.446099	-3.093827
Н	-7.638841	-0.860093	-1.996732
Н	-3.930652	-1.872583	-3.965410
Н	-6.407773	-2.109035	-3.772935
С	-3.779090	3.077923	-0.943502
С	-2.703859	3.983489	-0.947605
С	-5.033622	3.495336	-1.420719
С	-2.883877	5.288303	-1.419071
Н	-1.721451	3.670577	-0.582778
С	-5.207212	4.797837	-1.894340
Н	-5.880229	2.805961	-1.430222
С	-4.133662	5.696859	-1.893592
Н	-2.040790	5.983938	-1.417013
Н	-6.185803	5.112031	-2.266470
Н	-4.272616	6.715309	-2.265725
С	-4.352431	1.382980	1.358884
С	-4.818718	0.176199	1.906704
С	-4.400678	2.556073	2.129395
С	-5.338497	0.148643	3.203057
Н	-4.767300	-0.747802	1.328755
С	-4.915843	2.521156	3.428794
Η	-4.031460	3.499502	1.720505
С	-5.387080	1.319325	3.967967
Η	-5.699229	-0.795672	3.618934
Η	-4.948772	3.439191	4.021197
Η	-5.789713	1.294803	4.983887
С	3.718198	-1.692576	-0.059527
С	4.190170	-2.084131	-1.334573
С	4.034906	-2.410463	1.118645
С	4.907891	-3.288891	-1.415819
С	4.749997	-3.607780	0.972032

С	5.165924	-4.053126	-0.282346	С	4.864574	2.898164	3.591238
Н	5.275637	-3.630003	-2.384133	Н	3.297640	2.079019	2.400033
Н	5.001236	-4.200005	1.851125	Н	1.757701	4.022743	2.439388
Н	5.717359	-4.992552	-0.371186	Н	2.204072	3.506799	4.091099
С	3.839048	3.068068	0.015167	Н	2.949150	4.962543	3.379572
С	4.197699	3.643834	1.249008	Н	5.678332	2.281331	3.177881
С	4.196440	3.619050	-1.233562	Н	5.293988	3.865712	3.897548
С	4.970052	4.814373	1.208860	Н	4.490616	2.401651	4.501068
С	4.968849	4.789485	-1.213754	С	3.715552	3.016450	-2.550214
С	5.352911	5.378627	-0.007596	С	4.754514	3.115661	-3.674601
Н	5.266468	5.294350	2.143784	С	2.384818	3.660918	-2.983925
Н	5.269438	5.253202	-2.154681	Н	3.521396	1.946530	-2.380859
Н	5.953283	6.292113	-0.017765	Н	5.730703	2.709875	-3.367829
С	4.041101	-1.225298	-2.589064	Н	4.410200	2.550407	-4.555172
С	3.885207	-2.037003	-3.885970	Н	4.905598	4.157611	-3.998728
С	5.264203	-0.300661	-2.757544	Н	1.623817	3.591347	-2.194506
Н	3.143449	-0.599132	-2.470429	Н	2.533309	4.729239	-3.213787
Н	3.141375	-2.839129	-3.803192	Н	1.996191	3.168531	-3.890528
Н	3.579997	-1.368919	-4.706190	С	1.148576	-3.971906	-2.165757
Н	4.837964	-2.500378	-4.186449	С	0.945710	-4.644781	-3.526851
Н	5.402908	0.397560	-1.922602	С	0.943560	-4.963560	-1.017770
Η	6.182692	-0.903900	-2.840644	Н	2.174612	-3.577214	-2.095777
Η	5.164579	0.294068	-3.677096	Н	1.176347	-3.985103	-4.375416
С	3.687893	-1.876498	2.504854	Н	1.615162	-5.517907	-3.599985
С	4.575655	-0.677557	2.892782	Н	-0.088857	-5.005512	-3.637715
С	3.788809	-2.923352	3.620292	Н	1.155240	-4.497450	-0.048850
Η	2.647832	-1.523483	2.453910	Н	-0.089536	-5.346227	-0.994093
Н	4.483958	0.172959	2.208336	Н	1.621833	-5.823264	-1.140791
Η	4.303339	-0.313687	3.895577	С	0.329151	-1.426712	-3.429103
Η	5.636500	-0.974981	2.916766	С	-0.705378	-1.759513	-4.514441
Η	3.235482	-3.843461	3.392664	Н	-1.695122	-1.367630	-4.242566
Η	4.837927	-3.197906	3.814842	Н	-0.399361	-1.274637	-5.456049
Η	3.389218	-2.505577	4.557294	Н	-0.811555	-2.834829	-4.704320
С	3.722340	3.075993	2.581347	С	-0.358160	-0.271502	3.649536
С	2.589342	3.944586	3.155676	С	-1.444598	0.779806	3.410835

Η	-1.234929	1.380342	2.512729	Н	-0.191238	-4.322491	5.185381
Н	-2.438588	0.329245	3.297519	С	1.033511	0.364375	3.742345
Η	-1.475069	1.465811	4.273130	Н	1.811166	-0.357006	4.030972
С	0.281428	-3.100583	3.465393	Н	1.319954	0.830000	2.788541
С	0.710853	-4.261786	2.567887	Н	1.020473	1.154672	4.510114
С	-0.689424	-3.565228	4.557516	Н	-0.578984	-0.765533	4.610390
Η	1.171681	-2.665097	3.944898	Н	1.320852	-1.742729	-3.782436
Η	1.467058	-3.941284	1.837541	С	0.383876	0.085345	-3.193138
Η	1.140530	-5.077544	3.171712	Н	-0.572825	0.478541	-2.817583
Η	-0.147551	-4.669298	2.011195	Н	1.159995	0.371246	-2.473525
Η	-1.015544	-2.749161	5.220416	Н	0.601469	0.588765	-4.149499
Н	-1.587971	-4.025104	4.119264				

References:

- L. Zhan, M. Zhu, L. Liu, J. Wang, C. Xie, and Jun Zhang, Synthesis of MAuAg (M = Ni, Pd, or Pt) and NiAuCu Heterotrimetallic Complexes Ligated by a Tritopic Carbanionic N-Heterocyclic Carbene, *Inorg. Chem.*, 2021, 60, 16035.
- 2 J. W. Wang, S. C. Lv, H. F. Chen, M. Shi and J. Zhang, Isolation and characterization of *gem*-diaurated species having two C-Au σ bonds in gold(i)-activated amidiniumation of alkynes, *Dalton Trans.*, 2016, **45**, 17091.
- 3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, :: Farkas, J. B. Foresman, J.

V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09. Revision E.01, Inc., Wallingford, CT, 2009.

- 4 (a) A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, *J. Chem. Phys.*, 1993, 98, 1372; (b) S. Ehrlich, J. Moellmann and S. Grimme, Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems, *Acc. Chem. Res.*, 2013, 46, 916; (c) J. G. Brandenburg, M. Alessio, B. Civalleri, M. F. Peintinger, T.Bredow and S. Grimme, Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations, *J. Phys. Chem. A*, 2013, 117, 9282; (d) J. G.Brandenburg and S. Grimme, Dispersion Corrected Hartree-Fock and Density Functional Theory for Organic Crystal Structure Prediction, *Top. Curr. Chem.*, 2014, 345, 1; (e) S.Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, 32, 1456.
- 5 R. E. Plata and D. A. Singleton, A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis–Hillman Reactions. The Importance of Experimental Observations, J. Am. Chem. Soc., 2015, 137, 3811.