Supporting Information

In Situ Growth of S-Incorporated CoNiFe(oxy)hydroxides Nanoarrays as Efficient Multifunctional Electrocatalysts

Caihong Fang*, Deliang Zhang, Xin Wang, Ran Li

College of Chemistry and Materials Science, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, China

AUTHOR INFORMATION

Corresponding Author

*E-mail: chfang@mail.ahnu.ed.cn;

Fig. S1. (a,b) SEM images at different magnifications, (c) HRTEM image,(d) SAED patterns, (e-h) elemental mappings, (i) XRD patterns of the of CoNi-OH nanostructures.

Fig. S2 (a-b) SEM and (c-d) TEM images of CoNiFeS-OH at different magnifications.

Fig. S3 XRD patterns of CoNiFeS-OH.

Fig. S4 EDS spectra and the corresponding elemental compositions of CoNiFeS-OH.

Fig. S5 LSV curves for the OER of CoNiFeS–OH, CoNi–OH, CoNiFe–OH, CoNiS–OH, RuO₂, and NF in 1.0 M KOH at a scan rate of 0.5 mV s⁻¹.

Fig. S6 CV curves for OER measured in KOH (1.0 M) at various scan rates of 20, 40, 60, 80, 100,120 and 140 mV s⁻¹: (a) CoNiFeS–OH, (b) CoNi–OH, (c) RuO₂, and (d) NF, respectively.

Fig. S7 (a) The polarization curve LSV for OER before and after 1000 CV test of CoNiFeS–OH. (b) SEM of CoNiFeS–OH after 1000 CV in 1M KOH (1.0 M).

Fig. S8 (a) LSV curves for the HER of CoNiFeS–OH and CoNi–OH in KOH (1.0 M) and in KOH (1.0 M) with urea (0.33 M) at a scan rate of 5 mV s⁻¹. (b) LSV curves for the UOR of CoNiFeS–OH in different urea concentrations at a scan rate of 1 mV s⁻¹.

Fig. S9 CV curves for UOR in KOH (1.0 M) with urea (0.33 M) at scan rate of 20, 40, 60, 80, 100, 120 and 140 mV s⁻¹: (a) CoNiFeS–OH, (b) CoNi–OH, (c) RuO₂, (d) NF.

Fig. S10 (a) Multi-step chronopotentiometric curve of CoNiFeS–OH from 20 to 100 mA cm⁻² in KOH (1.0 M) with urea (0.33 M). (b) SEM of CoNiFeS–OH after 1000 CV in KOH (1.0 M) with urea (0.33 M).

Fig. S11 Characterizations of CoNiFeS–OH catalysts after UOR stability test. (a,b) HRTEM image and XRD patterns, (c–h) elemental mapping of immerged, O, Ni, Co, Fe, and S, respectively.

1000	· · · · ·			
	10 mA	20 mA	50 mA	100 mA cm^{-2}
	cm^{-2} (mV)	$\mathrm{cm}^{-2}(\mathrm{mV})$	$\mathrm{cm}^{-2}(\mathrm{mV})$	(mV)
CoNiFeS-OH	192	226	251	272
CoNi–OH	260	290	330	370
RuO_2	271	298	355	428
NF	377	415	493	568

Table S1 Overpotential of CoNiFeS–OH, CoNi–OH, RuO₂, and NF toward OER at η_{10} , η_{20} , η_{50} , and η_{100} in KOH (1.0 M).

 $Table \ S2 \ Comparison \ for \ OER \ properties \ of \ CoNiFeS-OH \ with \ other \ non-noble \ metal$

based electrocatalysts in KOH (1.0 M).

~ .	~ 1	Electrolyte	Current	Overpotenti	Ref.
Catalysts	Substrate	Conc.	density	al (mV)	
		(KOH)	$(mA \ cm^{-2})$	ur (III V)	
Fe-CoNi-OH	Nickel foam	1M	10	210	1
NiFeCr LDH	Nickel foam	1M	10	225	2
Fe-MOFs@Ni-	Nickel foom	1M	10	275	3
MOFs@NiFe-LDH	INICKCI IOdili	11111	10	215	
Fe-Co-aMOF	Nickel foam	1M	10	249	4
CoFeV LDH	Nickel foam	1M	10	242	5
Fe-Ni(OH) ₂	Nickel foam	1M	10	235	6
NiCo ₂ S ₄ /FeOOH	Nickel foam	1M	10	~200	7
NiCo-LDH@FeOOH	Carbon papers	1M	10	224	8
NiFePS	Nickel foam	1M	10	242	9
FeCoNiPB/	conner foil	1M	10	220	10
(FeCoNi) ₃ O _{4-x}	copper ton	1 1 V1	10	229	
CoNiFoS-OU	Nickel foam	1M	10	102	This
		1 1 1 1	10	172	work

	10 mA	20 mA	50 mA	100 mA
	$cm^{-2}(V)$	$cm^{-2}(V)$	$cm^{-2}(V)$	$cm^{-2}(V)$
CoNiFeS-OH	1.329	1.338	1.354	1.373
CoNi–OH	1.316	1.333	1.366	1.425
RuO ₂	1.388	1.423	1.549	1.645
NF	1.360	1.390	/	/

Table S3 Potential of CoNiFeS–OH, CoNi–OH, RuO₂, and NF toward UOR at η_{10} , η_{20} , η_{50} , and η_{100} in KOH (1.0 M) with urea (0.33 M).

Table S4 Comparison for UOR properties of CoNiFeS–OH with other non-noble metal based electrocatalysts in KOH (1.0 M) with urea.

Catalysts	substrate	Urea concentra tion (M)	Current density (mA cm ⁻²)	Voltage (V vs RHE)	Ref.
MoS_2/Ni_3S_2	Nickel foam	0.33	20	1.45	11
NiMo alloy	Nickel foam	0.1	10	1.48	12
NiCo ₂ S ₄	Carbon cloth	0.33	10	1.45	13
NiMoS	Carbon cloth	0.5	10	1.59	14
NiCo ₂ S ₄	Carbon cloth	0.33	10	1.45	15
NiCo LDH	Nickel foam	0.33	10	1.353	16
FeNi ₃ -MoO ₂	Nickel foam	0.5	10	1.29	17
Ni@C-250	СР	0.5	10	1.35	18
V-Ni ₃ N/NF	Nickel foam	0.5	10	1.361	19
NiS/MoS ₂	Carbon cloth	0.4	100	1.43	20
CoNiFeS-OH	Nickel foam	0.33	10	1.329	This work

		i (m A	Cell		
Catalysts	Urea concentration (M)) (IIIA	voltage	Ref.	
		ciii -)	(V)		
NiFeCo LDH/NF	0.33	10	1.49	21	
NiCo ₂ S ₄ NS/CC	0.5	10	1.49	13	
Ni ₃ S ₂ -NiS/NF	0.5	50	1.54	22	
NC-FNCP	0.5	10	1.52	23	
Ni-Co ₉ S ₈ /CC	0.33	10	1.52	24	
NiMoS/CC	0.5	10	1.59	14	
NiCo ₂ S ₄ /CC	0.33	10	1.45	15	
P-NiCoZn LDH/NF	0.5	10	1.479	25	
NF/PPy700Ni ₃ S ₂ -8-	0.22	10	1 47	26	
Ar	0.33	10	1.4/	20	
(Ni _{0.25} Fe _{0.7} 5) ₃ S ₂ /NF	0.33	10	1.49	27	
CoNiFeS-OH/NF	0.33	10	1.46	This work	

Table S5 Comparison for uera electrolysis efficiency of CoNiFeS–OH//CoNiFeS–OH with other non-noble metal based electrocatalysts in KOH (1.0 M) with urea.

References

Huang, C. Q.; Zhong, Y. H.; Chen, J. X.; Li, J.; Zhang, W.; Zhou, J. Q.; Zhang, Y. L.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. *Chem. Eng. J.* **2021**, *403*, 126304.

(2) Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.;
Zhang, Y. h.; Hamers, R. J.; Jin, S. Highly Active Trimetallic NiFeCr Layered Double
Hydroxide Electrocatalysts for Oxygen Evolution Reaction. *Adv. Energy Mater.* 2018, 8, 1703189.

(3) Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Bu, X. H. Engineering Bimetal

Synergistic Electrocatalysts Based on Metal-Organic Frameworks for Efficient Oxygen Evolution. *Small* **2019**, *15*, 1903410.

(4) Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei,
G. F.; Yu, C. Z. Amorphous Metal–Organic Framework–Dominated Nanocomposites
with Both Compositional and Structural Heterogeneity for Oxygen Evolution. *Angew. Chem., Int. Ed.* 2020, *59*, 3630–3637.

(5) Hu, Y. M.; Wang, Z. L.; Liu, W. J.; Xu, L.; Guan, M. L.; Huang, Y. P.; Zhao, Y.;
Bao, J.; Li, H. M. Novel Cobalt–Iron–Vanadium Layered Double Hydroxide
Nanosheet Arrays for Superior Water Oxidation Performance. *ACS Sustainable Chem. Eng.* 2019, 7, 16828–16834.

(6) Liu, J. L.; Zheng, Y.; Wang, Z. Y.; Lu, Z. G.; Vasileff, A.; Qiao, S. Z. Freestanding single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. *Chem. Commun.* **2018**, *54*, 463–466.

(7) Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo₂S₄/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. *Nano Energy* **2020**, *78*, 105230.

(8) Han, X. T.; Niu, Y. Y.; Yu, C.; Liu, Z. B.; Huang, H. W.; Huang, H. L.; Li, S. F.;
Guo, W.; Tan, X. Y.; Qiu, J. S. Ultrafast construction of interfacial sites by wet
chemical etching to enhance electrocatalytic oxygen evolution. *Nano Energy* 2020, *69*, 104367.

(9) Jeung, Y.; Roh, H.; Yong, K. Co-anion exchange prepared 2D structure Ni(Co,Fe)PS for efficient overall water electrolysis. *Appl. Surf. Sci.* 2022, 576, 151720.

(10) Wei, R.; Zhang, K. S.; Zhao, P. j.; An, Y. P.; Tang, C.; Chen, C.; Li, X. M.; Ma, X. L.; Ma, Y. F.; Hao, X. G. Defect-rich FeCoNiPB/(FeCoNi)₃O_{4-x} high-entropy composite nanoparticles for oxygen evolution reaction: Impact of surface activation. *Appl. Surf. Sci.* 2021, *549*, 149327.

(11) Li, F.; Chen, J. X.; Zhang, D. F.; Fu, W. F.; Chen, Y.; Wen, Z. H.; Lv, X. J. Heteroporous MoS₂/Ni₃S₂ towards superior electrocatalytic overall urea splitting. *Chem. Commun.* 2018, *54*, 5181–5184.

(12) Zhang, J. Y.; He, T.; Wang, M. D.; Qi, R. J.; Yan, Y.; Dong, Z. H.; Liu, H. F.;
Wang, H. M.; Xia, B. Y. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. *Nano Energy* 2019, *60*, 894–902.

(13) Zhu, W. X.; Ren, M. R.; Hu, N.; Zhang, W. T.; Luo, Z. T.; Wang, R.; Wang, J.;
Huang, L. J.; Suo, Y. R.; Wang, J. L. Traditional NiCo₂S₄ Phase with Porous
Nanosheets Array Topology on Carbon Cloth: A Flexible, Versatile and Fabulous
Electrocatalyst for Overall Water and Urea Electrolysis. *ACS Sustainable Chem. Eng.*2018, *6*, 5011–5020.

(14) Wang, X. X.; Wang, J. M.; Sun, X. P.; Wei, S.; Cui, L.; Yang, W. R.; Liu, J. Q. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. *Nano Res.* **2017**, *11*, 988–996.

(15) Song, W. J.; Xu, M. Z.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Liu, X.; He, X. M.; Chen, Z. F. Construction of self-supporting, hierarchically structured caterpillar-like NiCo₂S₄ arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis. *Nanoscale* **2021**, *13*, 1680–1688.

(16) Yan, X. D.; Hu, Q. T.; Liu, J. Y.; Zhang, W. D.; Gu, Z. G. Ultrafine-grained NiCo layered double hydroxide nanosheets with abundant active edge sites for highly enhanced electro-oxidation of urea. *Electrochim. Acta* **2021**, *368*, 137648.

(17) Xu, Q. L.; Yu, T. Q.; Chen, J. L.; Qian, G. F.; Song, H. N.; Luo, L.; Chen, Y. L.;
Liu, T. Y.; Wang, Y. Z.; Yin, S. B. Coupling Interface Constructions of FeNi₃-MoO₂
Heterostructures for Efficient Urea Oxidation and Hydrogen Evolution Reaction. *ACS Appl. Mater. Interfaces* 2021, *13*, 16355–16363.

(18) Wang, J. M.; Zhao, Z.; Shen, C.; Liu, H. P.; Pang, X. Y.; Gao, M. Q.; Mu, J.;

Cao, F.; Li, G. Q. Ni/NiO heterostructures encapsulated in oxygen-doped graphene as multifunctional electrocatalysts for the HER, UOR and HMF oxidation reaction. *Catal. Sci. Technol.* **2021**, *11*, 2480–2490.

(19) Li, R. Q.; Liu, Q.; Zhou, Y. N.; Lu, M. J.; Hou, J. L.; Qu, K. G.; Zhu, Y. C.;
Fontaine, O. 3D self-supported porous vanadium-doped nickel nitride nanosheet
arrays as efficient bifunctional electrocatalysts for urea electrolysis. *J. Mater. Chem. A* 2021, *9*, 4159–4166.

(20) Zheng, Y.; Tang, P. H.; Xu, X. X.; Sang, X. G. POM derived UOR and HER bifunctional NiS/MoS₂ composite for overall water splitting. *J. Solid State Chem.*2020, 292, 121644.

(21) Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J.
H. Bifunctional 2D Electrocatalysts of Transition Metal Hydroxide Nanosheet Arrays for Water Splitting and Urea Electrolysis. *ACS Sustainable Chem. Eng.* 2019, *7*, 10035–10043.

(22) Zhao, Q. Q.; Meng, C.; Kong, D. Q.; Wang, Y. M.; Hu, H.; Chen, X. M.; Han, Y.;
Chen, X. D.; Zhou, Y.; Lin, M. C.; Wu, M. B. In Situ Construction of Nickel Sulfide
Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. *ACS Sustainable Chem. Eng.* 2021, *9*, 15582–15590.

(23) Zhang, J.; Huang, S. S.; Ning, P.; Xin, P. J.; Chen, Z. W.; Wang, Q.; Uvdal, K.;
Hu, Z. J. Nested hollow architectures of nitrogen-doped carbon-decorated Fe, Co, Nibased phosphides for boosting water and urea electrolysis. *Nano Res.* 2021, *15*, 1916–1925.

(24) Hao, P.; Zhu, W. Q.; Li, L. Y.; Tian, J.; Xie, J. F.; Lei, F. C.; Cui, G. W.; Zhang,
Y. Q.; Tang, B. Nickel incorporated Co₉S₈ nanosheet arrays on carbon cloth boosting overall urea electrolysis. *Electrochim. Acta* 2020, *338*, 135883.

(25) Yang, Z. X.; Zhang, Y. Q.; Feng, C. Q.; Wu, H. M.; Ding, Y.; Mei, H. P doped NiCoZn LDH growth on nickel foam as an highly efficient bifunctional

electrocatalyst for Overall Urea-Water Electrolysis. *Int. J. Hydrogen Energy* **2021**, *46*, 25321–25331.

(26) Zhang, Y. X.; Qiu, Y. F.; Wang, Y. P.; Li, B.; Zhang, Y. Y.; Ma, Z.; Liu, S. Q.
Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for
Efficient H₂ Production via Urea Electrolysis. *ACS Appl. Mater. Interfaces* 2021, *13*, 3937–3948.

(27) Liu, C.; Li, F.; Xue, S.; Lin, H. L.; Sun, Y.; Cao, J.; Chen, S. F. Fe Doped Ni₃S₂
Nanosheet Arrays for Efficient and Stable Electrocatalytic Overall Urea Splitting.
ACS Appl. Energy Mater. 2022, 5, 1183–1192.