When Ferrocene and Diiron Organometallics Meet: Triiron Vinyliminium Complexes Exhibit Strong Cytotoxicity and Cancer Cell Selectivity

Silvia Schoch, Simona Braccini, Lorenzo Biancalana, Alessandro Pratesi, Tiziana Funaioli, Stefano Zacchini, Guido Pampaloni, Federica Chiellini and Fabio Marchetti

Supporting Information

Table of contents	Pages
Figures S1-S13: IR spectra	S2-S6
Figures S14-S41: NMR spectra	S7-S22
NMR data for complexes in CD_3OD/D_2O solutions and Figure S42	S23-S24
Figures S43-S45: Spectro-electrochemical studies	S25-S26
Figures S46-S47: ROS analyses (3 hours)	S27
Figures S48-S56: HR-ESI-MS spectra	S28-S32
Figures S57-S63: Deconvoluted ESI–MS spectra for [2a]CF ₃ SO ₃ /protein interaction	S33-S36
Figures S64-S66: HR-ESI-MS studies on the interaction of complexes with TrxR model	S37-S38

Figure S1. IR spectrum of [2a]CF₃SO₃ in CH₂Cl₂ solution.

Figure S3. IR spectrum of [2c]CF₃SO₃ in CH₂Cl₂ solution.

Figure S4. IR spectrum of $[2d]CF_3SO_3$ in CH_2Cl_2 solution.

Figure S5. IR spectrum of $[2e]CF_3SO_3$ in CH_2Cl_2 solution.

Figure S6. IR spectrum of [2f]CF₃SO₃ in CH₂Cl₂ solution.

Figure S7. IR spectrum of $\circle{2g}\circ$

Figure S8. IR spectrum of $[2h]CF_3SO_3$ in CH_2Cl_2 solution.

Figure S10. IR spectrum of $[2i]CF_3SO_3$ in CH₂Cl₂ solution.

Figure S11. IR spectrum of $[2h]NO_3$ in CH_2Cl_2 solution.

Figure S12. IR spectrum of [2h]NO₃ in the solid state.

Figure S13. IR spectrum of 3 in CH_2Cl_2 solution.

Figure S14. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2a]CF₃SO₃.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, acetone-d₆) of [2a]CF₃SO₃.

Figure S16. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2b]CF₃SO₃.

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, acetone-d₆) of [2b]CF₃SO₃.

Figure S18. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2c]CF₃SO₃.

Figure S19. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [2c]CF₃SO₃.

Figure S20. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2d]CF₃SO₃.

Figure S21. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [2d]CF₃SO₃.

Figure S22. ¹H NMR spectrum (401 MHz, acetone-d₆) of **[2e]CF₃SO₃**. Signals due *trans* isomers are marked with asterisk (*) and are not integrated.

Figure S23. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [2e]CF₃SO₃.

Figure S24. ¹H NMR spectrum (401 MHz, acetone-d₆) of Z-[2e]CF₃SO₃.

Figure S25. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of Z-[2e]CF₃SO₃.

Figure S26. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2f]CF₃SO₃.

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, acetone-d₆) of [2f]CF₃SO₃.

Figure S29. $^{13}C{^1H}$ NMR spectrum (101 MHz, acetone-d₆) of Z-[2f]CF₃SO₃.

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, acetone-d₆) of [2g]CF₃SO₃.

Figure S33. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2i]CF₃SO₃.

Figure S34. ¹H NMR spectrum (401 MHz, acetone-d₆) of [2h]NO₃.

Figure S35. ¹⁴N NMR spectrum (29 MHz, acetone-d₆) of [2h]NO₃.

Figure S36. ¹H NMR spectrum (401 MHz, acetone-d₆) of 3.

Figure S37. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of 3.

Figure S38. ¹H NMR spectrum (401 MHz, acetone-d₆) of **4**.

Figure S39. ¹H (black line) and ¹H-NOESY (red line: irradiation at 5.26 ppm; blue line: irradiation at 5.54 ppm) NMR spectra (401 MHz, acetone-d₆) of *cis*-[2g]CF₃SO₃. Below: structure of *cis*-[2g]⁺ with NOE effects represented by red/blue arrows and selected ¹H NMR chemical shifts (ppm) next to each group.

Figure S40. ¹H (black line) and ¹H-NOESY (red line: irradiation at 5.19 ppm; blue line: irradiation at 3.99 ppm) NMR spectra (401 MHz, acetone-d₆) of *cis-E-[2e]CF*₃SO₃. Below: structure of *cis-E-[2e]*⁺; substituents with the highest priority around the C=N double bond are highlighted in green. NOE effects are represented by red/blue arrows and selected ¹H NMR chemical shifts (ppm) are reported next to each group.

Figure S41. ¹H (black line) and ¹H-NOESY (red line: irradiation at 5.19 ppm; blue line: irradiation at 3.99 ppm) NMR spectra (401 MHz, acetone-d₆) of *cis-Z-[2e]CF*₃SO₃. Below: structure of *cis-Z-[2e]*⁺; substituents with the highest priority around the C=N double bond are highlighted in green. NOE effects are represented by red/blue arrows and selected ¹H NMR chemical shifts (ppm) are reported next to each group.

NMR data of complexes in D₂O/CD₃OD mixtures

[2a]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 7.39, 7.27, 7.12 (m, 3 H, C₆H₃); 5.33, 5.30, 5.08, 5.07 (s, 10 H, Cp); 5.03 (s, 1 H, C²H); 4.14 (s, 3 H, NMe); 4.11 (s, 5 H, Cp^{Fc}); 1.77 (s, 3 H, C₆H₃Me).

[2b]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 7.42, 7.12, 7.03, 6.87 (d, ³J = 8.7 Hz, 4 H, C₆H₄); 5.23, 5.01 (s, 10 H, Cp); 5.10 (s, 1 H, C²H); 4.20 (s, 3 H, NMe); 4.13 (s, 5 H, Cp^{Fc}); 3.69 (s, 3 H, OMe).

[2c]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 8.30-7.00 (m, 7 H, C₁₀H₇); 5.27, 5.03, 4.92, 4.89 (s, 10 H, Cp); 4.32 (s, 3 H, NMe); 4.08 (s, 5 H, Cp^{Fc}).

 $[2d]CF_{3}SO_{3}. {}^{1}H NMR (CD_{3}OD/D_{2}O = 1:1): \delta/ppm = 7.50-7.10 (m, 5 H, Ph); 5.49, 5.32 (d, {}^{2}J_{HH} = 14 Hz, 2 H, CH_{2}); 5.18, 5.15, 4.98, 4.92 (s, 10 H, Cp); 4.27, 4.07 (s, 5 H, Cp^{Fc}); 3.90 (s, 3 H, NMe).$ $[2e]CF_{3}SO_{3}. {}^{1}H NMR (CD_{3}OD/D_{2}O = 1:1): \delta/ppm = 5.14, 5.12, 4.96, 4.91 (s, 10 H, Cp); 5.02, 5.00 (s, 1 H, C^{2}H); 4.49, 4.47, 4.37, 4.27 (m, 4 H, C_{5}H_{4}); 4.26, 4.24 (s, 5 H, Cp^{Fc}); 3.74, 3.07 (s, 3 H, NMe); 3.35 (m, 1 H, CH^{Cy}); 2.10-0.90 (m, 10 H, CH_{2}^{Cy}).$

[2f]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 5.72 (m, 1 H, CH=CH₂); 5.40, 5.26 (m, 2 H, CH=CH₂); 5.16, 5.15, 4.94, 4.93 (s, 10 H, Cp); 4.26, 4.23 (s, 5 H, Cp^{Fc}); 3.77 (s, 3 H, NMe).

[2g]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 7.50-6.90 (m, 10 H, Ph); 5.68, 5.49 (d, ²J_{HH} = 14.4 Hz, 2 H, CH₂); 5.19, 5.98 (s, 10 H, Cp); 4.42, 4.13, 4.12, 4.09 (m, 4 H, C₅H₄); 4.32 (s, 1 H, C²H); 4.04 (s, 5 H, Cp^{Fc}).

[**2h**]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 5.15, 4.91, 4.70 (s, 10 H, Cp); 5.00 (s, 1 H, C²H); 4.46, 4.37 (m, 4 H, C₅H₄); 4.27, 4.25 (s, 5 H, Cp^{Fc}); 3.78, 3.77, 3.32, 3.18 (s, 6 H, NMe₂). [**2i**]CF₃SO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ /ppm = 7.41–7.26, 7.15–7.04 (m, 3 H, C₆H₃); 5.47, 5.24 (s, 10 H, Cp); 4.74, 4.56, 4.26 (s, 3 H, C₅H₄); 4.31 (s, 3 H, NMe); 4.22 (s, 5 H, Cp^{Fc}); 2.44, 1.86 (s, 6 H, C₆H₃Me₂).

[2h]NO₃. ¹H NMR (CD₃OD/D₂O = 1:1): δ/ppm = 5.36, 5.11 (s, 10 H, Cp); 5.21 (s, 1 H, C²H); 4.67,
4.57 (m, 4 H, C₅H₄); 4.48, 4.46 (s, 5 H, Cp^{Fc}); 3.98, 3.97, 3.39 (s, 6 H, NMe).

3. ¹H NMR (CD₃OD/D₂O = 3:1): δ /ppm = 4.69. 4.54 (s, 10 H, Cp); 4.23 (s, 5 H, Cp^{Fc}); 2.16, 1.66

(s, 6 H, NMe₂).

4. ¹H NMR (CD₃OD/D₂O = 3:1): δ /ppm = 7.46–7.25 (m, 3 H, C₆H₃); 6.87 (s, 1 H, C²H); 4.45, 4.24,

4.07 (m, 3 H, C₅H₄); 4.08 (s, 5 H, Cp); 3.88 (s, 3 H, NMe); 2.33, 2.22 (s, 6 H, C₆H₃Me₂).

Signals in the 5.2-4.5 ppm region are covered by OH resonance.

Figure S42. ¹H NMR spectrum (401 MHz, $CD_3OD/D_2O = 1:1$) of [2e]CF₃SO₃ after 72 h.

Figure S43. IR spectral changes of a DMSO solution of $[2e]CF_3SO_3$ recorded in an OTTLE cell during the progressive increase of the potential from 0.0 to +0.9 V (*vs.* Ag pseudoreference electrode). [NⁿBu₄]PF₆ (0.1 mol·dm⁻³) was used as supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Figure S44. IR spectra of a DMSO solution of **[2e]CF₃SO₃** recorded in an OTTLE cell before (black) and after (red) a slow cyclic voltammetry between 0.0 V and +0.9 V (*vs.* Ag pseudoreference electrode) (scan rate = $1 \text{ mV} \cdot \text{s}^{-1}$). [NⁿBu₄]PF₆ (0.1 mol dm⁻³) was used as supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Wavenumbers [1/cm]

Figure S45. Cyclic voltammetry of **3** recorded at a platinum electrode in 0.1 M [NⁿBu₄]PF₆/DMSO solution. Scan rate = $0.1 \text{ V} \cdot \text{s}^{-1}$.

Figure S46. Fluorescence kinetics measurements of intracellular reactive oxygen species (ROS). A2780 cells incubated for 4 hours with 10 μ M of complexes and 5% atmosphere of CO₂ at 37 °C. H₂O₂ and menadione (100 μ M) were used as positive controls. The black line represents the negative control. Analyses were conducted in triplicate and data are represented as mean \pm SD. *Values after 3 hours statistically different from the negative control.

Figure S47. Fluorescence kinetics measurements of intracellular reactive oxygen species (ROS). A2780cisR cells incubated for 4 hours with 10 μ M of complexes and 5% atmosphere of CO₂ at 37 °C. H₂O₂ and menadione (100 μ M) were used as positive controls. The black line represents the negative control. Analyses were conducted in triplicate and data are represented as mean \pm SD. *Values after 3 hours statistically different from the negative control.

Figure S48. High-resolution ESI mass spectrum of $[2a]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₃₃H₂₉NCIFe₃O₂+ (black line) *vs* the theoretical one (red lines). Measured *m*/*z* = 673.99205; theoretical *m*/*z* = 673.99295; mass error = -1.3 ppm.

Figure S49. High-resolution ESI mass spectrum of $[2b]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₃₃H₃₀Fe₃NO₃⁺ (black line) *vs* the theoretical one (red lines). Measured *m/z* = 656.02548; theoretical *m/z* = 656.02684; mass error = -2.1 ppm.

Figure S50. High-resolution ESI mass spectrum of $[2c]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₃₆H₃₀Fe₃NO₂⁺ (black line) *vs* the theoretical one (red lines). Measured *m/z* = 676.03146; theoretical *m/z* = 676.03192; mass error = -0.7 ppm.

Figure S51. High-resolution ESI mass spectrum of $[2d]^+$, 10^{-5} M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for $C_{33}H_{30}Fe_3NO_2^+$ (black line) *vs* the theoretical one (red lines). Measured *m/z* = 640.03148; theoretical *m/z* = 640.03192; mass error = -0.8 ppm.

Figure S52. High-resolution ESI mass spectrum of $[2e]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₃₂H₃₄Fe₃NO₂⁺ (black line) *vs* the theoretical one (red lines). Measured *m/z* = 632.06323; theoretical *m/z* = 632.06322; mass error = 0.0 ppm.

Figure S53. High-resolution ESI mass spectrum of $[2f]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₂₉H₂₈NFe₃O₂⁺ (black line) *vs* the theoretical one (red lines). Measured *m*/*z* = 590.01680; theoretical *m*/*z* = 590.01627; mass error = 0.9 ppm.

Figure S54. High-resolution ESI mass spectrum of $[2g]^+$, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for C₃₉H₃₄Fe₃NO₂⁺ (black line) *vs* the theoretical one (red lines). Measured *m/z* = 716.06323; theoretical *m/z* = 716.06322; mass error = 0.0 ppm.

Figure S55. High-resolution ESI mass spectrum of [**2h**]NO₃, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for $C_{27}H_{26}Fe_3NO_2^+$ (black line) *vs* the theoretical one (red lines). Measured *m*/*z* = 563.99894; theoretical *m*/*z* = 564.00062; mass error = -3.0 ppm.

Figure S56. High-resolution ESI mass spectrum of **3**, 10⁻⁵ M in 2mM ammonium acetate solution and DMSO 1:1. Experimental isotopic distribution for $C_{28}H_{26}Fe_3N_2O_2 + H^+$ (black line) *vs* the theoretical one (red lines). Measured *m*/*z* = 591.01075; theoretical *m*/*z* = 591.01152; mass error = -1.3 ppm.

Figure S57. Deconvoluted ESI–MS spectra of Cyt c in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10^{-4} M (complex to protein molar ratio = 3).

Figure S58. Deconvoluted ESI–MS spectra of HEWL in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10^{-4} M (complex to protein molar ratio = 3).

Figure S59. Deconvoluted ESI–MS spectra of Ub in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10⁻⁴ M (complex to protein molar ratio = 3).

Figure S60. Deconvoluted ESI–MS spectra of BSA in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10^{-4} M (complex to protein molar ratio = 3).

Figure S61. Deconvoluted ESI–MS spectra of SOD in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10⁻⁴ M (complex to protein molar ratio = 3).

Figure S62. Deconvoluted ESI–MS spectra of hCA I in 2 mM ammonium acetate solution (pH 6.8), incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10^{-4} M (complex to protein molar ratio = 3).

Figure S63. Deconvoluted ESI–MS spectra of ODN2 in water incubated with **[2a]CF₃SO₃** for 24 h at 37 °C. The protein concentration was 10^{-4} M (complex to protein molar ratio = 3).

Figure S64. High-resolution ESI mass spectrum of **[2a]CF₃SO₃/TrxR-pept** adduct, $5 \cdot 10^{-6}$ M water. Experimental (black line) *vs* theoretical (red line) isotopic pattern for the **[TrxR-pept** + Fe - H]⁺ ion (C₄₃H₆₉N₁₄O₁₈SSeFe). Measured *m/z* = 1237.31076; theoretical *m/z* = 1237.31441; mass error = -2.9 ppm.

Figure S65. High-resolution ESI mass spectrum of $5 \cdot 10^{-6}$ M solution of **TrxR-pept** in water incubated with **[2f]CF₃SO₃** (1:1 ratio) for 24 h at 37 °C. 0.1% v/v of formic acid was added just before infusion.

Figure S66. High-resolution ESI mass spectrum of $5 \cdot 10^{-6}$ M solution of **TrxR-pept** in water incubated with **[2h]NO₃** (1:1 ratio) for 24 h at 37 °C. 0.1% v/v of formic acid was added just before infusion.

S38